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HDL proteomics: pot of gold or Pandora’s box?

Muredach P. Reilly! and Alan R. Tall?
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In this issue of the JCI, Vaisar et al. studied the proteome of HDL (see the
related article beginning on page 746). They reveal, quite unexpectedly, that
HDL is enriched in several proteins involved in the complement cascade, as
well as in a variety of protease inhibitors, supporting the concept that HDL
plays a role in innate immunity and in the regulation of proteolytic cascades
involved in inflammatory and coagulation processes. The protein makeup
of HDL also appears to be altered in patients with coronary artery disease.
HDL proteomics is in its infancy, and preliminary findings will need to be
confirmed using standardized approaches in larger clinical samples. How-
ever, this approach promises to better elucidate the relationship of HDL
to atherosclerosis and its complications and could eventually help in the
development of biomarkers to predict the outcome of interventions that

alter HDL levels and functions.

The inverse relationship between plasma
HDL-cholesterol (HDL-C) levels and ath-
erosclerotic cardiovascular disease (CVD)
provides the epidemiological basis for the
widely accepted hypothesis that HDL is
atheroprotective. Despite intense research,
the underlying mechanisms of HDL ath-
eroprotection remain incompletely under-
stood. Indeed, recent clinical trials (1, 2)
indicate the complexity of HDL physiol-
ogy and the challenges in developing HDL
therapies. HDL function, and benefit with
a specific therapy, may depend more on
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ester; CETP, CE transfer protein; CVD, cardiovascular
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lesterol acyltransferase; Lp-PLA,, lipoprotein-associated
phospholipase Az; RCT, reverse cholesterol transport;
SR-BI, scavenger receptor Bl
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the molecular mechanism driving increas-
es in HDL-C than on the absolute level of’
HDL-C (3). Some interventions that raise
HDL-C levels may have no benefit and even
promote atherosclerosis (4), while other
therapies may reduce CVD without actu-
ally changing HDL-C levels (1). Overall,
the epidemiological evidence suggests that
the majority of mechanisms that result in
higher HDL-C levels in vivo will provide
atheroprotection; the question is how to
identify such targets. This requires a shift
in mindset toward assessing HDL in terms
of its atheroprotective functions rather
than just levels of cholesterol and its main
apoprotein, APOAL

Proposed mechanisms of HDL
atheroprotection

Experimental studies, including limited
work in humans, suggest several distinct
but potentially overlapping HDL athero-
protective functions. These include reverse
cholesterol transport (RCT) (5) and reduc-
tions in oxidative stress and in innate
immune inflammation (6, 7).
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RCT. The ability of HDL to promote RCT
has been thought of as the major function
of HDL for more than four decades (8, 9),
although convincing demonstration of this
process in vivo has only emerged in the past
few years (5). In atherosclerosis the primary
cell that is loaded with cholesterol is the arte-
rial macrophage — therefore, it may make
more sense to conceptualize RCT in terms of
macrophage cholesterol efflux potential or
“macrophage RCT” rather than in terms of
total peripheral tissue cholesterol RCT (5, 9).

The first step in macrophage RCT is
efflux of cholesterol from arterial macro-
phages, a highly regulated process involv-
ing specific transporters including ABC
transporter A1 (ABCA1) and ABCG1 (3).
ABCAL1 facilitates efflux of cholesterol
and phospholipids (including oxidized
phospholipids) to lipid-poor APOAI,
whereas ABCG1-mediated cholesterol
efflux to more mature HDL particles (10)
is enhanced by lecithin:cholesterol acyl-
transferase (LCAT) and APOE in HDL
(11) and may be in part be responsible for
the “passive cholesterol efflux” character-
ized by Rothblat, Phillips, and coworkers
(12). Expression of both transporters is
upregulated in macrophages by oxysterols
that activate the nuclear hormone recep-
tor liver X receptors (LXRs) and directly
target the promoters of theses genes.
Macrophage expression of both ABCA1
and ABCG1 enhances macrophage cho-
lesterol efflux and protects against experi-
mental atherosclerosis.

Following efflux to HDL and esterifi-
cation by LCAT, transport of cholesterol
to the liver is mediated directly by HDL
hepatic receptors, including scavenger
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Table 1
Assays of HDL function in humans

Human studies

Yes, small- to intermediate-
sized studies

Yes, epidemiological and
clinical trials
Yes, small scale; relationship

Assay class Assay Advantages/limitations

HDL subpopulations and size 2D PAGE (27) Identifies particles that may relate to HDL
function and outcomes; low throughput,
semiquantitative, surrogate of true function

NMR (28) Identifies HDL particle size and number;

high throughput, but limited evidence
for CVD risk prediction beyond HDL-C

RCT Macrophage cholesterol Analyzes ex vivo capacity of isolated

efflux (12) HDL to efflux cholesterol from

Fecal sterol excretion (29)

HDL tracer kinetic studies (30)

Activity and mass assays of
CEPT, LCAT, lipases etc.

HDL antiinflammatory

Vascular adhesion molecular
expression or levels

HDL-associated paraoxonase or
Lp-PLA, mass or activity

HDL antioxidant

RCT, reverse cholesterol transport.

receptor BI (SR-BI), or indirectly by cho-
lesterol ester (CE) transfer protein-driven
(CETP-driven) CE transfer to apoB lipo-
proteins and liver uptake (5). Hepatic
SR-BI mediates selective uptake of HDL-CE
and free cholesterol without concomitant
uptake of HDL protein (4). Despite reduc-
ing plasma HDL-C levels, hepatic SR-BI
overexpression in mice enhances macro-
phage RCT and reduces atherosclerosis
(4,5). The role of SR-B1 in human physiol-
ogy remains uncertain, however, because
relatively litctle HDL-CE is taken up directly
by the liver in humans (13).

CETP mediates the exchange of HDL-CE
for triglyceride on apoB lipoproteins. CETP-
deficient humans have extremely high
HDL-C levels and slow turnover of APOAI,
however, the role of CETP in RCT and ath-
erosclerosis remains uncertain (3, 5, 14).
Pharmacological inhibition of CETP
results in increased levels of large HDL
particles (15). It is possible that inhibi-
tion of CETP results in a switch from an
ABCA1- to an ABCG1-mediated choles-
terol efflux pathway (10, 11). At present, it
is unclear what might be the optimal level
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Monocyte chemotactic assay
(7, 31); cell-free assay (7, 31)

macrophages; low throughput
Estimates total body excretion

of cholesterol; may lack sensitivity for
macrophage RCT and be confounded

to atherosclerosis is
lacking

Yes, small scale; relationship
to atherosclerosis is
lacking

by bowel cholesterol metabolism

RCT; hepatic and bowel activity

confounds tracer kinetics
Estimate mass or activity of

HDL proteins involved in RCT,;

activity assays require standardization

Analyzes ex vivo capacity of HDL

Trace HDL lipid fluxes and excretion
from body; do not assay macrophage

Yes, proof of concept;
needs validation

Yes; greater evidence of
relationship to RCT and
atherosclerosis is required

Yes, proof-of concept studies

to suppress LDL-induced chemotaxis;

low throughput, lacks standardization

Assays HDL antioxidant enzymes;

lacks standardization

of CETP inhibition for increasing macro-
phage cholesterol efflux. Also, the failure
of the CETP inhibitor torcetrapib in the
ILLUMINATE (Investigation of Lipid Level
Management to Understand Its Impact
in ATherosclerotic Events) trial likely
involved non-HDL-related toxicity, such
as off-target hypertensive side effects (2). It
will be interesting to see whether changes
in HDL levels, subclasses, or function were
predictive of the outcome in the ILLUMI-
NATE study or whether CETP inhibition
promotes or retards novel measures of
RCT in experimental models. However, the
failure of torcetrapib in the ILLUMINATE
study dramatically illustrates the need for
plasma or other surrogate biomarkers that
faithfully reflect the underlying antiath-
erogenic properties of HDL.
Antiinflammatory and antioxidant effects
of HDL. A body of literature has emerged
supporting specific antiinflammatory and
antioxidant effects of HDL (6, 7). Remark-
ably, in this issue of the JCI, Vaisar and col-
leagues (16), using a proteomics approach,
found that more HDL proteins are involved
in immune/inflammatory functions (23 of
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Requires vascular tissue or plasma; plasma
assays are not specific to HDL function

Number 3

Yes, plasma assays

Yes, limited proof of concept

single dimension of HDL function,

48 proteins) than in lipid transport and
metabolism (22 proteins), suggesting a
fundamental role for HDL in innate immu-
nity. Indeed, HDL binds to and modulates
the actions of endotoxin and other bacteri-
al antigens, provides a platform for assem-
bly of innate immune complexes, acts as
an acceptor for oxidized phospholipids,
and blocks oxidation of apoB lipoproteins
(6,7,17,18). HDL levels fall during acute
inflammation, perhaps to achieve condi-
tions permissive for acute inflammation.
Two independent proteomic analyses have
revealed HDL enrichment in proteins regu-
lating complement, proteolysis, and coagu-
lation (16, 19), suggesting modulation of
inflammation-induced tissue injury and
hemostasis. The recovery of HDL levels fol-
lowing the acute inflammatory response
could play an important role in suppress-
ing ongoing inflammation.
Modifications of HDL that occur dur-
ing the acute-phase response are similar to
those observed chronically in atheroscle-
rosis (6, 7). A number of HDL-associated
antioxidant enzymes, including paraox-
onase and lipoprotein-associated phospho-
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lipase A, (Lp-PLA;), promote catabolism of
oxidized phospholipids. Accumulation of
oxidized lipids, however, negatively regu-
lates the activities of these enzymes. Using
cell-based assays of monocyte chemotactic
activity or cell-free assays of oxidation,
Fogelman and colleagues have shown that
HDL particles isolated during the acute
phase and from patients with coronary
artery disease (CAD) fail to retard, and in
fact enhance, LDL-mediated inflammation
(7). Notably, a convergence of HDL antiin-
flammatory functions with its RCT func-
tions has emerged — HDL isolated from
CAD patients contains a specific myelo-
peroxidase-driven tyrosine modification of
APOAI that coincides with attenuation of
cholesterol efflux via ABCAL1 (20, 21).

Measures of HDL atheroprotective
function and the HDL proteome

We continue to have limited insight into
the precise mechanisms of HDL athero-
protection, in part, due to our inability to
assess HDL functions in vivo. Although
several measures of HDL particles, compo-
sition, and function exist (Table 1), there
are no tractable methods for assessing
RCT in humans, and simple, reliable, and
reproducible assays of HDL antiinflamma-
tory functions are lacking. In this setting,
recent HDL proteomic studies may provide
novel insights into HDL physiology and
the potential for development of bioassays
of HDL function, although such studies
are in their infancy (16, 19, 22-24).

In thisissue, Vaisar et al. present the largest
and most comprehensive mass spectrome-
try-based study to date of the HDL proteome
(16). Arguably, the most striking aspect of
these early studies is not just the diversity
of the HDL proteins and peptides (16, 19)
identified but also the overrepresentation
of proteins involved in several non-lipid
transport functions, including the acute-
phase response, complement regulation,
proteolysis, and coagulation (16, 19, 22, 24)
(Supplemental Table 1; supplemental
material available online with this article;
doi:10.1172/JCI31608DS1), suggesting
novel HDL functions. Although convincing
evidence of functional roles for HDL in these
processes is limited, past and emerging stud-
ies have shown that HDL and/or APOAI can
attenuate response to experimental endo-
toxemia (17), inhibit complement activation
(25), and inhibit platelet activation, serpins,
and thrombosis (26).

The current study (16) is notable for
examining a large human sample (albeit
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including only 33 subjects), comparing
HDL proteins isolated from the plasma
of healthy controls with HDL proteins
from patients with CAD (» = 7) and with
HDL isolated from human atherosclerotic
plaques. Importantly, semiquantitative
peptide counting linked to appropriate sta-
tistical methodologies was applied to assess
relative protein abundance and provided
evidence that HDL in CAD is enriched in
APOE and complement components 3 and
4, protein changes that may relate to both
RCT and antiinflammatory functions. The
observation that the plasma HDL in CAD
contains a subset of proteins found on HDL
in atherosclerotic plaques requires valida-
tion but implies that the HDL proteome
can provide a window into plaque activity.
Whether such protein changes, and which
ones, are measures of HDL atheroprotective
functions has yet to be determined.

The degree of variation across studies in
the number and identity of proteins asso-
ciated with HDL (Supplemental Table 1;
refs. 16, 19, 22-24) raises some concerns.
This is likely related to technical differ-
ences in HDL isolation and subsequent
methodology and highlights the need for
technical standardization and rigorous
external validation.

Future directions

In moving forward, the challenge will be
to develop relatively simple HDL biomark-
ers that can be measured before and after
a clinical intervention, then correlated
with clinical outcomes or atherosclerosis
imaging, and ultimately used in CVD risk
prediction. Examples could be an immu-
noassay for the content of specific proteins
in HDL or its subfractions; e.g., the pro-
portion of HDL or subclasses containing
APOE, LCAT, or Lp-PLA,, specific comple-
ment proteins, antiproteases, or oxidized
lipids could turn out to have predictive
value. While more complicated measure-
ments, such as macrophage RCT or even
cell-based assays of macrophage cholesterol
efflux using HDL isolated before and after
intervention, are less likely to be applicable
on alarge scale or validated against clinical
outcomes, they may be critical for proof of
concept of novel therapies and understand-
ing the functional properties of simpler
HDL biomarkers. Application of a broad
spectrum of assays that address HDL func-
tionality as well as composition is likely to
provide the greatest insight into the rela-
tionship between HDL and atherosclerosis
and the effects of novel therapies. Indeed,
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failure to apply such measures as a comple-
ment to atherosclerosis imaging will reduce
the likelihood of developing HDL-related
prognostic and therapeutic strategies.
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Autoantibody selection and production

In early human life
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Natural antibodies are autoreactive/polyreactive antibodies believed to be
secreted in the absence of xenoantigens. The origin and functional role of
this limited and selective autoimmunity are not clear, nor is the specificity
and range of autoantigens that drive the development of B cells producing
natural antibodies. In this issue of the JCI, Merbl et al. report that in utero,
humans generate natural IgM and IgA antibodies that recognize a uniform
set of autoantigens (see the related article beginning on page 712), some
of which are associated with autoimmune diseases. The authors postulate
that this “autoimmunity” at birth favors the emergence of autoimmune
diseases in later life. We present a molecular basis for the limited and com-
mon repertoire of antibodies produced by fetal B cells, which may be dis-
tinct from the abnormalities in B cell development described in patients

with autoimmune diseases.

B cell tolerance checkpoints remove many
developing self-reactive B cells from the
adult repertoire, yet the presence of certain
autoreactive B cells in normal individuals
is revealed by the identification of serum
autoantibodies referred to as natural anti-
bodies (1, 2). Most natural antibodies are
low-affinity IgM autoantibodies that are

Nonstandard abbreviations used: BCR, B cell recep-
tor; CDR3, complementarity-determining region 3; D,
diversity; H, heavy chain; IgH, Ig heavy chain; J, joining;
NMHC-II, nonmuscle myosin heavy chain type II; TDT,
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X-linked agammaglobulinemia.
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often polyreactive and bind to a broad
range of self antigens (2, 3). In mice, natural
antibody-secreting B cells belong to a spe-
cific B cell subpopulation called B-1 cells,
which preferentially reside in the peritoneal
cavity (4). The fact that these peripheral
autoreactive B cells are positively selected
by self antigens seems paradoxical to B cell
tolerance, but raises the possibility that
autoantibodies may in some cases perform
useful functions (5). In humans, the origin
of natural antibodies and the autoantigens
that they recognize remain to be character-
ized. In this issue of the JCI, Merbl et al.
(6), using an antigen microarray, identified
specific autoantigens recognized by natural
IgM and, to a lesser extent, IgA antibodies
produced during human fetal and neonatal
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life (6). In addition, they found that auto-
antigens recognized by serum IgMs from
newborns were remarkably similar among
individuals, suggesting that in the absence
of xenoantigens, specific autoantigens may
select and stimulate autoreactive B cells to
produce self-reactive natural IgM antibodies
in fetuses (6). In contrast, IgM and IgA anti-
bodies from mothers showed an antigenic
recognition pattern different from that of
their newborns. Furthermore, IgM and IgA
recognition patterns were extremely diverse
among the mothers studied, reflecting the
distinct immunological histories of each
individual. However, encounters with some
common pathogens, such as Gram-negative
bacteria, stimulated the production of anti-
LPS antibodies in all mothers (6).

Potential origins of common natural
antibody reactivity at birth

What might account for the recognition
of the same autoantigens by different
individuals during early human develop-
ment? Antibodies are generated by random
recombination of Ig variable (V), diversity
(D), and joining (J) gene segments dur-
ing early B cell development. Analysis of
B cells from fetuses and neonates showed
that this was not the case in early life (7, 8).
Rather, Ig gene segment usage in early life
is biased toward specific genes, thereby lim-
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