## MEMBRANE-ANCHORED UPAR REGULATES THE PROLIFERATION, MARROW POOL SIZE, ENGRAFTMENT AND MOBILIZATION OF HEMATOPOIETIC STEM/PROGENITOR CELLS

Marc Tjwa et al.

# SUPPLEMENTAL MATERIAL

## SUPPLEMENTAL RESULTS

### HSPC DISTRIBUTION IN PLAUR<sup>-/-</sup> MICE

Translocation of CFU-Cs to the blood was not detected in *Plaur<sup>-/-</sup>* mice in steady-state conditions. The numbers of the CFU-Cs were: (i) in the BM (expressed as x  $10^3$  per femur): 24 ± 2 in WT mice *versus* 14 ± 1 in *Plaur<sup>-/-</sup>* mice (*P*<0.05); (ii) in the peripheral blood (expressed per ml): 60 ± 10 in WT mice *versus* 70 ± 10 *Plaur<sup>-/-</sup>* mice (*P*=NS); (iii) in the spleen (expressed per  $10^5$  SpMCs): 13 ± 2 in WT mice *versus* 15 ± 2 in *Plaur<sup>-/-</sup>* mice (*P*=NS). The spleen weight corrected for body weight (mg/g) was 3.7 ± 0.3 in WT mice *versus* 3.8 ± 0.3 in *Plaur<sup>-/-</sup>* mice.

#### <sup>M</sup>UPAR CLEAVAGE: RATIONALE FOR THE USE OF THE **5-FU** MODEL

Although G-CSF is the classical mobilizing agent, we used in these experiments 5-FU. Indeed, demonstrating that intact <sup>M</sup>uPAR expression levels are reduced on HSPCs during mobilization requires large numbers of cells. As this was technically not feasible when using the G-CSF model, we used 5-FU (200 mg/kg i.v.) to mobilize HSPCs. Apart from mobilizing HSPCs, 5-FU also eliminates lineage-positive cells from the BM leading to proliferation of lineage-negative cells (1). Hence, large numbers of Sca-1<sup>+</sup> HSPCs that are chiefly lineage-negative, can be found in the BM of animals following 5-FU administration (1). Since HSPCs loose their cKit expression during 5-FU (1), we did not analyze cKit<sup>+</sup> BMCs. However, we acknowledge the limitations of analyzing immunophenotypically different HSPC subpopulations.

## FURTHER EVIDENCE FOR <sup>M</sup>UPAR CLEAVAGE DURING HSPC MOBILIZATION

<sup>S</sup>uPAR levels in the BM plasma increased during mobilization in WT but not *Plg*<sup>-/-</sup> mice (not shown). By contrast, the MFI signal of the AK17 antibody, which recognizes all forms of <sup>M</sup>uPAR, remained unchanged on Sca-1<sup>+</sup> BMCs in WT and *Plg*<sup>-/-</sup> mice (p=NS; not shown), indicating the absence of genotypic differences in <sup>M</sup>uPAR expression or catabolism during mobilization.

### SUPPLEMENTAL FIGURES

**SUPPLEMENTAL FIGURE 1:** Expression of <sup>M</sup>uPAR on HSPCs.

*A*, Representative FACS dot plot revealing the expression of <sup>M</sup>uPAR on Lin<sup>-</sup>CKit<sup>+</sup> HSPCs (*left*, isotype control: *right*). Lin<sup>-</sup> BMCs were gated. *B*, To further assess whether *Plaur<sup>-/-</sup>* HSPCs home and engraft following transplantation, we co-transplanted *Plaur<sup>-/-</sup>* and WT donor BMMCs in lethally irradiated WT mice. To identify the transplanted donor cells, cells were harvested from WT and *Plaur<sup>-/-</sup>* mice, that had been intercrossed with syngeneic mice ubiquitously expressing GFP (*Actb:GFP mice*). GFP<sup>+</sup> WT and *Plaur<sup>-/-</sup>* cells were mixed in a 3:1, 1:1, or 1:3 ratio with *Plaur<sup>-/-</sup>* GFP<sup>-</sup> and WT GFP<sup>-</sup> competitor cells, respectively, and a total of 1 x 10<sup>6</sup> BMMCs were transplanted into GFP<sup>-</sup> WT recipients irradiated at 8 Gy. Compared to WT GFP<sup>+</sup> cells, fewer *Plaur<sup>-/-</sup>* GFP<sup>+</sup> donor BMMCs contributed to the hematopoietic repopulation of recipient WT mice at 8 weeks after transplantation. Even when three-fold more *Plaur<sup>-/-</sup>* GFP<sup>+</sup> BMMCs were co-transplanted with WT GFP<sup>-</sup> competitor cells, only ~20% GFP<sup>+</sup> cells were detected in the blood of recipient mice after 8 weeks. Of note, the reduced short-term repopulation of labeled *Plaur<sup>-/-</sup>* cells *versus* WT cells, when transplanted in 1:1 ratio with radioprotective cells, is consistent with the notion of a partially depleted HSPC pool in the BM of *Plaur<sup>-/-</sup>* mice. \*: *P*<0.05 (*N*=6-10).

#### **SUPPLEMENTAL FIGURE 2:** Loss of <sup>M</sup>uPAR increases HSPC proliferation.

*A*,*B*, Representative FACS histogram plots of cell cycle analysis of WT (*A*) and *Plaur<sup>-/-</sup>* (*B*) Lin<sup>-</sup>cKit<sup>+</sup> HSPCs in steady-state conditions. *C*, Quantitative analysis of the cell cycle status in WT and *Plaur<sup>-/-</sup>* Lin<sup>-</sup>cKit<sup>+</sup> HSPCs in steady-state conditions. Compared to WT, fewer Lin<sup>-</sup> cKit<sup>+</sup> HSPCs in the BM of *Plaur<sup>-/-</sup>* mice were in G<sub>0</sub>/G<sub>1</sub>. \*: *P*<0.05 *versus* WT (*N*=4). *D*, Compared to WT mice, fewer Lin<sup>-</sup>cKit<sup>+</sup> HSPCs in the *Plaur<sup>-/-</sup>* mice were Pyronin Y<sup>low</sup>. \*: *P*<0.05 *versus* WT (*N*=4). *E*,*F*, Compared to WT mice, more Lin<sup>-</sup>cKit<sup>+</sup> HSPCs in *Plaur<sup>-/-</sup>* mice proliferated (*E*) or were apoptotic (*F*). \*: *P*<0.05 *versus* WT (*N*=4).

**SUPPLEMENTAL FIGURE 3:** Plasmin cleaves <sup>M</sup>uPAR during mobilization.

**A**, For plasmin to be a candidate proteinase capable of cleaving <sup>M</sup>uPAR in vivo, it should be expressed in the BM during HSPC mobilization. In normal BM, plasmin was undetectable in baseline conditions (<1 AU/ml). However, in conditions of HSPC mobilization (2 days after G-CSF), plasmin levels were transiently upregulated (upper, N=3) and declined thereafter again by day 5 to undetectable levels. At 2 days after G-CSF, the increased plasmin activity coincides with peak expansion of HSPCs in the BM (our unpublished observations). Plasmin levels were also transiently elevated in the 5-FU model on day 3 and day 7 (lower, N=3). **B.** Apart from cleaving <sup>M</sup>uPAR between D<sub>1</sub> and D<sub>11</sub>, plasmin also cleaves recombinant uPAR at the juxtamembrane domain (2). In doing so, plasmin induces the release of  $D_1 D_{11} D_{11}$ or, in case plasmin first cleaves off the D<sub>1</sub> domain, of D<sub>11</sub>D<sub>111</sub>. ELISA measurements of intact <sup>M</sup>uPAR in total cell extracts of MDA-MB-231 cells, which express <sup>M</sup>uPAR (3), indeed showed that plasmin (administered as active plasmin or urokinase + plasminogen) lowered the amount of intact <sup>M</sup>uPAR in these cells (N=6; P<0.05). As expected, plasmin also increased the levels of <sup>S</sup>uPAR ( $D_{II}D_{III}$  and  $D_{I}D_{III}D_{III}$ ) in the conditioned medium of these cells (1,130 ± 200% of control levels; N=6; P<0.05). Further experiments using the domainspecific anti-uPAR antibodies revealed that plasmin also cleaves <sup>M</sup>uPAR between D<sub>1</sub> and D<sub>11</sub> (data not shown). Thus, plasmin cleaves <sup>M</sup>uPAR on intact cells in vitro.

#### **SUPPLEMENTAL FIGURE 4:** Molecular mechanisms of <sup>M</sup>uPAR

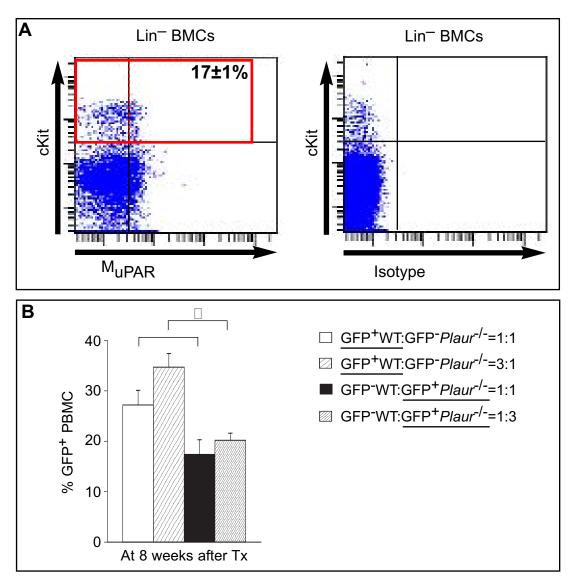
*A*,*B*, Upon adhesion of WT Lin<sup>-</sup>CKit<sup>+</sup> HSPCs to immobilized sVCAM-1 (bottom of the picture), α4ß1 (green; *A*) and <sup>M</sup>uPAR (red; *B*) seemed to cluster, as revealed by multiphoton confocal microscopy (3D reconstruction). Nuclear DAPI staining is shown in blue. *C*, <sup>M</sup>uPAR does not cooperate with CXCR-4. Indeed, FACS analysis showed that inhibition or loss of <sup>M</sup>uPAR did not affect the expression of CXCR-4 on Lin<sup>-</sup>CKit<sup>+</sup> HSPCs (not shown). To study the response of *Plaur<sup>-/-</sup>* HSPCs to SDF-1, we administered the CXCR-4 inhibitor AMD3100 to *Plaur<sup>-/-</sup>* mice and found that mobilization of CFU-Cs was comparable in WT and *Plaur<sup>-/-</sup>* mice; N=6; P=NS). Furthermore, pre-treatment with AMD3100 modestly reduced homing of Ly5.1<sup>+</sup> Lin<sup>-</sup>CKit<sup>+</sup> HSPCs to the BM, as was found previously by others (4), but, importantly, a

combination of AMD3100 plus neutralizing anti-<sup>M</sup>uPAR antibodies further impaired the homing of Ly5.1<sup>+</sup> Lin<sup>-</sup>cKit<sup>+</sup> HSPCs to the BM, indicating that both pathways operate separately. Data are expressed as % of control. For reasons of clarity and comparison, the data with anti-<sup>M</sup>uPAR (Figure 3B) are shown again. \*: *P*<0.05 *versus* control IgG; <sup>#</sup>: *P*<0.05 *versus* AMD3100 (*N*=4-6). *D*, <sup>M</sup>uPAR does not cooperate with mKitL. When performing in vitro adhesion assays with isolated Lin<sup>-</sup>cKit<sup>+</sup> HSPCs using mKitL-expressing BM stromal cells as substrate, inhibition or loss of <sup>M</sup>uPAR antibodies failed to inhibit cKit-mediated adhesion and FACS analysis showed that inhibition or loss of <sup>M</sup>uPAR did not affect the expression of cKit on Lin<sup>-</sup>cKit<sup>+</sup> HSPCs (not shown). Data in are expressed as % of control (*N*=8).

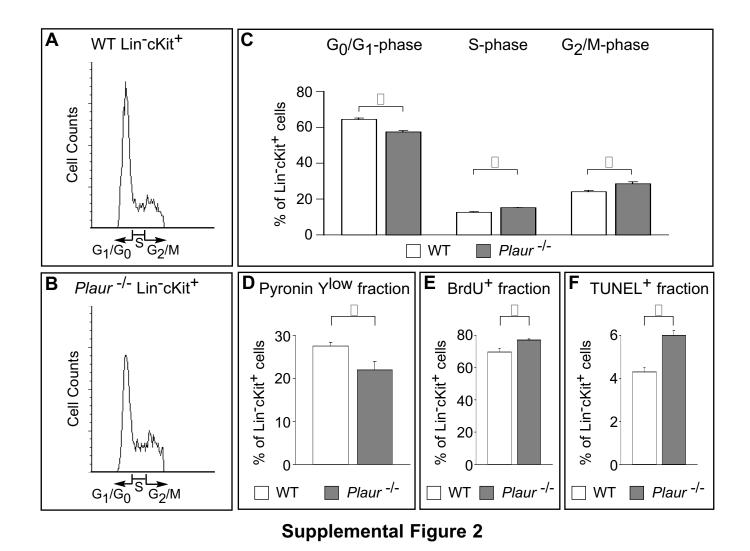
**SUPPLEMENTAL FIGURE 5:** Expression of <sup>M</sup>uPAR on KSL cells.

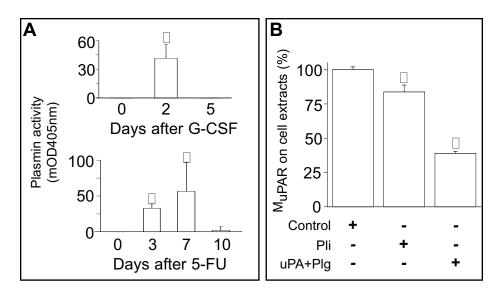
**A**, Representative FACS dot plot revealing the expression of <sup>M</sup>uPAR on KSL cells.

# SUPPLEMENTAL TABLES

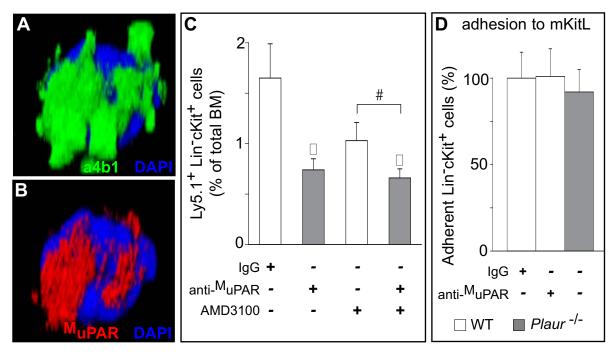

|                             | WT mice   | Plaur <sup>-/-</sup> mice |
|-----------------------------|-----------|---------------------------|
| WBC (x 10 <sup>3</sup> /µl) | 6.1 ± 0.8 | 7.0 ± 0.5                 |
| % neutrophils               | 9 ± 2     | 11 ± 3                    |
| % monocytes                 | 5 ± 1     | 8 ± 1                     |
| % lymphocytes               | 86 ± 2    | 81 ± 3                    |
| RBC (x 10 <sup>6</sup> /µl) | 8.2 ± 0.2 | 8.3 ± 0.2                 |
| Hct (%)                     | 44 ± 1    | 46 ± 1                    |
| Reticulocytes (x 10⁵/µl)    | 36 ± 3    | 31 ± 4                    |

**SUPPLEMENTAL TABLE 1:** Hematopoietic profile of WT and *Plaur<sup>-/-</sup>* mice.

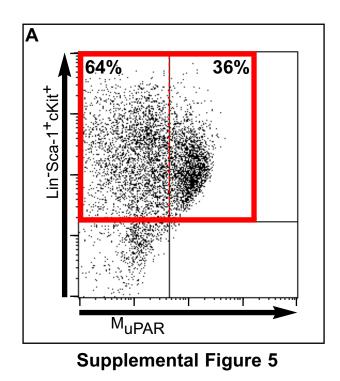

Values represent the mean  $\pm$  SEM of the hematological parameters in WT (n=15) and *Plaur*<sup>-/-</sup> (n=15) mice in steady-state conditions. *P*=NS *versus* WT.


## REFERENCES

- 1. Randall, T.D., and Weissman, I.L. 1997. Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. *Blood* 89:3596-3606.
- 2. Beaufort, N., Leduc, D., Rousselle, J.C., Namane, A., Chignard, M., and Pidard, D. 2004. Plasmin cleaves the juxtamembrane domain and releases truncated species of the urokinase receptor (CD87) from human bronchial epithelial cells. *FEBS Lett* 574:89-94.
- 3. Holst-Hansen, C., Johannessen, B., Hoyer-Hansen, G., Romer, J., Ellis, V., and Brunner, N. 1996. Urokinase-type plasminogen activation in three human breast cancer cell lines correlates with their in vitro invasiveness. *Clin Exp Metastasis* 14:297-307.
- 4. Bonig, H., Priestley, G.V., and Papayannopoulou, T. 2006. Hierarchy of molecularpathway usage in bone marrow homing and its shift by cytokines. *Blood* 107:79-86.




**Supplemental Figure 1** 






**Supplemental Figure 3** 



Supplemental Figure 4

