Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
An anticancer C-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic
Ariel Fernández, … , Anil K. Sood, Gabriel Lopez-Berestein
Ariel Fernández, … , Anil K. Sood, Gabriel Lopez-Berestein
Published December 3, 2007
Citation Information: J Clin Invest. 2007;117(12):4044-4054. https://doi.org/10.1172/JCI32373.
View: Text | PDF | Corrigendum
Technical Advance

An anticancer C-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic

  • Text
  • PDF
Abstract

Targeting kinases is central to drug-based cancer therapy but remains challenging because the drugs often lack specificity, which may cause toxic side effects. Modulating side effects is difficult because kinases are evolutionarily and hence structurally related. The lack of specificity of the anticancer drug imatinib enables it to be used to treat chronic myeloid leukemia, where its target is the Bcr-Abl kinase, as well as a proportion of gastrointestinal stromal tumors (GISTs), where its target is the C-Kit kinase. However, imatinib also has cardiotoxic effects traceable to its impact on the C-Abl kinase. Motivated by this finding, we made a modification to imatinib that hampers Bcr-Abl inhibition; refocuses the impact on the C-Kit kinase; and promotes inhibition of an additional target, JNK, a change that is required to reinforce prevention of cardiotoxicity. We established the molecular blueprint for target discrimination in vitro using spectrophotometric and colorimetric assays and through a phage-displayed kinase screening library. We demonstrated controlled inhibitory impact on C-Kit kinase in human cell lines and established the therapeutic impact of the engineered compound in a novel GIST mouse model, revealing a marked reduction of cardiotoxicity. These findings identify the reengineered imatinib as an agent to treat GISTs with curbed side effects and reveal a bottom-up approach to control drug specificity.

Authors

Ariel Fernández, Angela Sanguino, Zhenghong Peng, Eylem Ozturk, Jianping Chen, Alejandro Crespo, Sarah Wulf, Aleksander Shavrin, Chaoping Qin, Jianpeng Ma, Jonathan Trent, Yvonne Lin, Hee-Dong Han, Lingegowda S. Mangala, James A. Bankson, Juri Gelovani, Allen Samarel, William Bornmann, Anil K. Sood, Gabriel Lopez-Berestein

×

Figure 4

High-throughput screening at 10 mM for WBZ_4 (red) and imatinib (STI_571; blue; control) over a battery of 228 human kinases displayed in a T7-bacteriophage library (Ambit Biosciences).

Options: View larger image (or click on image) Download as PowerPoint
High-throughput screening at 10 mM for WBZ_4 (red) and imatinib (STI_571...
Hit values are reported as percentage bound kinase.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts