Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
A proximal activator of transcription in epithelial-mesenchymal transition
Christo D. Venkov, … , Frank J. Rauscher III, Eric G. Neilson
Christo D. Venkov, … , Frank J. Rauscher III, Eric G. Neilson
Published February 1, 2007
Citation Information: J Clin Invest. 2007;117(2):482-491. https://doi.org/10.1172/JCI29544.
View: Text | PDF
Research Article

A proximal activator of transcription in epithelial-mesenchymal transition

  • Text
  • PDF
Abstract

Epithelial-mesenchymal transition (EMT) is an important mechanism for phenotypic conversion in normal development and disease states such as tissue fibrosis and metastasis. While this conversion of epithelia is under tight transcriptional control, few of the key transcriptional proteins are known. Fibroblasts produced by EMT express a gene encoding fibroblast-specific protein 1 (FSP1), which is regulated by a proximal cis-acting promoter element called fibroblast transcription site–1 (FTS-1). In mass spectrometry, chromatin immunoprecipitation, and siRNA studies, we used FTS-1 as a unique probe for mediators of EMT and identified a complex of 2 proteins, CArG box–binding factor–A (CBF-A) and KRAB-associated protein 1 (KAP-1), that bind this site. Epithelial cells engineered to conditionally express recombinant CBF-A (rCBF-A) activate the transcription of FSP1 and undergo EMT. The FTS-1 response element also exists in the promoters modulating a broader EMT transcriptome, including Twist, and Snail, as well as E-cadherin, β-catenin, ZO 1, vimentin, α1(I) collagen, and α–smooth muscle actin, and the induction of rCBF-A appropriately alters their expression as well. We believe formation of the CBF-A/KAP-1/FTS-1 complex is sufficient for the induction of FSP1 and a novel proximal activator of EMT.

Authors

Christo D. Venkov, Andrew J. Link, Jennifer L. Jennings, David Plieth, Tsutomu Inoue, Kojiro Nagai, Carol Xu, Yoana N. Dimitrova, Frank J. Rauscher III, Eric G. Neilson

×

Figure 6

This schematic, based on assumptions derived from the current data, shows CBF-A as a proximal transcription factor induced by outside-inside signaling.

Options: View larger image (or click on image) Download as PowerPoint
This schematic, based on assumptions derived from the current data, show...
Migration to the nucleus causes the formation of CBF-A/KAP-1/FTS-1 binding complexes, which can activate other known transcriptional regulators of EMT, including Snail, Twist, HMGA2, LEF-1, and Ets-1. These are not the only EMT-related genes that are activated by CBF-A/KAP-1/FTS-1 binding complexes (see Table 2), but they could account for the activation of most of the known and well-studied transcriptional regulators of EMT. ILK, integrin-linked kinase.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts