Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Ontogeny of adrenal steroid biosynthesis: why girls will be girls
Perrin C. White
Perrin C. White
Published April 3, 2006
Citation Information: J Clin Invest. 2006;116(4):872-874. https://doi.org/10.1172/JCI28296.
View: Text | PDF
Commentary

Ontogeny of adrenal steroid biosynthesis: why girls will be girls

  • Text
  • PDF
Abstract

Male and female external genitalia appear identical early in gestation. Testosterone exposure at 8–12 weeks’ gestation causes male differentiation. Female fetuses virilize if their adrenals secrete excessive levels of androgens, as occurs in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. This can be ameliorated by administering dexamethasone to the mother. A study by Goto et al. in this issue of the JCI provides a rationale for this treatment by demonstrating that the fetal hypothalamic-pituitary-adrenal axis is fully functional when the genitalia differentiate (see the related article beginning on page 953). Dexamethasone suppresses this axis, reducing abnormal secretion of adrenal androgens. Their results also show that cortisol synthesis by the fetal adrenal decreases after this period, allowing the adrenal to secrete high levels of dehydroepiandrosterone, an androgen precursor. However, this does not virilize female fetuses because androgens are aromatized to estrogens in the placenta. Thus normal sexual differentiation requires exquisite timing of fetal cortisol and androgen secretion versus placental capacity for aromatization.

Authors

Perrin C. White

×

Usage data is cumulative from August 2021 through August 2022.

Usage JCI PMC
Text version 401 42
PDF 40 9
Figure 78 2
Citation downloads 4 0
Totals 523 53
Total Views 576
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts