Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Epigenetic downregulation of human disabled homolog 2 switches TGF-β from a tumor suppressor to a tumor promoter
Adèle Hannigan, … , Tim Crook, Gareth J. Inman
Adèle Hannigan, … , Tim Crook, Gareth J. Inman
Published July 1, 2010
Citation Information: J Clin Invest. 2010;120(8):2842-2857. https://doi.org/10.1172/JCI36125.
View: Text | PDF
Research Article Oncology

Epigenetic downregulation of human disabled homolog 2 switches TGF-β from a tumor suppressor to a tumor promoter

  • Text
  • PDF
Abstract

The cytokine TGF-β acts as a tumor suppressor in normal epithelial cells and during the early stages of tumorigenesis. During malignant progression, cancer cells can switch their response to TGF-β and use this cytokine as a potent oncogenic factor; however, the mechanistic basis for this is poorly understood. Here we demonstrate that downregulation of disabled homolog 2 (DAB2) gene expression via promoter methylation frequently occurs in human squamous cell carcinomas (SCCs) and acts as an independent predictor of metastasis and poor prognosis. Retrospective microarray analysis in an independent data set indicated that low levels of DAB2 and high levels of TGFB2 expression correlate with poor prognosis. Immunohistochemistry, reexpression, genetic knockout, and RNAi silencing studies demonstrated that downregulation of DAB2 expression modulated the TGF-β/Smad pathway. Simultaneously, DAB2 downregulation abrogated TGF-β tumor suppressor function, while enabling TGF-β tumor-promoting activities. Downregulation of DAB2 blocked TGF-β–mediated inhibition of cell proliferation and migration and enabled TGF-β to promote cell motility, anchorage-independent growth, and tumor growth in vivo. Our data indicate that DAB2 acts as a tumor suppressor by dictating tumor cell TGF-β responses, identify a biomarker for SCC progression, and suggest a means to stratify patients with advanced SCC who may benefit clinically from anti–TGF-β therapies.

Authors

Adèle Hannigan, Paul Smith, Gabriela Kalna, Cristiana Lo Nigro, Clare Orange, Darren I. O’Brien, Reshma Shah, Nelofer Syed, Lindsay C. Spender, Blanca Herrera, Johanna K. Thurlow, Laura Lattanzio, Martino Monteverde, Meghan E. Maurer, Francesca M. Buffa, Jelena Mann, David C.K. Chu, Catharine M.L. West, Max Patridge, Karin A. Oien, Jonathan A. Cooper, Margaret C. Frame, Adrian L. Harris, Louise Hiller, Linda J. Nicholson, Milena Gasco, Tim Crook, Gareth J. Inman

×

Figure 2

DAB2 promoter methylation correlates with low-level expression and predicts metastasis and poor clinical outcome in SCC.

Options: View larger image (or click on image) Download as PowerPoint

DAB2 promoter methylation correlates with low-level expression and pred...
(A) Analysis of DAB2 promoter methylation by MSP analysis in 9 HNSCC primary tumor isolates. (B) DAB2 promoter methylation correlates with low-level DAB2 expression. Analysis of DAB2 expression by RT-PCR in 2 normal (N) and 5 primary HNSCC tumor (T) samples. GAPDH RT-PCR is shown as a loading control. (C) DAB2 promoter methylation correlates with metastasis in VSCC. Graphical representation of DAB2 MSP analysis of 26 matched normal tissue and primary tumors isolated from VSCC patients. Primary tumor data is separated into patients with (16 patients) and without (10 patients) inguinal nodal involvement, and analysis of matched metastasis material is also shown. (D and E) DAB2 promoter methylation predicts poor clinical outcome in HNSCC. Log-rank survival analysis in HNSCC patients. The Kaplan-Meier curves show analyses of overall survival (D) and progression-free survival (E) in patients with HNSCC, as a function of DAB2 promoter methylation (methylated) or lacking methylation (unmethylated). The numbers under the graphs indicate the numbers of cases analyzed. (D) Overall survival is significantly worse in patients with tumors with methylation in the DAB2 promoter (P < 0.0001). (E) Progression-free survival is significantly worse in patients with tumors with methylation in the DAB2 promoter (P < 0.0001). (F) MSP analysis correlates with pyrosequencing analysis. HNSCC tumor samples were analyzed by MSP analysis as in A and by quantitative pyrosequencing of CpG dinucleotides 39–44 (depicted in Figure 1D). Data represent the average percentage of methylation at each CpG, and box plots are shown for MSP+ve and MSP–ve samples. (G) MSP analysis correlates with DAB2 expression levels. qRT-PCR analysis of DAB2 expression of samples is analyzed as in F. Expression levels are represented in relation to the highest expressing sample, which is assigned the arbitrary value of 1. (F and G) Data are analyzed by nonparametric Mann-Whitney statistics. In box plots, the 75th and 25th percentiles are represented by the top and bottom of the box, respectively. The horizontal lines refer to the mean. **P < 0.01.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts