CaMKII regulates retinoic acid receptor transcripational activity and the differentiation of myeloid leukemia cells

Jutong Si, LeMoyne Mueller, and Steven J. Collins

Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.

Retinoic acid receptors (RARs) are members of the nuclear hormone receptor family and regulate the proliferation and differentiation of multiple cell types, including promyelocytic leukemia cells. Here we describe a biochemical/functional interaction between the Ca\(^{2+}\)/calmodulin–dependent protein kinases (CaMKs) and RARs that modulates the differentiation of myeloid leukemia cells. We observe that CaMKII\(\gamma\) is the CaMK that is predominantly expressed in myeloid cells. CaMKII inhibits RAR transcriptional activity, and this enzyme directly interacts with RAR through a CaMKII LxxLL binding motif. CaMKII\(\gamma\) phosphorylates RAR\(\alpha\) both in vitro and in vivo, and this phosphorylation inhibits RAR\(\alpha\) activity by enhancing its interaction with transcriptional corepressors. In myeloid cell lines, CaMKII\(\gamma\) localizes to RAR target sites within myeloid gene promoters but dissociates from the promoter upon retinoic acid–induced myeloid cell differentiation. KN62, a pharmacological inhibitor of the CaMKs, enhances the terminal differentiation of myeloid leukemia cell lines, and this is associated with a reduction in activated (autophosphorylated) CaMKII in the terminally differentiating cells. These observations reveal a significant cross-talk between Ca\(^{2+}\) and retinoic acid signaling pathways that regulates the differentiation of myeloid leukemia cells, and they suggest that CaMKII\(\gamma\) may provide a new therapeutic target for the treatment of certain human myeloid leukemias.

Introduction

Hematopoiesis involves an intricate, functional interaction between lineage-specific cytokines and lineage-specific transcription factors. Among these transcription factors the retinoic acid receptors (RARs) are important regulators of myeloid lineage differentiation. These receptors are members of the ligand-activated nuclear receptor family and include 2 distinct families, the RARs and retinoid X receptors (RXRs), which bind as RAR/RXR heterodimers to their specific target sequences, the retinoic acid response elements (RAREs). RARs play a critical role in regulating myeloid differentiation, since retinoic acid (RA) stimulates the granulocytic differentiation of normal hematopoietic precursors (1), and knockout mice deficient in both RAR\(\alpha\) and RAR\(\gamma\) exhibit a block to granulocyte differentiation (2). Moreover, a critical genetic event in the development of human acute promyelocytic leukemia (APL) involves the acquisition of a t(15;17) chromosome translocation resulting in the leukemogenic PML-RAR\(\alpha\) fusion protein that acts as a dominant-negative RAR to block normal myeloid differentiation (3, 4). This differentiation block can be overcome with relatively high, pharmacological concentrations of RA, and the clinical use of RA to induce terminal differentiation of leukemia cells has had a remarkably beneficial impact on the therapy of APL (5, 6).

Ligand binding to RAR/RXR alters its transcriptional activity by triggering a conformational change in this complex that inhibits its interaction with transcriptional corepressors while enhancing interaction with different transcriptional coactivators (7, 8). A signature LxxLL binding motif or closely related sequences are present in the receptor interaction domains of a number of different nuclear hormone receptor coactivators, including the SRC/p160 family (9), the ASC-2 coactivator (10), and the mediator complex TRAP220/DRIP205/MED1 subunit (11, 12). This motif mediates the recruitment of these coactivators into the nuclear receptor transcription complex by directly contacting the AF-2 domain of the nuclear receptors. The transcriptional activity of the RARs is also regulated by protein kinase–mediated phosphorylation. Both protein kinase A and cdk7 phosphorylate and enhance RAR transcriptional activity (13, 14), and diminished cdk7 phosphorylation of RAR with reduced RAR activity is observed in the genetic disorder xeroderma pigmentosum (15).

The Ca\(^{2+}\)/calmodulin–dependent protein kinases (CaMKs) are multifunctional serine/threonine kinases whose activity is regulated through Ca\(^{2+}\) signaling (16). The most widely studied CaMKs include CaMKI, CaMKII, and CaMKIV. In general, CaMK activation is triggered by the binding of Ca\(^{2+}\)/calmodulin (Ca\(^{2+}\)/CaM), and the levels of Ca\(^{2+}\)/CaM are regulated by changes in intracellular Ca\(^{2+}\) concentration. The CaMKs regulate the development and activity of multiple different cell types. For example, CaMKII and CaMKIV regulate cytokine expression in activated T lymphocytes (17, 18). CaMKII also regulates dendritic morphogenesis through phosphorylation of the neuroD transcription factor (19). Moreover, CaMKII, which constitutes approximately 1%–2% of total brain protein, also phosphorylates proteins involved in strengthening synaptic transmission, and this likely regulates learning and memory (reviewed in ref. 20).

In the present study we have explored the activity of the CaMKs in hematopoiesis and observe that CaMKII\(\gamma\) is intimately involved in the RAR-mediated regulation of myelopoiesis. In myeloid cells we observe a direct physical and functional interaction of CaMKII with RARs that is mediated through a CaMKII LxxLL signature motif. CaMKII\(\gamma\) localizes to RAR target sites within myeloid gene promoters, and this enzyme phosphorylates RAR and inhibits its transcriptional activity by enhancing its interaction with transcriptional corepressors while enhancing triggering a conformational change in this complex that inhibits
tional activity. Pharmacological inhibitors of CaMKII markedly enhance the granulocytic differentiation of APL cells. These studies reveal a previously unexplored molecular interaction and cross-talk between Ca\(^{2+}\) and RAR signal transduction pathways and suggest that CaMK\(\gamma\) may provide a new molecular target for the therapy of leukemia, particularly APL.

Results

Expression and activity of the CaMKs in differentiating myeloid cells. All-trans retinoic acid (ATRA) induces the terminal granulocytic differentiation of certain cultured hematopoietic cells, and we have been using such cell lines, including HL60 (21), NB4 (22), and MPRO (23), to define factors that regulate RAR transcriptional activity in differentiating myeloid cells. We observed that the Ca\(^{2+}\) ionophore ionomycin inhibited the ATRA-induced activity of a RARE-driven luciferase reporter in HL60 myeloid cells (Figure 1A, lanes 4–6). Such Ca\(^{2+}\) ionophores can potentially regulate many different Ca\(^{2+}\)-dependent enzymes, including the CaMKs. To assess whether the CaMKs are involved in regulating RAR transcriptional activity, we used KN62 and KN93, both potent small-molecule inhibitors of the CaMKs (IC\(_{50}\) = 0.9 \(\mu\)M), which directly interfere with the binding of Ca\(^{2+}\)/CaM to the different CaMKs (24, 25). We found that in HL60 myeloid cells, both KN62 and KN93 enhanced RAR transcriptional activity (Figure 1B). We also found similar results in other transfected myeloid cells, including MPRO and NB4 (not shown). The observed enhancement of RAR activity by small-molecule inhibitors of the CaMKs suggests that endogenous CaMKs are involved in downregulating the activity of the RARs in myeloid cells.

To further assess the role that the endogenous CaMKs might play in RAR activity and myeloid differentiation, we performed Western blots to compare the expression of the different CaMKs in different hematopoietic cells. We found low but detectable expression of CaMKI (CaMKI\(\alpha\)) in all of the different hematopoietic cell types tested (Figure 1C, first row). CaMKII consists of 4 distinct but highly homologous genes (\(\alpha\), \(\beta\), \(\gamma\), and \(\delta\)), and all of the hematopoietic cells displayed readily detectable levels of the CaMKII\(\gamma\) isoform, while CaMKII\(\alpha\) expression was evident only in the immature, multipotent EML hematopoietic cells (26) and in normal immature bone marrow precursors (Figure 1C, lanes 2 and 8). In contrast with CaMKI and CaMKII, CaMKIV, while expressed in brain extracts (Figure 1C, lane 1) in the Jurkat T lymphoid cell line (not shown) and to a slight degree in MPRO cells (Figure 1C, lane 3), was not readily detected in any other hematopoietic cells. These Western blot observations were confirmed by RT-PCR with RNAs from these different cell types, which also indicated that CaMKI\(\alpha\) and CaMKII\(\gamma\) were the predominant CaMK mRNAs expressed by the NB4 and HL60 cell lines (not shown). We also quantitated both autonomous (Ca\(^{2+}\)/CaM–independent) and total (Ca\(^{2+}\)/CaM–dependent) CaMK enzyme activity in HL60 cell lysates following immunoprecipitation with different CaMK

Figure 1

CaMK isoform expression in hematopoietic cells. (A) The activity of an ATRA-responsive luciferase reporter (\(\beta\)RARE-tk-Luc, 25 \(\mu\)g) was assessed in electroporated HL60 cells 6 hours after treatment with the indicated concentrations of ionomycin and ATRA. (B) The activity of the luciferase reporter (\(\beta\)RARE-tk-Luc, 25 \(\mu\)g) was assessed in HL60 cells 6 hours after treatment with KN62 (5 \(\mu\)M), KN93 (5 \(\mu\)M), and ATRA (1 \(\mu\)M). (C) Western blots were performed using the indicated antibodies. F9 (lane 6) is a mouse embryonal carcinoma cell line. BaF3 (lane 7) is a cultured pre-B cell line. BM cells (lane 8) are kit ligand–dependent normal murine hematopoietic precursors. PT67 murine fibroblasts individually transduced with rat CaMKI\(\alpha\), human CaMKI\(\alpha\), or human CaMKIV (lane 9) together with brain lysates (lane 1) serve as positive controls for the respective antibodies. (D) CaMK assays were performed on HL60 cell lysates immunoprecipitated with the indicated antibodies.
antibodies. Confirming the Western blots, we observed the highest level of both autonomous and total CaMK activity in the CaMKIIγ immunoprecipitates (Figure 1D, lane 5). Lower enzyme activity was detected in CaMKI immunoprecipitates (Figure 1D, lane 2), while minimal enzyme activity was observed in CaMKIIα, CaMKIIβ, CaMKIIδ, and CaMKIV immunoprecipitates (Figure 1D).

CaMKIIγ inhibits RAR activity in myeloid cells. The studies described above indicate that CaMKIIγ is the CaMK predominantly expressed in myeloid cells, and we wished to determine whether this enzyme had any effect on RAR transcriptional activity. We used an expression vector harboring the full-length CaMKII as well as one harboring a truncated CaMKII that lacks the calmodulin-binding domain and displays constitutive activity (27). Since we observed that the CaMK inhibitor KN62 enhanced RAR transcriptional activity (Figure 1B), we expected that the cotransfected CaMKII might inhibit RAR activity. Indeed this is the case, as we observed that both the full-length and the constitutively active CaMKII expression vectors signifi-
cantly reduced RAR activity in the HL60 myeloid cells (Figure 2A, compare lanes 3–6 with lanes 1 and 2). Similar results were also noted in transfected MPRO and NB4 myeloid cells (not shown). We also determined the effect of siRNA-mediated downregulation of CaMKIIγ on RAR activity in HL60 cells. We constructed retroviral vectors expressing CaMKIIγ shRNAs, stably transduced HL60 cells with these vectors, and isolated 6 subclones (A6, B2, B5, B6, C2, and C18) that exhibited diminished protein expression of CaMKIIγ as compared with controls (Figure 2B). These subclones also exhibited diminished CaMKIIγ enzymatic activity as compared with control (empty) vector–transduced...
HL60 cells (Figure 2C). The CaMKIγ shRNA–transduced HL60 cells displaying this reduced CaMKIγ expression/activity exhibited enhanced ATRA-induced RARα transcriptional activity as compared with the empty vector–transduced cells (Figure 2D). Moreover, the HL60 subclones expressing this reduced CaMKIγ expression/activity displayed an enhanced differential response to RA, which was reflected in their enhanced RA-induced expression of C/EBPα, a surface antigen present on mature neutrophils (28) (Figure 2E). Consistent with these observations, we observed that cotransfection of the RARE reporter with an expression vector harboring CaMKIINtα, a naturally occurring protein that specifically inhibits CaMKII activity (29), enhanced RARE reporter activity in HL60 cells (Figure 2F). Taken together, these observations indicate that CaMKIγ inhibits RARα transcriptional activity in myeloid cells.

Physical interaction between CaMKII and RARα is mediated through a CaMKII LxxLL motif. Since the above observations indicate that CaMKIγ regulates (inhibits) RARα transcriptional activity, we performed coimmunoprecipitation studies to determine whether there was any physical interaction between CaMKII and RARα in myeloid cells. We observed that immunoprecipitation of endogenous RARα from both untreated and ATRA-treated HL60 cells coimmunoprecipitated CaMKIγ (Figure 3A, lanes 3–5) and that antibodies to CaMKIγ were able to coimmunoprecipitate RARα (Figure 3A, lanes 6–8). These coimmunoprecipitation studies indicate that there is a direct physical interaction between RARα and CaMKIγ, and/or they are common members of a larger multiprotein complex. To determine whether CaMKII can directly bind RARα, we assessed the CaMKII/RARα interaction using in vitro glutathione S-transferase (GST) pulldowns. A GST-RARα fusion protein bound CaMKII, while GST alone did not (Figure 3B). Although a potential “bridge factor” in the reticulocyte lysate might encourage this RARα/CaMKII interaction, nevertheless these observations suggest that RARα and CaMKII can directly bind each other.

After ligand binding, a conformational change occurs in the RARs that promotes their interaction with a variety of different transcriptional co-regulators (coactivators). These coactivators harbor a signature LxxLL motif that directly mediates their interaction with RAR (7, 8). Inspection of the amino acid sequence of CaMKII indicates that the CaMKIIα, β, γ, and δ isoforms all harbor a single LxxLL motif (LyvLL) within the kinase domain (Figure 3C). To determine whether these LxxLL motifs are directly involved in mediating the interaction of CaMKII with RARα, we performed GST-RARα pulldowns using in vitro–translated CaMKII fusion proteins in which this LxxLL motif had been altered by site-directed mutagenesis. Mutation of LxxLL motif residues within CaMKII resulted in significantly reduced binding to GST-RARα (Figure 3C, compare lane 1 with lanes 2–6). Thus the CaMKII LxxLL motif appears to be important in mediating the binding of CaMKII to RARα.

To determine whether this LxxLL motif has any functional role in the CaMKII-mediated inhibition of RAR activity, we compared the activity of WT versus LxxLL motif–mutated CaMKII in regulating RAR reporter activity in transiently transfected HL60 myeloid cells. A CaMKII construct harboring a mutated LxxLL motif (LxxAA) that reduces binding to RAR (Figure 3C, lane 1 versus lane 3) did not inhibit RAR activity as compared with the parental (WT) CaMKII (Figure 3D). Thus the CaMKII LxxLL motif appears to be important in regulating both the physical and the functional interaction between CaMKII and RAR.

CaMKIIγ directly phosphorylates RARα. The direct binding of CaMKIγ to RARα (Figure 3) together with the CaMKII-mediated regulation of RAR transcriptional activity (Figure 2) suggests that the RARs may be direct enzymatic substrates of the CaMKs. We performed in vitro kinase reactions and observed that CaMKIIγ phosphorylated RARα in a Ca2+/CaM–dependent manner (Figure 4A). A consensus substrate sequence targeted by the different CaMKs is R-x-x-S/T (30), and RARα harbors 4 such candidate CaMK target sequences within the C-terminal ligand binding/coactivator interaction domain. (These RARα sites are arbitrarily labeled 1–4 in Figure 4B). To determine whether any of these 4 predicted substrate sites were phosphorylated by CaMKIγ, we compared the CaMKII-mediated phosphorylation of GST–RARα fusion proteins in which all 4 of these potential phosphorylation sites...
were mutated to alanine [designated Gst-RARm(1,2,3,4)]. None of these 4 consensus sites in RARα appeared to be phosphorylated by CaMKIIγ, since this enzyme phosphorylated both the WT and the Gst-RARα with 4 mutated consensus sites to an equal extent (Figure 4C, compare lanes 1 and 2). We identified another consensus CaMK site within the RARα hinge domain that is autophosphorylated during this reaction (Figure 4D). (A) GST-RARγ fusion fragment harboring RARα amino acids 135–291 (RARα-WT) as well as the same fusion protein that is mutated (TT) at RARα site 0 (RARα-T209A,T210A) was subjected to an in vitro kinase reaction using CaMKIIγ immunoprecipitated from HL60 cells. The radiolabeled upper bands represent CaMKIIγ that is autophosphorylated during this reaction. (B) The 4 consensus CaMK sites (R-x-x-S/T) within the ligand-binding domain of RARα are arbitrarily labeled 1–4. The (K-x-x-S/T) CaMK consensus sites within the RARα hinge domain is labeled site 0. (C) A GST-RARγ fusion protein was constructed that harbors nonphosphorylatable alanine mutations at consensus CaMK sites 1–4 [Gst-RARm(1,2,3,4)]. This GST-RARγ fusion protein and the parental WT GST-RARα were subjected to in vitro kinase reactions using CaMKIIγ immunoprecipitated from HL60 cells. The lower band corresponds to the immunoprecipitated CaMKIIγ that is autophosphorylated during this reaction. (D) A GST-RARα fusion fragment harboring RARα amino acids 135–291 (RARα-WT) as well as the same fusion protein that is mutated (TT) at RARα site 0 (RARα-T209A,T210A) was subjected to an in vitro kinase reaction using immunoprecipitated HL60 CaMKIIγ. The radiolabeled upper bands represent CaMKIIγ that is autophosphorylated during this reaction. (E) 293 cells were transfected with the indicated expression vectors and then metabolically labeled with [32P]orthophosphate. After 4 hours, anti-HA immunoprecipitates were electrophoresed on an agarose gel, and then radioautography was performed. CaMKIIγ is the constitutively active CaMKIIγ. Anti-HA Western blots (bottom row) served as a control for the amount of immunoprecipitated HA-RAR from each transfectant. (F) HL60R cells were electroporated with the iRARα-Tk-LUC reporter (15 μg) together with expression vectors harboring the WT or the indicated CaMKIIγ (T209,T210) site–mutated RARα. Six hours after RA addition (1 μM), relative luciferase activity was determined.

In summary, we observe that CaMKIIγ-mediated phosphorylation of RARα at the T209,T210 site alters RARα transcriptional activity, we compared the transcriptional activity of WT RARα versus RARα harboring mutations at this site. We performed these studies in HL60R cells, which harbor a mutated RARα resulting in reduced endogenous RAR activity (32). As compared with WT RARα, we observed that an RARα construct harboring nonphosphorylatable residues at the CaMKIIγ site (T209A,T210A) displayed enhanced RA-induced activity, while the RARα harboring phosphorylation-mimicking mutations at this same site (T209D,T210D) exhibited reduced transcriptional activity (Figure 4F). Thus CaMKIIγ phosphorylation of RARα at the T209,T210 site inhibits RARα transcriptional activity.
CaMKIIγ phosphorylation of RARα enhances RA-triggered myeloid gene promoters. The above observations indicate a potentially important role for CaMKIIγ in directly phosphorylating RARα and regulating its transcriptional activity in myeloid cells. We used chromatin immunoprecipitation (ChIP) to determine whether CaMKIIγ directly associated with the promoters of RAR-regulated target genes. For these studies we chose to analyze the CCAAT/enhancer binding protein-ε (C/EBPε) gene in HL60 cells, since enhanced C/EBPε expression occurs during RA-induced differentiation of RA-responsive myeloid gene promoters.
HL60 (Figure 6A), and this is mediated through a specific RARE located 190 bp upstream of the C/EBPε translation start site (35). For these ChIPs, PCR primers flanking the C/EBPε RARE were used together with control primers flanking a distal C/EBPε genomic region approximately 2,500 bp upstream (Figure 6B). Both before and after RA induction we observed a consistent association of RARα with the C/EBPε RARE but not with the upstream distal region (Figure 6C). Following RA treatment there was the expected rapid displacement from this RARE of the RAR corepressors N-CoR and SMRT (Figure 6C). We observed that CaMKIIγ was also associated with this RARE in uninduced cells as compared with the upstream control region. Interestingly, RA treatment was accompanied by dissociation of CaMKIIγ from this RARE, and these changes were observed as early as 1–2 hours after RA exposure (Figure 6C).

The CaMK inhibitor KN62 is a potent inducer of myeloid cell differentiation. The RA-induced myeloid differentiation of HL60 cells is mediated directly through RARα (36). Our observation that KN62 enhanced RAR transcriptional activity in HL60 cells (Figure 1B) suggests that this compound might also regulate the differentiation of these cells. We observed that KN62 as a single agent was a potent inducer of HL60 differentiation, enhancing both morphologic differentiation and expression of the neutrophil antigen Cd11b (Figure 7, B and D). Similarly, as a single agent, KN62 enhanced the granulocytic differentiation of the MPRO cell line (not shown). In contrast with the HL60 and MPRO cells, we observed in the NB4 promyelocytic leukemia cell line, which harbors the PML–RARα fusion gene (22), that KN62 alone was a relatively poor inducer of morphologic granulocytic differentiation (Figure 7, compare panels E and G). However, KN62 in combination with relatively low concentrations of RA (10⁻⁹ to 10⁻¹⁰ M) induced a marked increase in the granulocytic differentiation of NB4 cells, as assessed by morphologic differentiation (Figure 7, compare panels G and H), as well as the induction of Cd11b surface antigen expression (Figure 7I). Thus the CaMK inhibitor KN62 not only enhances RAR transcriptional activity but, either as a single agent or in combination with relatively low doses of RA, can induce or enhance the differentiation of different myeloid leukemia cell lines.

KN62 did not induce any significant changes in the expression of total CaMKIIy in these differentiating cells (Figure 7J). In NB4 cells, KN62 alone had little effect on the levels of autophosphorylated CaMKIIγ, but the combination of KN62 and relatively low concentrations of RA, which induced NB4 differentiation (Figure 7H), also induced a reduction in the autophosphorylated CaMKIIγ (Figure 7K). Thus the KN62-mediated enhanced differentiation of HL60 and NB4 cells is associated with reduced amounts of the activated, autophosphorylated CaMKIIγ.

Discussion

CaMKIIγ is a member of the RAR transcription complex. Our studies have revealed a novel, previously unexplored cross-talk between Ca²⁺-regulated and RAR signal transduction pathways. Indeed, we observe that CaMKII, which is one of the most widely studied Ca²⁺-regulated enzymes and which is a critical regulator of neuronal cell development and activity, is an important regulator of RAR transcriptional activity in myeloid cells. Indeed, a number of our observations indicate that CaMKIIγ is a direct functional component of the RAR transcription complex. First, we observe in transient transfection assays that CaMKII inhibits the transcriptional activity of the RARs (Figure 2A). Moreover, CaMKII directly binds to the RARs through a CaMKII signature LxxLL motif (Figure 3C), a motif also present in nuclear receptor transcriptional coactivators (8). Finally, our ChIP studies indicate that CaMKIIγ localizes in vivo to RAREs within myeloid target gene promoters (Figure 6). Notably, RA treatment triggers a reduced association of CaMKIIγ, which inhibits RAR activity, with this RARE (Figure 6C). This RA-induced reduction in CaMKIIγ association with the RARE...
Figure 7

KN62 regulates the differentiation of myeloid leukemia cell lines. (A–D) Wright-Giemsa–stained HL60 cells either uninduced (A) or treated for 5 days with KN62 (B) or ATRA (C). (D) CD11b expression in HL60 cells after 5 days of exposure to KN62 (5 μM) or ATRA (1 μM). (E–H) Wright-Giemsa–stained NB4 cells treated for 5 days with KN62 (5 μM) and ATRA as indicated. Uninduced NB4 cells are primarily immature myeloblasts (E), and their differentiation is not significantly altered by KN62 treatment alone (G). NB4 cells treated with low-concentration ATRA (10^-5 M) display little differentiation (F), but granulocytic differentiation is markedly enhanced with the addition of KN62 (5 μM) (H). Original magnification, ×500. (I) Cd11b expression of NB4 cells treated for 5 days with the indicated concentrations of RA and/or KN62. (J) Western blotting with the CaMKIIγ antibody, as well as the phosphospecific CaMKII (T286/287) antibody (pCaMKII), was performed on HL60 cell lysates after incubation with KN62 for the indicated times. (K) Western blots of NB4 cell lysates after a 5-day incubation with the indicated compounds.

may serve to relieve the inhibitory effect of CaMKIIγ on RAR activity and may be an important mechanism to regulate or amplify RAR activity following RA induction. Interestingly, some CaMKIIγ appears to return to the promoter 4–8 hours after ligand addition (Figure 6C), which may be indicative of the cyclical interaction of corepressors and coactivators previously observed at the gene targets of other nuclear hormone receptors (38).

CaMKIIγ phosphorylation of RARα enhances its interaction with transcriptional corepressors: The multicomponent RAR transcription complex may consist of at least 30–40 proteins, and multiple substrates may be involved in the CaMKII-mediated downregulation of RAR activity. Nevertheless, our experimental observations indicate that the RARs themselves appear to be a critical substrate of CaMKIIγ. Indeed, we have identified a target site within RARα (T209,T210) that is directly phosphorylated by CaMKIIγ both in vitro and in vivo. This site is evolutionarily conserved in all of the different RARα, RARβ, and RARγ isoforms from multiple different species and lies within the “linker” region of RAR that separates the DNA-binding and AF-2 domains of RAR. We observe that CaMKIIγ-mediated phosphorylation at RARα T209,T210 enhances the RARα interaction with the N-CoR transcriptional corepressor (Figure 5), which likely leads to reduced RAR transcriptional activity. This CaMKII site likely does not make direct contact with N-CoR, since corepressor interaction with RARα appears to map more C-terminal to this site (39, 40). Rather, phosphorylation of this CaMKII site within the RARα linker region likely results in a steric change in RARα that enhances its interaction with N-CoR. The direct binding of N-CoR to the RAR is a critical mediator of RAR transcriptional repression, since N-CoR acts as a scaffold protein to recruit different transcriptional repressors including the histone deacetylases to RA-responsive promoters (8). Thus this CaMKIIγ-mediated enhancement of the RARα/N-CoR interaction likely explains the CaMKIIγ-mediated inhibition of RARα transcriptional activity.

Pharmacological CaMK inhibitors trigger myeloid leukemia cell differentiation: Particularly compelling evidence for the physiological importance of the CaMKII-mediated regulation of RAR activity is our experimental observation that KN62, a pharmacological inhibitor of the CaMKs, enhances both RAR transcriptional activity (Figure 1B) and the differentiation of certain myeloid leukemia cell lines (Figure 7). Acute myelogenous leukemia is a heterogeneous disease, and successful therapy with RA has been generally confined to those leukemias harboring RARα chromosome translocations. Indeed, our preliminary studies indicate that KN62 does not induce the differentiation of myeloid leukemia cell lines such as K-562, KCL-22, and Kasumi that do not harbor such RARα chromosome translocations and are generally unresponsive to RA (not shown). Moreover, in contrast with WT HL60, we do not observe any KN62-mediated differentiation of HL60R cells, which harbor a mutated RARα, or of NB4 subclones that are unresponsive to ATRA. These initial observations suggest...
that any therapeutic application of KN62 may be limited to those myeloid leukemias that display at least some sensitivity to the differentiative effects of RA.

How does KN62 trigger the differentiation of certain myeloid leukemia cells? Since KN62 inhibits the binding of Ca²⁺/CaM to the CaMks, this compound can potentially inhibit the multiple different CaMks, which are all activated by Ca²⁺/CaM (41). However, our data strongly suggest that CaMKII is a critical KN62 target for HL60 differentiation, since CaMKII is the predominant CaM expressed in myeloid cell lines (Figure 1, C and D), CaMKII inhibits RAR transcriptional activity (Figure 2A), and RNA interference–mediated inhibition of CaMKII enhances both RA-induced RAR activity and RA-induced myeloid differentiation (Figure 2, D and E). Moreover, in HL60 cells, which harbor a constitutively activated (autophosphorylated) CaMKIIγ, KN62 inhibits this CaMKIIγ autophosphorylation (Figure 7J). Indeed, our studies would suggest that pharmacological or peptide inhibitors that are selective for CaMKIIγ may be of particular value in the therapy of certain myeloid leukemia cells.

Methods

Antibodies and chemical reagents. Antibodies against RARα, β-tubulin, CaMKIIα, CaMKIIβ, CaMKIIδ, CaMKIIε, and CaMKIIz as well as phospho-specific antibodies against CaMKII were all purchased from Santa Cruz Biotechnology Inc. Antibodies against N-CoR and SMRT were from Upstate Biotechnology. CaMKIV antibody was from BD Biosciences. Anti-FLAG antibody was from Sigma-Aldrich and anti-HA antibody from Novabiochem. Quantitation of CD11b surface antigen expression was performed with a fluorescence-activated cell sorter (FACS) with PE-conjugated anti-CD11b antibody from BD Biosciences. KN62, KN93, and ionomycin were obtained from Calbiochem. ATRA and calmodulin agarose were from Novabiochem.

Protein extracts, Western blotting, and coimmunoprecipitations. Western blotting and coimmunoprecipitations were performed as previously detailed (42).

CaMK assays. To assess the activity of immunoprecipitated CaMks, the immunoprecipitates were incubated for 8 minutes at 30°C in 40 μl of a buffer containing 50 mM HEPES, pH 7.5, 10 mM magnesium acetate, 20 mM β-glycerol phosphate, 0.5 mM DTT, 50 mM cold ATP, 1 μM protein kinase A inhibitor (Sigma-Aldrich), 1 μM protein kinase C inhibitor (Sigma-Aldrich), and 10 μCi of [γ-32P]ATP (3,000 Ci/mmol) (PerkinElmer Life and Analytical Sciences). For assessment of Ca²⁺/CaM-independent activity the above buffer contained 1 mM EGTA. For assessment of Ca²⁺/CaM-dependent activity the buffer contained 1 mM CaCl₂, 1 μM calmodulin (Calbiochem) without EGTA. The peptide substrate included autocomtide-2 (KKALRRQET*VDAL) (43) to assess CaMKII activity, syntide-2 (PLARTLS*VAGLPGBK) (44) to assess CaMKI, and the aa 345–358 fragment of CaMKIIβ (KSDGGVKKRSS*SS) to assess CaMKIV activity. After incubation the phosphorylated substrate was separated from the residual [γ-32P]ATP with the use of P81 phosphocellulose paper and quantitated with a scintillation counter. For the in vitro kinase assays, either in vitro-translated or immunoprecipitated CaMks were incubated with bacterially purified GST-RARα fusion proteins attached to glutathione beads. The beads were washed, boiled, and then subjected to SDS-PAGE.

ChIP. HL60 cells incubated for various periods of time after ATRA treatment (1 μM) were harvested and cross-linked with the use of 1% formaldehyde for 15 minutes at 37°C and incubated another 15 minutes at room temperature with 125 mM glycine. Cells then were rinsed and washed 3 times with cold PBS. The cell pellets were resuspended in 0.2–2 ml of SDS lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.1) with protease inhibitors (1 μg/ml leupeptin, 1 μg/ml aprotinin, 1 mM PMSF, 1 μg/ml pepstatin A, 10 μM antipain, 10 μM bestatin, 1 mM NaF, and 1x phosphatase inhibitor cocktail I/II) and sonicated 3 times at 20 seconds each to reduce DNA length to 200–800 bp. Supernatants were collected by centrifugation for 10 minutes at 10,000 g at 4°C and diluted in 10-fold dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl, pH 8.1, 167 mM NaCl) with the above protease inhibitors. The diluted cell extracts (500–1,000 μg) were incubated with 4 μg or 10 μl antibodies overnight at 4°C followed by 50 μl of salmon sperm DNA/protein A/G-Sepharose beads for 4 hours. Pellet beads were washed sequentially for 5 minutes each in buffer A (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1, 150 mM NaCl), buffer B (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1, 500 mM NaCl), buffer C (250 mM LiCl, 1% NP-40, 1% deoxycholate, 1 mM EDTA, 10 mM Tris-HCl, pH 8.1), and TE buffer. Immune complexes were eluted with 1% SDS, 0.1 M NaHCO₃ and incubated at 65°C overnight to reverse the cross-linking. DNA fragments were isolated with a QIAquick spin column (QIAGEN). PCR was performed for 20–30 cycles. PCR primers flanking the C/EBPα promoter were used for the “RARE ChIP” include 5′-AAGAGAGGAGGATGACTAC-3′ (forward) and 5′-ACCTGCTCTTGAAGG- CACCTCCT-3′ (reverse). Primers used for the upstream control region “distal ChIP” include 5′-CCTGACATCCAGACCCTGCTC-3′ (forward) and 5′-AGTACCTGTCATGTCG-3′ (reverse).

CaMK RNA interference constructs. Separate cassettes harboring the U6 (–332 to +1) or H1 (–345 to +1) promoters were inserted into the EcoRI-BamHI cloning site of the LXSX retrovector (M28248). These cassettes harbor sites into which synthetic oligonucleotides corresponding to sense and antisense strands of human CaMKIIγ separated by a 9-bp spacer harboring an Xhol site (5′-TTTCGAGAGA-3′) were cloned. Three different sequences from the human CaMKIIγ coding region (NM_172172) were chosen (453–473, 618–639, and 790–812) and arbitrarily labeled A, B, and C. These sequences were cloned into the above vectors, which were then transfected into the PT67 packaging cell line, and the retroviral particles were used to infect HL60 cells as previously detailed (36). G418-resistant HL60 clones were isolated and screened by Western blotting to compare CaMKII expression levels. Those HL60 subclones exhibiting reduced CaMKII expression (i.e., A6, B2, B5, B6, C2, and C18) were further analyzed for immunoprecipitable CaMKII activity, RA transcriptional activity, and differentiative response to RA.

Transient transfections and luciferase assays. Murine PT67 fibroblasts were transfected with the use of calcium phosphate precipitation. All hematopoietic cell lines were transiently transfected by electroporation as previously detailed (45). In the transient transfections the LXSX vector (M28248) served as the expression vector for the WT and site-directed mutagenized CaMKII and RARα coding region cDNAs. Human cDNA homologous to the coding region of rat CaMKIIα (NM_007999) was obtained by RT-PCR from HL60 RNA and cloned into the LXSX vector. The RA-responsive luciferase reporter harbors the RARE from the RARβ2 promoter, as previously detailed (42). The PON583 plasmid, a β-gal reporter driven by the β-actin promoter, was used as an internal control to determine transfection efficiency for calculation of relative luciferase activity.

Mammalian 2-hybrid constructs. The luciferase reporter harboring 5 Gal4-binding sites was previously described (45). The complete coding sequence of the human RARα (NM_000964) was amplified by PCR and cloned into the PEG-VP16 vector (46). The N-CoR C-terminal receptor–interacting domain (amino acids 1,946–2,453) was amplified by PCR and cloned into the EcoRI site of the GAL4-bd (1–147) expression vector, pSG424 (47).

Site-directed mutagenesis. Site-directed mutagenesis on the different CaMK and RARα or VP16-RARα constructs was performed with the QuikChange procedure (Stratagene).

GST pulldowns. GST fusion proteins were purified from bacteria with the use of glutathione-4B Sepharose (Amersham Biosciences).
14S-labeled proteins were translated in vitro with a T7 Quick Coupled transcription/translation system (Promega). The products were incubated overnight at 4°C with the GST fusion proteins attached to the glutathione Sepharose beads. The beads were then washed, boiled, and subjected to SDS-PAGE.

Acknowledgments

This work was supported by NIH HL54881, NIH RO1 CA118971, and the Leukemia and Lymphoma Society (grant 6144). We thank Anthony Means for providing CaMK cDNA vectors and Sara Hook, Bob Eisenman, and Jon Cooper for reading this manuscript and providing helpful comments.

Received for publication October 27, 2006, and accepted in revised form February 13, 2007.

Address correspondence to: Steven J. Collins, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, Washington 98109, USA. Phone: (206) 667-4389; Fax: (206) 667-6523; E-mail: scollins@fhcrc.org.

13. He, L.-Z., et al. 1998. Distinct interactions of PML-