Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Aberrant activation of AMP-activated protein kinase remodels metabolic network in favor of cardiac glycogen storage
Ivan Luptak, … , James A. Balschi, Rong Tian
Ivan Luptak, … , James A. Balschi, Rong Tian
Published May 1, 2007
Citation Information: J Clin Invest. 2007;117(5):1432-1439. https://doi.org/10.1172/JCI30658.
View: Text | PDF
Research Article

Aberrant activation of AMP-activated protein kinase remodels metabolic network in favor of cardiac glycogen storage

  • Text
  • PDF
Abstract

AMP-activated protein kinase (AMPK) responds to impaired cellular energy status by stimulating substrate metabolism for ATP generation. Mutation of the γ2 regulatory subunit of AMPK in humans renders the kinase insensitive to energy status and causes glycogen storage cardiomyopathy via unknown mechanisms. Using transgenic mice expressing one of the mutant γ2 subunits (N488I) in the heart, we found that aberrant high activity of AMPK in the absence of energy deficit caused extensive remodeling of the substrate metabolism pathways to accommodate increases in both glucose uptake and fatty acid oxidation in the hearts of γ2 mutant mice via distinct, yet synergistic mechanisms resulting in selective fuel storage as glycogen. Increased glucose entry in the γ2 mutant mouse hearts was directed through the remodeled metabolic network toward glycogen synthesis and, at a substantially higher glycogen level, recycled through the glycogen pool to enter glycolysis. Thus, the metabolic consequences of chronic activation of AMPK in the absence of energy deficiency is distinct from those previously reported during stress conditions. These findings are of particular importance in considering AMPK as a target for the treatment of metabolic diseases.

Authors

Ivan Luptak, Mei Shen, Huamei He, Michael F. Hirshman, Nicolas Musi, Laurie J. Goodyear, Jie Yan, Hiroko Wakimoto, Hiroyuki Morita, Michael Arad, Christine E. Seidman, J.G. Seidman, Joanne S. Ingwall, James A. Balschi, Rong Tian

×

Usage data is cumulative from August 2021 through August 2022.

Usage JCI PMC
Text version 370 74
PDF 47 25
Figure 107 2
Citation downloads 4 0
Totals 528 101
Total Views 629
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts