Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Noninvasive diagnosis of ruptured peripheral atherosclerotic lesions and myocardial infarction by antibody profiling
Kitty B.J.M. Cleutjens, … , Peter J.E.H.M. Kitslaar, Mat J.A.P. Daemen
Kitty B.J.M. Cleutjens, … , Peter J.E.H.M. Kitslaar, Mat J.A.P. Daemen
Published July 24, 2008
Citation Information: J Clin Invest. 2008;118(8):2979-2985. https://doi.org/10.1172/JCI32767.
View: Text | PDF
Technical Advance

Noninvasive diagnosis of ruptured peripheral atherosclerotic lesions and myocardial infarction by antibody profiling

  • Text
  • PDF
Abstract

Novel biomarkers, such as circulating (auto)antibody signatures, may improve early detection and treatment of ruptured atherosclerotic lesions and accompanying cardiovascular events, such as myocardial infarction. Using a phage-display library derived from cDNAs preferentially expressed in ruptured peripheral human atherosclerotic plaques, we performed serological antigen selection to isolate displayed cDNA products specifically interacting with antibodies in sera from patients with proven ruptured peripheral atherosclerotic lesions. Two cDNA products were subsequently evaluated on a validation series of patients with peripheral atherosclerotic lesions, healthy controls, and patients with coronary artery disease at different stages. Our biomarker set was able to discriminate between patients with peripheral ruptured lesions and patients with peripheral stable plaques with 100% specificity and 76% sensitivity. Furthermore, 93% of patients with an acute myocardial infarction (AMI) tested positive for our biomarkers, whereas all patients with stable angina pectoris tested negative. Moreover, 90% of AMI patients who initially tested negative for troponin T, for which a positive result is known to indicate myocardial infarction, tested positive for our biomarkers upon hospital admission. In conclusion, antibody profiling constitutes a promising approach for noninvasive diagnosis of atherosclerotic lesions, because a positive serum response against a set of 2 cDNA products showed a strong association with the presence of ruptured peripheral atherosclerotic lesions and myocardial infarction.

Authors

Kitty B.J.M. Cleutjens, Birgit C.G. Faber, Mat Rousch, Ruben van Doorn, Tilman M. Hackeng, Cornelis Vink, Piet Geusens, Hugo ten Cate, Johannes Waltenberger, Vadim Tchaikovski, Marc Lobbes, Veerle Somers, Anneke Sijbers, Darcey Black, Peter J.E.H.M. Kitslaar, Mat J.A.P. Daemen

×

Figure 2

Detailed serological analysis of antigens E1 and E12.

Options: View larger image (or click on image) Download as PowerPoint
Detailed serological analysis of antigens E1 and E12.
Antibody profile o...
Antibody profile of clone E1 (A, E, and H) and clone E12 (B and F); sensitivity and specificity of clones E1, E12, and E1 and E12 combined (C, D, and G); and correlation of the response to clones E1 and E12 (D) and E1 and TnT levels (H) in patients with peripheral vascular disease (A–D) and coronary artery disease (E–H). Reactivity is represented as the ratio of OD450 sample/(mean OD450 + 3SD) for empty phage. (A, B, E, and F) Data points and horizontal bars represent reactivity of individual sera and mean reactivity, respectively. *P < 0.05; **P < 0.01; ***P < 0.0001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts