Supplementary Figure legends

Figure S1. S1P₂ receptor function is dispensable during normal retina vascular development. (A) S1P₂ mRNA expression normalized to cyclophilin A mRNA and expressed as fold induction over the relative gene expression value measured at P5, determined by quantitative RT-PCR analysis (n = 3). S1P₂ receptor expression is decreased during normal vascular development (${}^*P < 0.03$). (B) Frozen retinal cross sections stained with GS-lectin and DAPI during normal development (normoxia). Developing vessels of S1p2'' retinas (P6) finely spread in NFL, towards the periphery of the retina and are able to form deeper capillary networks (P12 and P20) in IPL and OPL similarly to their WT littermates. (C) At P6, whole mount S1p2'' retinas stained for GS-lectin and GFAP show similar vascular and astrocytic network to WT littermates. Scale bar, 100 µm. (D) S1p2'' retinas display proper tip cell filopodia formation while at P20 ensheathment of vessels with smooth muscle cells (SMA staining) occurs as well as in $S1p2^{+/+}$ retinas (E). Scale bar: 50µm (B, C), 20µm (D) and 200µm (E).

Figure S2. Immunoblot analysis of cell extracts with polyclonal rabbit S1P₂ antibody; first and second lanes: VSMCs and MEFs expressing endogenous S1P₂ receptor. Third and fourth lane: HEK-293 transfected with control (pcDNA) and S1P₂ receptor expressing plasmid. The antibody specifically recognizes overexpressing as well as endogenous levels of S1P₂ receptor (*, ~ 40kDa).

Figure S3. (A, B) At P17, both $S1p2^{+/+}$ and $S1p2^{-/-}$ flat mount retinas optically sectioned at the GCL, show increased number of proliferative cells (BrdU staining) colocalizing with ECs (arrowhead), small number of mitogenic cells co-localize with astrocytes (GFAP, arrows). Scale bar: 20µm. (C) During normal development (P17, normoxia), WT animals display normal ensheathment of vessels (GS-lectin) with pericytes (NG2) while (D) astrocytes (GFAP) are in close association with vessels (GS-lectin) as well. Scale bar: 50µm.

Figure S4. Western blot analysis of extracts from HUVECs transduced with AdGFP or AdS1P₂-V5 (50 MOI). HUVECs transduced with AdS1P₂-V5 show decreased eNOS protein expression that was blocked upon treatment with a specific Rho-associated protein kinase (ROCK) inhibitor (Y-27632, 10 μ M; **P* < 0.05, results from one representative experiment, *n* = 2).

Fig. S1

Fig. S2

Fig.S3

BrdU/GFAP

D

BrdU/GFAP

NG2/GS-lectin

A

С

GFAP/GS-lectin

Normoxia

Normoxia

Fig. S4

Table S1

Primer sequences for quantitative real-time RT-PCR	
Gene	Sequence of primers
mSlpl	F: ATGGTGTCCACTAGCATCCC
	R: CGATGTTCAACTTGCCTGTGTAG
mS1p2	F: ATGGGCGGCTTATACTCAGAG
	R: GCGCAGCACAAGATGATGAT
mS1p3	F: GCCTAGCGGGAGAGAAACCT
	R: CCGACTGCGGGAAGAGTGT
mAng2	F: TCAACAGCTTGCTGACCATGAT
	R: GGTTTGCTCTTCTTTACGGATAGC
mVEGF	F: CACGACAGAAGGAGAGCAGAAGT
	R: TTCGCTGGTAGACATCCATGAA
mFlt1	F: GAGGAGGATGAGGGTGTCTATAGGT
	R: GTGATCAGCTCCAGGTTTGACTT
mTNF-a	F: GGGCCACCACGCTCTTCTGTCT
	R:GCCACTCCAGCTGCTCCTCCAC
miNOS	F: TGGCCACCTTGTTCAGCTACG
	R:GCCAAGGCCAAACACAGCATAC
mCOX-2	F: GTACCCGGACTGGATTCTATGG
	R: GGGTGGGCTTCAGCAGTAATT
mCyclophilin	F: ATGGCAAATGCTGGACCAAA
	R: TGCCATCCAGCCATTCAGT
mGAPDH	F:CAACTACATGGTCTACATGTTCCAGT
	R:TGACCCGTTTGGCTCCA