Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Pin1 regulates TGF-β1 production by activated human and murine eosinophils and contributes to allergic lung fibrosis
Zhong-Jian Shen, … , Matyas Sandor, James S. Malter
Zhong-Jian Shen, … , Matyas Sandor, James S. Malter
Published January 10, 2008
Citation Information: J Clin Invest. 2008;118(2):479-490. https://doi.org/10.1172/JCI32789.
View: Text | PDF
Research Article Immunology

Pin1 regulates TGF-β1 production by activated human and murine eosinophils and contributes to allergic lung fibrosis

  • Text
  • PDF
Abstract

Eosinophilic inflammation is a cornerstone of chronic asthma that often culminates in subepithelial fibrosis with variable airway obstruction. Pulmonary eosinophils (Eos) are a predominant source of TGF-β1, which drives fibroblast proliferation and extracellular matrix deposition. We investigated the regulation of TGF-β1 and show here that the peptidyl-prolyl isomerase (PPIase) Pin1 promoted the stability of TGF-β1 mRNA in human Eos. In addition, Pin1 regulated cytokine production by both in vitro and in vivo activated human Eos. We found that Pin1 interacted with both PKC-α and protein phosphatase 2A, which together control Pin1 isomerase activity. Pharmacologic blockade of Pin1 in a rat asthma model selectively reduced eosinophilic pulmonary inflammation, TGF-β1 and collagen expression, and airway remodeling. Furthermore, chronically challenged Pin1–/– mice showed reduced peribronchiolar collagen deposition compared with wild-type controls. These data suggest that pharmacologic suppression of Pin1 may be a novel therapeutic option to prevent airway fibrosis in individuals with chronic asthma.

Authors

Zhong-Jian Shen, Stephane Esnault, Louis A. Rosenthal, Renee J. Szakaly, Ronald L. Sorkness, Pamela R. Westmark, Matyas Sandor, James S. Malter

×

Figure 8

Summary of the changes in TGF-β1 mRNA–AREBP interactions as a function of HA or HA plus juglone.

Options: View larger image (or click on image) Download as PowerPoint
Summary of the changes in TGF-β1 mRNA–AREBP interactions as a function o...
Under basal conditions (middle), TGF-β1 mRNA is associated with 4 partially phosphorylated AUF1 isoforms, HuR, TIA, hyperphosphorylated Pin1, and the exosome. HA treatment (top) causes the dephosphorylation and activation of Pin1 through the combined effects of PKCα and PP2A. Active Pin1 isomerizes AUF1, causing the release of TGF-β1 mRNA and loss of exosomal targeting. Under these conditions, TGF-β1 mRNA is predominantly associated with HuR, leading to stabilization and translation. When Pin1 is inactivated by covalent modification (juglone treatment, bottom), Pin1 and p45-, p42-, and p40AUF1 are rapidly catabolized by the proteasome, leaving TGF-β1 mRNA bound by p37AUF1, TIA, HuR, and the exosome. This complement of proteins accelerates TGF-β1 mRNA decay and reduces TGF-β1 expression.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts