Abstract

Retinoic acid receptors (RARs) are members of the nuclear hormone receptor family and regulate the proliferation and differentiation of multiple different cell types, including promyelocytic leukemia cells. Here we describe a biochemical/functional interaction between the Ca2+/calmodulin–dependent protein kinases (CaMKs) and RARs that modulates the differentiation of myeloid leukemia cells. We observe that CaMKIIγ is the CaMK that is predominantly expressed in myeloid cells. CaMKII inhibits RAR transcriptional activity, and this enzyme directly interacts with RAR through a CaMKII LxxLL binding motif. CaMKIIγ phosphorylates RARα both in vitro and in vivo, and this phosphorylation inhibits RARα activity by enhancing its interaction with transcriptional corepressors. In myeloid cell lines, CaMKIIγ localizes to RAR target sites within myeloid gene promoters but dissociates from the promoter upon retinoic acid–induced myeloid cell differentiation. KN62, a pharmacological inhibitor of the CaMKs, enhances the terminal differentiation of myeloid leukemia cell lines, and this is associated with a reduction in activated (autophosphorylated) CaMKII in the terminally differentiating cells. These observations reveal a significant cross-talk between Ca2+ and retinoic acid signaling pathways that regulates the differentiation of myeloid leukemia cells, and they suggest that CaMKIIγ may provide a new therapeutic target for the treatment of certain human myeloid leukemias.

Authors

Jutong Si, LeMoyne Mueller, Steven J. Collins

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement