#### SUPPLEMENTARY MATERIAL

#### RESULTS

# Functional annotation and biological relevance

To further explore the functional relationships between specific PBMC subsets and tolerance-related expression patterns we dissected the molecular pathways contained in the microarray differential gene expression data set employing both Gene set enrichment analysis (GSEA) and Ingenuity Pathway Analysis (IPA). Applying GSEA to manually curated gene set databases (C2 MsigDB; Table S5 in Supplementary Material) a number of canonical pathways comprising inflammatory and immune stimulatory genes were significantly associated with the non-tolerant phenotype, while only the propanoate pathway was significantly enriched in the tolerant phenotype. We also investigated whether gene expression measurements could be linked to conserved regulatory motifs (C3 MSigDB) but this yielded no significant results. In contrast, exploration of computed gene expression compendiums (C4 MsigDB) revealed that the tolerant phenotype was highly enriched in 3 overlapping gene sets (neighbourhood of IL2RB, PTPN4, CD7; Table S1) altogether comprising 76 genes known to be preferentially expressed by NK and other cytotoxic lymphocytes such as CD8 and  $\gamma \delta TCR + T$  cells (ref. S1). To exclude the effect of HCV infection on the functional profiling of operational tolerance, we then applied GSEA to compare HCV-neg TOL and Non-TOL recipients (Table S1). The use of C2 MsigDB to identify canonical pathways resulted in the detection of 3 pro-inflammatory gene sets significantly enriched in HCV-neg Non-TOL samples (CTLA4, CMAC and hypertrophy model pathways; Table S1). However, genes included within these three pathways (e.g. CD28, ICOS, CTLA4, JUN, TNF, IFNG, PIK3CA, ITK) were not present among the genes

discriminating between HCV-neg TOL and Non-TOL as assessed by SAM at FDR<5%. No clear functional differences were noted between HCV-neg TOL and Non-TOL recipients when employing C3 MSigDB (regulatory motifs) databases, while the use of computed gene expression databases (C4 MsigDB) showed again enrichment in HCVneg TOL samples of gene sets (neighbourhood of IL2RB, PTPN4, CD97; Table S1) commonly expressed by NK and other cytotoxic lymphocytes (ref. S1). The use of IPA on the complete TOL and Non-TOL differential expression data set identified SAPK/JNK signalling pathway and NK cell signalling pathway as the most significant canonical pathways associated with tolerance (Figure S2). The stress-activated SAPK/JNK pathway included a number of pro-inflammatory genes (CDK4, CDK8, CSNK1A1, DAXX, DUSP10, MAP4K4, MAPK9, SOS1, TRA@) that were differentially expressed between TOL and Non-TOL samples at FDR<5% only in HCV-pos recipients (data not shown). In contrast, NK signalling pathway comprised genes (CD244, CD300A, KLRC3, KLRD1, KLRK1, SH2D1B, and SOS1) significantly upregulated in TOL samples at FDR<5% regardless of HCV infection (data not shown). Next, to understand the potential biological relevance of the most informative set of genes, we used IPA to functionally analyse the 45 genes differentially expressed by qPCR between TOL and either Non-TOL or CONT samples. IPA identified 3 partially overlapping networks connecting 33 out of the 45-gene list (Figure S2). The first network, which was built from 14 genes and received the highest IPA score, was centred on IL-8, NFkB and Akt and associated with cancer, cellular movement and immune and lymphatic system function. The second network, incorporating 13 out of the 45 genes, was centred on TP53 and CDKN1A and associated with cancer, cell death and immunological disease. The third network built on 5 genes was mostly centred around IL-4 and associated with cell-to-cell signalling and cellular development. Taken

together, functional profiling reveals that tolerance-related expression signatures are highly enriched in genes involved in the regulation of innate immune cell function. While a number of pro-inflammatory pathways are over-represented in Non-TOL recipients, this appears to be mainly attributable to the effect of chronic HCV infection and not directly related to operational tolerance.

#### MATERIAL AND METHODS

### Peripheral blood immunophenotyping on sorted PBMC subsets

The expression at the protein level of 7 of the most discriminative genes identified by microarray and qPCR experiments (ILRB2, KLRB1, CD244, CD9, KLRF1, CD160, SLAMF7) was assessed on sorted PBMC subpopulations from a subset of 6 TOL, 6 Non-TOL and 5 CONT patients. CD160 fluorescent monoclonal antibodies were purchased from Beckman Coulter, SLAMF7 and KLRF1 from R&D Systems. All remaining antibodies were purchased from BD Biosciences.

# **Functional annotation**

Gene Set Enrichment Analysis (GSEA) was employed to identify biological pathways significantly associated with the tolerant state (ref. S2). In comparison to other strategies for analysis of molecular profiling data that focus on high scoring individual genes, GSEA does not employ a significance threshold and evaluates microarray data at the level of gene sets defined based on prior biological knowledge. This approach has been reported to yield robust results even when dealing with heterogeneous samples with subtle sample class differences. For the current analysis (incorporating all probes collapsed by genes with at least one log2-expression measurement >5) gene sets were extracted from Molecular Signature Database (MSigDB v.2-0) C2 (manually curated

canonical pathways), C3 (gene sets containing genes that share transcription factor or microRNA binding motifs) and C4 (computational gene sets generated in previous gene expression experiments) of MSigDB. Analysis were based on a *t*-test and a weighted scoring scheme with 1000 permutations on gene sets. Only gene sets with more than 15 genes were included in the analysis. Functional profiling was also performed on differentially expressed genes (SAM FDR<1%) employing the computational gene network prediction tool Ingenuity Pathway Analysis (IPA; <u>www.ingenuity.com</u>). This commercial application maps the uploaded gene identifiers into a global molecular network developed from a literature-supported Ingenuity Pathways Knowledge Base (IPKB), and then generates networks that represent the molecular relationships between the genes and their products. The biological functions significantly associated with the genes in the networks are provided and scored employing Fischer's exact test.

## **FIGURE LEGENDS**

Figure S1: Differences in protein expression in peripheral mononuclear between
TOL, Non-TOL and CONT recipients. A) Expression of ILRB2, KLRB1, CD244,
CD9, KLRF1, CD160 and SLAMF7 on peripheral blood mononuclear cells.
Representative flow cytometry histograms showing protein expression on TOL, Non-TOL and CONT samples. B) Differences in protein expression levels between TOL,
Non-TOL and CONT samples. Bar plots represent mean expression (% of positive cells

or mean fluorescence intensity (MFI) depending on the marker analysed) +/- SD from 6 TOL, 6 Non-TOL and 5 CONT samples. (\*) = P-value <0.05 (t-test) between TOL and Non-TOL; (\*\*) = P-value <0.05 (t-test) between TOL and CONT. **Figure S2: Functional analysis of tolerance-related gene expression patterns.** A) Identification of the canonical pathways from Ingenuity Pathways Knowledge Base (IPKB) most significantly associated with the genes differentially expressed between TOL and Non-TOL samples. Genes selected by SAM at FDR <1% were considered for the analysis. The significance of the association was measured on the basis of the ratio of the number of genes from the data set that map to the pathway divided by the total number of genes that map to the canonical pathway (as displayed); and a *P*-value determining the probability that the association between the genes in the data set and the canonical pathway is explained by chance alone (Fischer's exact test). B-D) Gene and protein interaction networks defined by the 45 gene classifiers validated by qPCR. Three networks were built using Ingenuity Pathway Analysis (IPA) from 14 (B), 13 (C), and 5 (D) genes. Genes or gene products are represented as nodes and the biological relationship between two nodes is represented as an edge (line). The intensity of the node colour corresponds to up- (red) or down- (green) regulation.

# REFERENCES

- S1. Su, A.I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K.A., Block, D., Zhang, J., Soden, R., Hayakawa, M., Kreiman, G., et al. 2004. A gene atlas of the mouse and human protein-encoding transcriptomes. *Proc Natl Acad Sci U S A* 101:6062-6067.
- S2. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A* 102:15545-15550.

Table S1: Functional gene set enrichment in tolerance-related differentially

expressed gene lists (SAM; FDR<0.05) as assessed by gene-set enrichment

analysis (GSEA)

| TOL / Non-TOL differential gene expression data set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Enriched in TOL samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P-value                                                                                                                                                                                                                                                                                                                                                                                                                 | FDR q-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Genes with highest enrichment scores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Canonical pathways (C2 MSigDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Propanoate metabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MCEE, ECHS1, ALDH9A1, PCCA, ALDH3A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Computational gene sets (C4 MSigDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Neigborhood of PTPN4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | II2RB, CD160, PTGDR, KLRF1, KLRD1, KLRK1, KLRC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Neighborhood of IL2RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | II2RB, CD160, PTGDR, CD244, CX3CR1, PRF1, KIR3DL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Neigborhood of CD7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | II2RB, CD160, PTGDR, CD244, CX3CR1, PRF1, SPON2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Neigborhood of MATK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IL2RB, PTGDR, ARHGEF3, KLRD1, PRF1, GZMA, ZAP70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Neigborhood of RAB7L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IL2RB, KLRD1, KLRF1, APOBEC3G, PTGER2, BIN2, NCR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Neigborhood of BMPR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WDR67, DFFB, IPO8, HDAC9, SMYD2, C22ORF9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Enriched in Non-TOL samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Canonical pathways (C2 MSigDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| IL1R pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TRAF6, IRAK3, IL1A, IL1R1, IL1R1, NFKBIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Hypertrophy model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IFNG, IFDR1, VEGF, IL1A, IL1R1, ATF3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Brest cancer estrogen signaling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ITGA6, CDKN2A, FOSL1, SLC7A5, CCNE1, VEGF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| NFAT signaling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IFNG. ITK. RELA. NFKBIB. SLA. FOS. IL8RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Tumor necrosis factor pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NFKB1, CFLAR, FADD, TNFAIP3, NFKB2, JUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| NTHI nathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IL8, TNF, IL1B, NFKBIA, DUSP1, RELA, MAP2K6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| CTI A4 pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CD28. CTLA4. ICOS. PIK3R1. ITK. CD3E. TRA@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| CMAC nathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TNE JUN NEKBIA FOS RELA RAE1 MAPK3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| NEKB pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TNE II 1R1 II 1A TNEAIP3 TRAE6 RELA FADD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Computational gene sets (C4 MSigDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Neighorhood of MMP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CXCL1 TNEAIP6 II 6 PTX3 II 1B CXCL3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o.co_,,,, .,, .,, .,, .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| HCV-negative TOL / Non-TOL differential gene expression data set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| HCV-negative TOL / Non-TOL dil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rerential g                                                                                                                                                                                                                                                                                                                                                                                                             | Jelle expressi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on data set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Enriched in TOL samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P-value                                                                                                                                                                                                                                                                                                                                                                                                                 | FDR q-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Genes with highest enrichment scores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P-value                                                                                                                                                                                                                                                                                                                                                                                                                 | FDR q-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Genes with highest enrichment scores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>P</i> -value                                                                                                                                                                                                                                                                                                                                                                                                         | FDR q-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Genes with highest enrichment scores ERG2, ERG3, PRKAR1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway<br>Computational gene sets (C4 MSigDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>P</i> -value                                                                                                                                                                                                                                                                                                                                                                                                         | FDR q-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway<br>Computational gene sets (C4 MSigDB)<br>Neigborhood of PTPN4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                   | FDR <i>q</i> -value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | On data Set<br>Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway<br>Computational gene sets (C4 MSigDB)<br>Neigborhood of PTPN4<br>Neighborhood of CD97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                        | 0.05<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | On Gata Set<br>Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway<br>Computational gene sets (C4 MSigDB)<br>Neigborhood of PTPN4<br>Neighborhood of CD97<br>Neighborhood of IL2RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                      | FDR <i>q</i> -value<br>0.05<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | On Gata Set<br>Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160,ASCL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway<br>Computational gene sets (C4 MSigDB)<br>Neigborhood of PTPN4<br>Neighborhood of CD97<br>Neighborhood of CD97<br>Neigborhood of CD7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                             | FDR <i>q</i> -value<br>0.05<br>0.000<br>0.000<br>0.001<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | On Gata Set<br>Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway<br>Computational gene sets (C4 MSigDB)<br>Neigborhood of PTPN4<br>Neighborhood of CD97<br>Neighborhood of IL2RB<br>Neigborhood of RAB7L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000                                                                                                                                                                                                                 | FDR <i>q</i> -value<br>0.05<br>0.000<br>0.000<br>0.001<br>0.005<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, BIN2, PRF1, NCR3, KLRF1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway<br>Computational gene sets (C4 MSigDB)<br>Neigborhood of PTPN4<br>Neighborhood of CD97<br>Neigborhood of CD7<br>Neigborhood of CD7<br>Neigborhood of MATK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000                                                                                                                                                                                                 | FDR q-value<br>0.05<br>0.000<br>0.000<br>0.001<br>0.005<br>0.005<br>0.005<br>0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, BIN2, PRF1, NCR3, KLRF1<br>IL2RB, PTGDR, ARHGEF3,PRF1, MATK, KLRK1, KLRD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway<br>Computational gene sets (C4 MSigDB)<br>Neigborhood of PTPN4<br>Neighborhood of CD97<br>Neigborhood of CD7<br>Neigborhood of CD7<br>Neigborhood of RAB7L1<br>Neigborhood of RAB7L1<br>Neigborhood of RAP1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000                                                                                                                                 | FDR <i>q</i> -value<br>0.05<br>0.000<br>0.000<br>0.001<br>0.005<br>0.005<br>0.004<br>0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | On Gata Set<br>Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, BIN2, PRF1, NCR3, KLRF1<br>IL2RB, PTGDR, ARHGEF3, PRF1, MATK, KLRK1, KLRD1<br>BIN2, CD97, ELF4, JARID1A, VPS16, RAP2B,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway<br>Computational gene sets (C4 MSigDB)<br>Neigborhood of PTPN4<br>Neighborhood of CD97<br>Neighborhood of IL2RB<br>Neigborhood of CD7<br>Neigborhood of RAB7L1<br>Neigborhood of RAB7L1<br>Neigborhood of RAP1B<br>Neigborhood of RAP1B<br>Neigborhood of JAK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000                                                                                                                                 | Gene expression           FDR q-value           0.05           0.000           0.001           0.005           0.005           0.005           0.004           0.007           0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, PTGR2, II2RB, KLRC3, PTGER3, CD17, NCR3, L0C54103                                                                                                                                                                                                                                                       |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway<br>Computational gene sets (C4 MSigDB)<br>Neigborhood of PTPN4<br>Neighborhood of CD97<br>Neighborhood of CD97<br>Neigborhood of CD7<br>Neigborhood of RAB7L1<br>Neigborhood of RAB7L1<br>Neigborhood of RAP1B<br>Neigborhood of JAK1<br>Enriched in Non-TOL samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000                                                                                                                                 | Gene expression           FDR q-value           0.05           0.000           0.001           0.005           0.005           0.005           0.004           0.007           0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, BIN2, PRF1, NCR3, KLRF1<br>IL2RB, PTGDR, ARHGEF3, PRF1, MATK, KLRK1, KLRD1<br>BIN2, CD97, ELF4, JARID1A, VPS16, RAP2B,<br>PTGER2, BIN2, ARHGEF3, CD97, NCR3, LOC54103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway<br>Computational gene sets (C4 MSigDB)<br>Neigborhood of PTPN4<br>Neighborhood of CD97<br>Neighborhood of CD97<br>Neigborhood of CD7<br>Neigborhood of RAB7L1<br>Neigborhood of RAB7L1<br>Neigborhood of RAP1B<br>Neigborhood of ATK<br>Neigborhood of JAK1<br>Enriched in Non-TOL samples<br>Canonical pathways (C2 MSigDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000                                                                                                                 | Gene expression           FDR q-value           0.05           0.000           0.001           0.005           0.005           0.005           0.005           0.004           0.007           0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160,ASCL2<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, BIN2, PRF1, NCR3, KLRF1<br>IL2RB, PTGDR, ARHGEF3, PRF1, MATK, KLRK1, KLRD1<br>BIN2, CD97, ELF4, JARID1A, VPS16, RAP2B,<br>PTGER2, BIN2, ARHGEF3, CD97, NCR3, LOC54103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway<br>Computational gene sets (C4 MSigDB)<br>Neigborhood of PTPN4<br>Neighborhood of CD97<br>Neighborhood of CD97<br>Neigborhood of RAB7L1<br>Neigborhood of RAB7L1<br>Neigborhood of RAP1B<br>Neigborhood of RAP1B<br>Neigborhood of AK1<br>Enriched in Non-TOL samples<br>Canonical pathways (C2 MSigDB)<br>CTLA4 pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000                                                                                                 | FDR <i>q</i> -value<br>0.05<br>0.000<br>0.000<br>0.001<br>0.005<br>0.005<br>0.005<br>0.004<br>0.007<br>0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | On Gata Set<br>Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, PTGR2, PTGR3, LC160, TUSC4<br>XCL2, II2RB, TTGDR, ARHGEF3, CD97, NCR3, L0C54103<br>ICOS, CD28, CTLA4, TRA@, PIK3CA, PÎK3R1                                                         |  |
| Cv-negative TOL / Non-FOL difference of the second se | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000                                                                 | Gene expression           FDR q-value           0.05           0.000           0.001           0.005           0.005           0.005           0.004           0.007           0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, PTGBR, KLRC3, FIK3R1<br>JUN, TNF, FOS, RAF1, PLCB1, MAPK3, RELA                                                                                                                                   |  |
| Control of CDP And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.004           0.010                                                 | Gene expression           FDR q-value           0.05           0.000           0.001           0.005           0.005           0.005           0.004           0.007           0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, PTGBR, KLRC3, FIL<br>II2RB, PTGDR, ARHGEF3, CD97, NCR3, LOC54103<br>ICOS, CD28, CTLA4, TRA@, PIK3CA, PÎK3R1<br>JUN, TNF, FOS, RAF1, PLCB1, MAPK3, RELA<br>NR4A3, IFNG, TCF8, IL1R1, HBEGF, ADAM10 |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway<br>Computational gene sets (C4 MSigDB)<br>Neigborhood of PTPN4<br>Neighborhood of CD97<br>Neighborhood of CD7<br>Neigborhood of CD7<br>Neigborhood of RAB7L1<br>Neigborhood of RAB7L1<br>Neigborhood of RAP1B<br>Neigborhood of AATK<br>Neigborhood of AATK<br>Neigborhood of JAK1<br>Enriched in Non-TOL samples<br>Canonical pathways (C2 MSigDB)<br>CTLA4 pathway<br>CMAC pathway<br>Hypertrophy model pathway<br>Computational gene sets (C4 MSigDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.004           0.010                                                 | Gene expression           FDR q-value           0.05           0.000           0.001           0.005           0.005           0.005           0.004           0.007           0.017           0.008           0.074           0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, PTGBR, KLRC3, VICA3, ICC54103<br>ICOS, CD28, CTLA4, TRA@, PIK3CA, PÎK3R1<br>JUN, TNF, FOS, RAF1, PLCB1, MAPK3, RELA<br>NR4A3, IFNG, TCF8, IL1R1, HBEGF, ADAM10                                                                                                                                          |  |
| Inc v-negative TOL / Non-FOL difference         Enriched in TOL samples         Canonical pathways (C2 MSigDB)         VIPP pathway         Computational gene sets (C4 MSigDB)         Neigborhood of PTPN4         Neigborhood of CD97         Neigborhood of IL2RB         Neigborhood of RAB7L1         Neigborhood of RAB7L1         Neigborhood of AB7L1         Neigborhood of JAK1         Enriched in Non-TOL samples         Canonical pathways (C2 MSigDB)         CTLA4 pathway         CMAC pathway         Hypertrophy model pathway         Computational gene sets (C4 MSigDB)         Neigborhood of EIF3S6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.001           0.002                                                 | Gene expression           FDR q-value           0.05           0.000           0.001           0.005           0.005           0.005           0.007           0.017           0.008           0.074           0.082           0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, BIN2, PRF1, NCR3, KLRF1<br>IL2RB, PTGDR, ARHGEF3, PRF1, MATK, KLRK1, KLRD1<br>BIN2, CD97, ELF4, JARID1A, VPS16, RAP2B,<br>PTGER2, BIN2, ARHGEF3, CD97, NCR3, LOC54103<br>ICOS, CD28, CTLA4, TRA@, PIK3CA, PĨK3R1<br>JUN, TNF, FOS, RAF1, PLCB1, MAPK3, RELA<br>NR4A3, IFNG, TCF8, IL1R1, HBEGF, ADAM10<br>RPL27A, RPS29, FAU, EIF3S7, RPL11, RPS8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Inc v-negative TOL / Non-FOL difference         Enriched in TOL samples         Canonical pathways (C2 MSigDB)         VIPP pathway         Computational gene sets (C4 MSigDB)         Neigborhood of PTPN4         Neigborhood of CD97         Neigborhood of RAB7L1         Neigborhood of RAB7L1         Neigborhood of AB7L1         Neigborhood of AB7L8         Neigborhood of JAK1         Enriched in Non-TOL samples         Canonical pathways (C2 MSigDB)         CTLA4 pathway         CMAC pathway         Hypertrophy model pathway         Computational gene sets (C4 MSigDB)         Neighborhood of EIF3S6         Neighborhood of TPT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.001           0.000           0.000           0.000           0.000           0.000           0.000 | Gene         Complexity         Complexity <td>Genes with highest enrichment scores<br/>ERG2, ERG3, PRKAR1B<br/>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br/>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br/>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br/>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br/>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br/>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br/>XCL2, II2RB, KLRC3, PTGER2, BIN2, PRF1, NCR3, KLRF1<br/>IL2RB, PTGDR, ARHGEF3, PRF1, MATK, KLRK1, KLRD1<br/>BIN2, CD97, ELF4, JARID1A, VPS16, RAP2B,<br/>PTGER2, BIN2, ARHGEF3, CD97, NCR3, LOC54103<br/>ICOS, CD28, CTLA4, TRA@, PIK3CA, PİK3R1<br/>JUN, TNF, FOS, RAF1, PLCB1, MAPK3, RELA<br/>NR4A3, IFNG, TCF8, IL1R1, HBEGF, ADAM10<br/>RPL27A, RPS29, FAU, EIF3S7, RPL11, RPS8<br/>RPL27A, RPS29, FAU, RPL1, RPS5, RPS8, EEF2</td>                                                                                                                                                                                                                                                | Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, BIN2, PRF1, NCR3, KLRF1<br>IL2RB, PTGDR, ARHGEF3, PRF1, MATK, KLRK1, KLRD1<br>BIN2, CD97, ELF4, JARID1A, VPS16, RAP2B,<br>PTGER2, BIN2, ARHGEF3, CD97, NCR3, LOC54103<br>ICOS, CD28, CTLA4, TRA@, PIK3CA, PİK3R1<br>JUN, TNF, FOS, RAF1, PLCB1, MAPK3, RELA<br>NR4A3, IFNG, TCF8, IL1R1, HBEGF, ADAM10<br>RPL27A, RPS29, FAU, EIF3S7, RPL11, RPS8<br>RPL27A, RPS29, FAU, RPL1, RPS5, RPS8, EEF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway<br>Computational gene sets (C4 MSigDB)<br>Neigborhood of PTPN4<br>Neighborhood of CD97<br>Neighborhood of CD97<br>Neigborhood of CD7<br>Neigborhood of RAB7L1<br>Neigborhood of RAB7L1<br>Neigborhood of RAP1B<br>Neigborhood of AK1<br>Enriched in Non-TOL samples<br>Canonical pathways (C2 MSigDB)<br>CTLA4 pathway<br>CMAC pathway<br>Hypertrophy model pathway<br>Computational gene sets (C4 MSigDB)<br>Neighborhood of EIF3S6<br>Neighborhood of TPT1<br>Neighborhood of GLTSCR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000                                                 | Gene         Complexity         Complexity <td>Genes with highest enrichment scores<br/>ERG2, ERG3, PRKAR1B<br/>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br/>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br/>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br/>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br/>XCL2, II2RB, KLRC3, PTGER2, BIN2, PRF1, NCR3, KLRF1<br/>IL2RB, PTGDR, ARHGEF3, PRF1, MATK, KLRK1, KLRD1<br/>BIN2, CD97, ELF4, JARID1A, VPS16, RAP2B,<br/>PTGER2, BIN2, ARHGEF3, CD97, NCR3, LOC54103<br/>ICOS, CD28, CTLA4, TRA@, PIK3CA, PÎK3R1<br/>JUN, TNF, FOS, RAF1, PLCB1, MAPK3, RELA<br/>NR4A3, IFNG, TCF8, IL1R1, HBEGF, ADAM10<br/>RPL27A, RPS29, FAU, EIF3S7, RPL11, RPS8<br/>RPL27A, RPS29, FAU, EIF1B, RPS9, RPL13A, RPS16</td>                                                                                                                                                                                                                                                                                                                                                    | Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, BIN2, PRF1, NCR3, KLRF1<br>IL2RB, PTGDR, ARHGEF3, PRF1, MATK, KLRK1, KLRD1<br>BIN2, CD97, ELF4, JARID1A, VPS16, RAP2B,<br>PTGER2, BIN2, ARHGEF3, CD97, NCR3, LOC54103<br>ICOS, CD28, CTLA4, TRA@, PIK3CA, PÎK3R1<br>JUN, TNF, FOS, RAF1, PLCB1, MAPK3, RELA<br>NR4A3, IFNG, TCF8, IL1R1, HBEGF, ADAM10<br>RPL27A, RPS29, FAU, EIF3S7, RPL11, RPS8<br>RPL27A, RPS29, FAU, EIF1B, RPS9, RPL13A, RPS16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Enriched in TOL samples<br>Canonical pathways (C2 MSigDB)<br>VIPP pathway<br>Computational gene sets (C4 MSigDB)<br>Neigborhood of PTPN4<br>Neighborhood of CD97<br>Neighborhood of CD7<br>Neigborhood of RAB7L1<br>Neigborhood of RAB7L1<br>Neigborhood of MATK<br>Neigborhood of ARP1B<br>Neigborhood of ARP1B<br>Neigborhood of JAK1<br>Enriched in Non-TOL samples<br>Canonical pathways (C2 MSigDB)<br>CTLA4 pathway<br>CMAC pathway<br>Hypertrophy model pathway<br>Computational gene sets (C4 MSigDB)<br>Neighborhood of EIF3S6<br>Neighborhood of EIF3S6<br>Neighborhood of GLTSCR2<br>Neighborhood of GLTSCR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000                 | gene expression           FDR q-value           0.05           0.000           0.001           0.005           0.005           0.004           0.007           0.017           0.008           0.074           0.082           0.005           0.012           0.011           0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Genes with highest enrichment scores<br>ERG2, ERG3, PRKAR1B<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4<br>XCL2, II2RB, KLRC3, PTGER2, BIN2, PRF1, NCR3, KLRF1<br>IL2RB, PTGDR, ARHGEF3, PNF1, MATK, KLRK1, KLRD1<br>BIN2, CD97, ELF4, JARID1A, VPS16, RAP2B,<br>PTGER2, BIN2, ARHGEF3, CD97, NCR3, LOC54103<br>ICOS, CD28, CTLA4, TRA@, PIK3CA, PÎK3R1<br>JUN, TNF, FOS, RAF1, PLCB1, MAPK3, RELA<br>NR4A3, IFNG, TCF8, IL1R1, HBEGF, ADAM10<br>RPL27A, RPS29, FAU, EIF3S7, RPL11, RPS8<br>RPL27A, RPS29, FAU, RPL1, RPS5, RPS16<br>C140RF11, CSDE1, FAM76D, ABT1, COP52, CCDC117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Cv-negative TOL / Non-TOL difference of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000 | Gene         Complexity         Complexity <td>On Gata Set           Genes with highest enrichment scores           ERG2, ERG3, PRKAR1B           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4           PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4           XCL2, II2RB, KLRC3, PTGER2, BIN2, PRF1, NCR3, KLRF1           IL2RB, PTGDR, ARHGEF3, PRF1, MATK, KLRK1, KLRD1           BIN2, CD97, ELF4, JARID1A, VPS16, RAP2B,           PTGER2, BIN2, ARHGEF3, CD97, NCR3, LOC54103           ICOS, CD28, CTLA4, TRA@, PIK3CA, PÎK3R1           JUN, TNF, FOS, RAF1, PLCB1, MAPK3, RELA           NR4A3, IFNG, TCF8, IL1R1, HBEGF, ADAM10           RPL27A, RPS29, FAU, EIF3S7, RPL11, RPS8           RPL27A, RPS29, FAU, EIF1B, RPS9, RPL13A, RPS16           C140RF11, CSDE1, FAM76D, ABT1, COPS2, CCDC117           RPL27A, RPS29, FAU, UCL, EIF3S7, RPL11, RPS5, RPS8</td> | On Gata Set           Genes with highest enrichment scores           ERG2, ERG3, PRKAR1B           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4           PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4           XCL2, II2RB, KLRC3, PTGER2, BIN2, PRF1, NCR3, KLRF1           IL2RB, PTGDR, ARHGEF3, PRF1, MATK, KLRK1, KLRD1           BIN2, CD97, ELF4, JARID1A, VPS16, RAP2B,           PTGER2, BIN2, ARHGEF3, CD97, NCR3, LOC54103           ICOS, CD28, CTLA4, TRA@, PIK3CA, PÎK3R1           JUN, TNF, FOS, RAF1, PLCB1, MAPK3, RELA           NR4A3, IFNG, TCF8, IL1R1, HBEGF, ADAM10           RPL27A, RPS29, FAU, EIF3S7, RPL11, RPS8           RPL27A, RPS29, FAU, EIF1B, RPS9, RPL13A, RPS16           C140RF11, CSDE1, FAM76D, ABT1, COPS2, CCDC117           RPL27A, RPS29, FAU, UCL, EIF3S7, RPL11, RPS5, RPS8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Enriched in TOL samples         Canonical pathways (C2 MSigDB)         VIPP pathway         Computational gene sets (C4 MSigDB)         Neigborhood of PTPN4         Neigborhood of CD97         Neigborhood of CD7         Neigborhood of CD7         Neigborhood of RAB7L1         Neigborhood of RAB7L1         Neigborhood of AB7L1         Neigborhood of AB7L1         Neigborhood of JAK1         Enriched in Non-TOL samples         Canonical pathways (C2 MSigDB)         CTLA4 pathway         CMAC pathway         Hypertrophy model pathway         Computational gene sets (C4 MSigDB)         Neighborhood of FT1         Neighborhood of MAX         Neighborhood of MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P-value           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000 | Gene expression           FDR q-value           0.05           0.000           0.001           0.005           0.005           0.005           0.005           0.004           0.007           0.017           0.008           0.074           0.082           0.005           0.012           0.011           0.200           0.063           0.092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | On Gata Set           Genes with highest enrichment scores           ERG2, ERG3, PRKAR1B           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4           PTGER2, DOK2, RIN3, CD300A, CD244, BIN2, CX3CR1           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, ASCL2           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4           XCL2, II2RB, KLRC3, PTGER2, PTGDR, CD160, TUSC4           XCL2, II2RB, KLRC3, PTGER2, BIN2, PRF1, NCR3, KLRF1           IL2RB, PTGDR, ARHGEF3, PRF1, MATK, KLRK1, KLRD1           BIN2, CD97, ELF4, JARID1A, VPS16, RAP2B,           PTGER2, BIN2, ARHGEF3, CD97, NCR3, LOC54103           ICOS, CD28, CTLA4, TRA@, PIK3CA, PÎK3R1           JUN, TNF, FOS, RAF1, PLCB1, MAPK3, RELA           NR4A3, IFNG, TCF8, IL1R1, HBEGF, ADAM10           RPL27A, RPS29, FAU, RPS1, RPS1, RPS1, RPS1, RPS1, RPS29, FAU, REF1, RPS5, RPS8, REF2           RPS29, FAU, EEF1B, RPS9, RPL13A, RPS16           C140RF11, CSDE1, FAM76D, ABT1, COPS2, CCDC117           RPL27A, RPS29, FAU, NCL, EIF3S7, RPL11, RPS5, RPS8           RPL27A, SS2, FAU, NCL, EIF3S7, RPL11, RPS5, RPS8           RPL27A, SS2, FAU, NCL, EIF3S7, RPL11, RPS5, RPS8                                                                                                                                                                                                                                                                                                                        |  |

# Figure S1



KLRF1 % positive population 09 40 20

A solow CD19+ CO4\* COB Parces Vort Crex NEY NA



ILR2B - CD122

Verices

March.

CO8+

CO4+

Asyces

1th 1th CD19+

KLRB1 - CD161







Vortor. MALCH. 422CAS CO79+ CO4 CO8+ 1×1 14X



# Figure S2







## Node types

| Sec. Sec.          |          |
|--------------------|----------|
| Cytokines          |          |
| Growth factor      | $\nabla$ |
| C Enzime           | OT       |
| O Group or complex | От       |
| lon channel        | 00       |
| Edge types         |          |
| - Activation       | Ð        |
| - Inhibition       | _        |
|                    |          |

#### Transmembrane re

O Other

#### 

Protein-protein binding

 Other indirect regulatory interactions (expression, localization, modification phosphorylation, regulation of binding transcription)