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In this issue of the JCI, two reports provide intriguing new information on the role of the inflammatory cytokine IL-6 in breast and lung
cancer. The study by Sansone et al. implicates IL-6 in the instigation of malignant properties in breast cancer stem cells (see the related
article beginning on page 3988). The study by Gao et al. identifies mutant variants of EGFR as inducers of IL-6 in lung adenocarcinomas
(see the related article beginning on page 3846). These studies add to our understanding of potential roles for IL-6 in cancer and further
motivate investigations of IL-6—targeted chemotherapeutics.
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taining chemical extracts from broccoli that
boost production of protective enzymes
in skin and protect from UV-induced ery-
thema and inflammation in humans (20).
With respect to cancer prevention, it is
worth asking whether systemic CP-31398
might prevent cancer development in
patients with Li-Fraumeni syndrome — a
rare autosomal dominant hereditary disor-
der in which patients possess a mutation in
the p53 tumor suppressor gene that greatly
increases their susceptibility to cancer. The
study by Tang et al. (17) reports exciting
progress with clinical relevance and, like
all outstanding papers, raises interesting
questions for future work. Further studies
and clinical translation of the findings of
Tang et al. may lead to improved ways of
preventing and treating UV light-induced
skin cancers that afflict millions of people.
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IL-6 involvement in epithelial cancers
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In this issue of the JCI, two reports provide intriguing new information on the
role of the inflammatory cytokine IL-6 in breast and lung cancer. The study
by Sansone et al. implicates IL-6 in the instigation of malignant properties in
breast cancer stem cells (see the related article beginning on page 3988). The
study by Gao et al. identifies mutant variants of EGFR as inducers of IL-6 in
lung adenocarcinomas (see the related article beginning on page 3846). These
studies add to our understanding of potential roles for IL-6 in cancer and
further motivate investigations of IL-6-targeted chemotherapeutics.

IL-6 is a multifunctional cytokine that
was originally characterized as a regulator
of immune and inflammatory responses;
however, elevated expression of IL-6 has
been detected in multiple epithelial tumors
(1).IL-6 binds to a heterodimeric receptor,
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which contains the ligand-binding IL-6a
chain and the common cytokine receptor
signal-transducing subunit gp130. IL-6
receptor engagement leads to activation of
the JAK family of tyrosine kinases, which
then stimulate multiple pathways involv-
ing MAPKs, PI3Ks, STATs, and other sig-
naling proteins (2).

Given the reported involvement of IL-6
and its downstream targets in the regu-
lation of cell proliferation, survival, and
metabolism, it is not surprising that IL-6
signaling has also been implicated in
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tumorigenesis (3). However, the nature of
IL-6’s involvement in cancer has been quite
controversial, as dichotomous roles for
IL-6 in both tumor-promoting and -sup-
pressive activities have been reported. For
example, IL-6 signaling has been linked
to both pro- and antiapoptotic activity in
breast cancer cells (4, 5). Multiple studies
have documented high IL-6 levels in the
serum of patients with certain carcinomas
(ie., breast, lung, lymphoma) and have cor-
related high IL-6 levels with a poor clinical
prognosis (2). These data imply an onco-
genic role for IL-6; however, lacking is an
understanding of the mechanisms gov-
erning IL-6 production in tumors and the
biological role of this cytokine in tumori-
genesis. Two reports in this issue of the JCI
(6, 7) advance our understanding of both
of these issues and provide a molecular
rationale for the development of anti-IL-6
therapeutics (summarized in Figure 1).
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The identification of putative stem cells in
breast tumors has jump-started a rapidly
growing field focused on the biology of can-
cer stem cells in solid tumors (8). The pres-
ent study by Sansone et al. (6) implicates
IL-6 as a potential regulator of normal and
tumor stem cell self renewal. Comparison
of mammospheres (multicellular spher-
oids composed of anchorage-independent
self-renewing cells and their derivatives)
from normal and tumor tissue from the
same patient revealed that IL-6 mRNA is
expressed at significantly higher levels in
mammospheres derived from tumor tissue.
In addition, spheroids cultured from the
MCF-7 breast cancer cell line also contained
high IL-6 levels, and treatment with IL-6-
blocking antibodies suppressed spheroid

formation. High expression of IL-6 was also
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observed in basal-like breast carcinoma tis-
sues, which are enriched in mammosphere
and stem cell markers. The authors further
show that IL-6 can stimulate secondary
normal mammospheres and that inhibition
of the interaction of IL-6 with its receptor
blunts the size and capacity to form second-
ary tumor mammospheres, implicating IL-6
as a critical factor in tumor mammosphere
self renewal. Sansone et al. (6) further reveal
that the ability of IL-6 to maintain mam-
mosphere self renewal is dependent on
the MAPK-dependent upregulation of the
transmembrane receptor Notch-3 (a mem-
ber of the Notch signaling pathway essen-
tial for cellular differentiation in a variety of
tissues), which has previously been demon-
strated to be involved in mammosphere self
renewal (9, 10). Sansone et al. also describe
how IL-6 can upregulate the Notch-3 ligand
Jagged-1 to create a positive feedback loop

htep://www.jci.org ~ Volume 117

Number 12

commentaries

Figure 1

Models for role of IL-6 in breast and lung car-
cinomas. In this issue of the JC/, Sansone
et al. (6) show that the tumorigenic conver-
sion of mammary stem cells (CD44hiCD24'0)
results in an increase in IL-6 expression
and secretion. IL-6 secretion results in a
positive feedback loop causing further IL-6
upregulation and secretion. Once secreted,
IL-6 can bind the IL-6 receptor (IL-6R), caus-
ing the upregulation of the Notch-3 ligand
Jagged-1, which triggers the upregulation of
CA-IX. While not depicted here, it should
be noted that Jagged-1 is a transmembrane
ligand. The result of these changes is the
promotion of malignant features in these
mammary stem cells. Also in this issue, Gao
et al. (7) show that EGFR mutations in lung
adenocarcinoma cells cause an increase in
IL-6 expression and secretion. This, in turn,
promotes malignant features in these cells
through the IL-6 receptor activation—mediated
phosphorylation of STAT3.

along the Notch-3/Jagged-1 axis (6). In
addition, IL-6 is shown to further promote
malignancy in breast cancer stem cells by
upregulating the hypoxia response protein
carbonic anhydrase IX (CA-IX), which the
authors propose permits these cells to sur-
vive in hypoxic conditions.

While a role for an immune/inflammatory
cytokine like IL-6 in epithelial tumor cells
may be unexpected, Sansone et al. (6) pro-
pose that stimulation of epithelial stem cells
may be part of a natural inflammatory repair
program to activate stem cells to replace
damaged cells. These studies implicate IL-6
as a critical mediator of mammary stem cell
renewal in both normal and tumor contexts.

EGFR-driven IL-6 production

in lung tumors

In a study of non-small-cell lung adenocar-
cinomas, Gao et al. (7) provide additional
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evidence for the involvement of IL-6 in can-
cer and identify an EGFR/IL-6/STAT3 sig-
naling cascade that is important for tumor-
igenesis. Mutations of the EGFR have been
observed in about 10% of lung adenocar-
cinomas, and patients whose tumors con-
tain these mutations show increased sen-
sitivity to EGFR tyrosine kinase inhibitors
gefitinib (Iressa) or erlotinib (Tarceva) (11,
12). In studies using both mice and human
non-small-cell lung adenocarcinoma cell
lines, Gao et al. discovered a correlation
between activated STAT3 (a downstream
target of IL-6) and EGFR mutations in
lung tumors (7). Using small hairpin RNA,
blocking antibodies, and reconstruction
experiments, they demonstrate that acti-
vated EGFR induces expression of IL-6,
which leads to activation of STAT3. Fur-
thermore, they show that IL-6 expression
is substantially elevated in, and IL-6 is
secreted by, multiple lung cancer cell lines
that harbor EGFR mutations. Gao et al. (7)
have characterized a novel mechanism for
IL-6 secretion that suggests that anti-IL-6-
based therapies may have impactin patients
with lung adenocarcinomas. Given that
approximately 50% of tumors have activat-
ed STAT3 and only 10% contain activating
EGFR mutations, it is possible that addi-
tional alterations may lead to IL-6 secre-
tion and subsequent STAT?3 activation. In
support of this, a recent report has demon-
strated that induction of tumorigenesis in
mice by activated Ras, which is mutated in
approximately 30% of human lung adeno-
carcinomas (13), is dependent on the secre-
tion of IL-6 (14).

The results of Gao et al. (7) nicely com-
plement the work of Sansone et al. (6) by
implicating an IL-6 autocrine loop in lung
adenocarcinoma. Comparison of the find-
ings in these reports raises obvious ques-
tions about the extent to which distinct
aspects of each report relate to the other’s
results. For example, is EGFR involved in
IL-6 production in basal breast tumors, as it
is in lung tumors? EGFR is enriched in the
same breast tumor subclass (basal tumors)
that is enriched for IL-6 and Notch-3, so it
is plausible that EGFR could regulate IL-6
production in these tumors (15, 16). ErbB2,
areceptor closely related to EGFR, is ampli-
fied in approximately 25% of breast tumors
and activates many of the same pathways
as EGFR (12). Therefore, ErbB2 could
also stimulate the IL-6 pathway. While
Sansone and coworkers did not examine
upstream inducers of IL-6 production in
breast tumors or mammospheres, they
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did find that IL-6 itself upregulates IL-6
mRNA in breast tumor mammospheres,
thus creating a positive feedback loop to
enhance IL-6 production (6).

Perhaps a more interesting question is:
Do lung tumors contain self-renewing
cells driven by an IL-6/Notch pathway, as
in breast tumors? Gao et al. (7) did not
address which IL-6/STAT3 downstream
targets are critically involved in lung tumor-
igenesis; however, the report by Sansone
et al. (6) clearly implicates the Notch path-
way in stem cell self renewal. Bronchoal-
veolar stem cells have been identified in
normal tissues and lung tumors (17), so it
will be of interest to examine involvement
of IL-6 and Notch-3 in both contexts.

While Sansone et al. (6) focused on the
Notch-3 pathway and CA-IX as critical
mediators of IL-6 in breast tumorigenesis,
the results of the Gao et al. study implicate
the JAK/STAT pathway in lung carcino-
genesis (7). It is possible that Notch and
JAK/STAT pathways both contribute to
IL-6-mediated effects in breast and lung
tumors. Indeed, IL-6 has been shown to
activate STAT3 in breast tumor cells lines
(18), and ErbB2-induced STAT3 has been
shown to regulate tumorigenesis in mouse
mammary tumors (19). Crosstalk between
these pathways has been reported to occur
via facilitation of the interaction of JAK2
and STAT3 by the Notch effectors Hes1
and HesS (20). Thus it would be interest-
ing to determine whether a relationship
exists among IL-6, Notch, and JAK/STAT
in these tumors.

A future for therapeutic targeting

of IL-6 signaling?

The reports highlighted here (6, 7) provide
important new insights into potential roles
for IL-6 in epithelial carcinomas and raise
the question of whether IL-6-targeted ther-
apies may be effective in treating patients
with basal cell breast carcinomas or lung
adenocarcinomas carrying EGFR muta-
tions. IL-6 or IL-6 receptor antagonists
(i.e., CNTO 328, a human-mouse chimeric
antibody to human IL-6, and Tocilizumab,
humanized anti-IL-6 receptor antibody)
are currently in either phase I or phase II
clinical trials in a small subset of cancers
and other diseases (21, 22). It is difficult to
predict the outcome of IL-6 antagonism in
human tumors, because the studies in these
reports did not address whether inhibition
of IL-6 would lead to tumor regression
or merely prevent expansion of existing
tumors that are IL-6 dependent. It is also
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unclear whether IL-6 antagonism would
provoke tumor cell death. In the absence
of tumor cell killing, the opportunity for
selection of drug-resistant cells is highly
probable. Future studies in mouse tumor
models may provide more meaningful
predictions of the therapeutic efficacy of
IL-6 antagonists. Regardless, these studies
strongly implicate IL-6 in 2 types of epithe-
lial carcinomas and represent significant
conceptual advances in our understanding
of the role of this cytokine in cancer.
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