Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Erythropoietin: when liability becomes asset in neurovascular repair
Maria B. Grant, … , Michael E. Boulton, Alexander V. Ljubimov
Maria B. Grant, … , Michael E. Boulton, Alexander V. Ljubimov
Published January 24, 2008
Citation Information: J Clin Invest. 2008;118(2):467-470. https://doi.org/10.1172/JCI34643.
View: Text | PDF
Commentary

Erythropoietin: when liability becomes asset in neurovascular repair

  • Text
  • PDF
Abstract

Erythropoietin (Epo) leads to the proliferation and differentiation of erythroid precursors, but is also involved in diverse nonhematopoietic biological functions. In this issue of the JCI, Chen, Smith, and colleagues demonstrate that the temporal expression of Epo is critical for determining whether physiological or pathological repair occurs following neurovascular retinal injury in the oxygen-induced retinopathy neonatal mouse model (see the related article beginning on page 526). The pleiotrophic properties of Epo make it a likely novel therapy for treatment of neurovascular damage, but the timing of its use must be carefully considered to prevent untoward effects.

Authors

Maria B. Grant, Michael E. Boulton, Alexander V. Ljubimov

×

Figure 1

Mouse model of proliferative OIR.

Options: View larger image (or click on image) Download as PowerPoint
Mouse model of proliferative OIR.
In this model, 7-day-old mouse pups wi...
In this model, 7-day-old mouse pups with partially developed retinal vasculature are subjected for 5 days to hyperoxia (75% oxygen), which stops retinal vessel growth and causes significant vaso-obliteration (phase 1). On postnatal day 12, pups are returned to room air, and by postnatal day 17, a florid compensatory retinal neovascularization occurs (shown in white) (phase 2). In the line graph, a representation of retinal Epo mRNA levels in the OIR model during normoxic conditions (green), phase 1 (red), and phase 2 (blue) are shown. As Chen et al. (5) show, in the OIR model during hyperoxia (phase 1), Epo levels are reduced, resulting in pathological elevations of Epo at the late stage of disease development. With Epo treatment during hyperoxia, retinal vasculature is protected and BM-derived EPCs come into the developing vasculature, promoting healthy vessels rather than pathological neovascularization as in the OIR model. Original magnification, ×5.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts