Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Aberrant activation of AMP-activated protein kinase remodels metabolic network in favor of cardiac glycogen storage
Ivan Luptak, … , James A. Balschi, Rong Tian
Ivan Luptak, … , James A. Balschi, Rong Tian
Published May 1, 2007
Citation Information: J Clin Invest. 2007;117(5):1432-1439. https://doi.org/10.1172/JCI30658.
View: Text | PDF
Research Article

Aberrant activation of AMP-activated protein kinase remodels metabolic network in favor of cardiac glycogen storage

  • Text
  • PDF
Abstract

AMP-activated protein kinase (AMPK) responds to impaired cellular energy status by stimulating substrate metabolism for ATP generation. Mutation of the γ2 regulatory subunit of AMPK in humans renders the kinase insensitive to energy status and causes glycogen storage cardiomyopathy via unknown mechanisms. Using transgenic mice expressing one of the mutant γ2 subunits (N488I) in the heart, we found that aberrant high activity of AMPK in the absence of energy deficit caused extensive remodeling of the substrate metabolism pathways to accommodate increases in both glucose uptake and fatty acid oxidation in the hearts of γ2 mutant mice via distinct, yet synergistic mechanisms resulting in selective fuel storage as glycogen. Increased glucose entry in the γ2 mutant mouse hearts was directed through the remodeled metabolic network toward glycogen synthesis and, at a substantially higher glycogen level, recycled through the glycogen pool to enter glycolysis. Thus, the metabolic consequences of chronic activation of AMPK in the absence of energy deficiency is distinct from those previously reported during stress conditions. These findings are of particular importance in considering AMPK as a target for the treatment of metabolic diseases.

Authors

Ivan Luptak, Mei Shen, Huamei He, Michael F. Hirshman, Nicolas Musi, Laurie J. Goodyear, Jie Yan, Hiroko Wakimoto, Hiroyuki Morita, Michael Arad, Christine E. Seidman, J.G. Seidman, Joanne S. Ingwall, James A. Balschi, Rong Tian

×

Figure 6

Schematic summary of the remodeled substrate metabolism network leading to glycogen storage phenotype in the γ2 mutant mouse heart.

Options: View larger image (or click on image) Download as PowerPoint
Schematic summary of the remodeled substrate metabolism network leading ...
GS/GS-p, the level of GS expression and GS phosphorylation.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts