Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function
Marco Idzko, … , Henk C. Hoogsteden, Bart N. Lambrecht
Marco Idzko, … , Henk C. Hoogsteden, Bart N. Lambrecht
Published November 1, 2006
Citation Information: J Clin Invest. 2006;116(11):2935-2944. https://doi.org/10.1172/JCI28295.
View: Text | PDF
Research Article Pulmonology

Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function

  • Text
  • PDF
Abstract

Airway DCs play a crucial role in the pathogenesis of allergic asthma, and interfering with their function could constitute a novel form of therapy. The sphingosine 1–phosphate receptor agonist FTY720 is an oral immunosuppressant that retains lymphocytes in lymph nodes and spleen, thus preventing lymphocyte migration to inflammatory sites. The accompanying lymphopenia could be a serious side effect that would preclude the use of FTY720 as an antiasthmatic drug. Here we show in a murine asthma model that local application of FTY720 via inhalation prior to or during ongoing allergen challenge suppresses Th2-dependent eosinophilic airway inflammation and bronchial hyperresponsiveness without causing lymphopenia and T cell retention in the lymph nodes. Effectiveness of local treatment was achieved by inhibition of the migration of lung DCs to the mediastinal lymph nodes, which in turn inhibited the formation of allergen-specific Th2 cells in lymph nodes. Also, FTY720-treated DCs were intrinsically less potent in activating naive and effector Th2 cells due to a reduced capacity to form stable interactions with T cells and thus to form an immunological synapse. These data support the concept that targeting the function of airway DCs with locally acting drugs is a powerful new strategy in the treatment of asthma.

Authors

Marco Idzko, Hamida Hammad, Menno van Nimwegen, Mirjam Kool, Tobias Müller, Thomas Soullié, Monique A.M. Willart, Daniëlle Hijdra, Henk C. Hoogsteden, Bart N. Lambrecht

×

Figure 9

Effect of in vitro FTY720 treatment of mDCs on capacity to form stable interactions with antigen-specific T cells.

Options: View larger image (or click on image) Download as PowerPoint
Effect of in vitro FTY720 treatment of mDCs on capacity to form stable i...
DCs were pulsed or not with OVA protein or peptide (OVA323–339) in the presence or absence of FTY720. Live DCs were labeled with anti-MHCII (green) and imaged by confocal microscopy. (A) Contact duration between MHCII-labeled unpulsed or OVA-pulsed DCs treated or not with FTY720 and TCR-labeled OVA-specific naive T cells was measured in vitro using time-lapse confocal microscopy. Data are shown as mean ± SEM. *P < 0.05. (B) Time-lapse microscopy images showing TCR-labeled OVA-specific TCR Tg T cells (anti-vα2l; red) interacting with MHCII-labeled DCs (M5/114-FITC; green) show concentration of TCR at the site of contact with OVA-bearing DCs, leading to a synapse (yellow).

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts