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Identification	of	specific	gene	expression	signatures	characteristic	of	oncogenic	pathways	is	an	important	step	
toward	molecular	classification	of	human	malignancies.	Aberrant	activation	of	the	Met	signaling	pathway	is	
frequently	associated	with	tumor	progression	and	metastasis.	In	this	study,	we	defined	the	Met-dependent	
gene	expression	signature	using	global	gene	expression	profiling	of	WT	and	Met-deficient	primary	mouse	
hepatocytes.	Newly	identified	transcriptional	targets	of	the	Met	pathway	included	genes	involved	in	the	regula-
tion	of	oxidative	stress	responses	as	well	as	cell	motility,	cytoskeletal	organization,	and	angiogenesis.	To	assess	
the	importance	of	a Met-regulated	gene	expression	signature,	a	comparative	functional	genomic	approach	
was	applied	to	242	human	hepatocellular	carcinomas	(HCCs)	and	7	metastatic	liver	lesions.	Cluster	analysis	
revealed	that	a	subset	of	human	HCCs	and	all	liver	metastases	shared	the	Met-induced expression	signature.	
Furthermore,	the	presence	of	the	Met	signature	showed	significant	correlation	with	increased	vascular	inva-
sion	rate	and	microvessel	density	as	well	as	with	decreased	mean	survival	time	of	HCC	patients.	We	conclude	
that	the	genetically	defined	gene	expression	signatures	in	combination	with	comparative	functional	genom-
ics	constitute	an	attractive	paradigm	for	defining	both	the	function	of	oncogenic	pathways	and	the	clinically	
relevant	subgroups	of	human	cancers.

Introduction
The application of microarray-based gene expression profiling 
in cancer research has provided mechanistic insights into the 
oncogenic process and contributed to the molecular classifica-
tion of malignancies (1). Transcription profiles from hundreds 
of microarray experiments have recently been integrated into 
large, multiplex data sets (2), and various reverse engineering 
methods have been used to decipher functionally significant 
gene networks (3). An important contribution from these stud-
ies is the identification of well-defined, coregulated transcrip-
tional modules that are beginning to provide a molecular expla-
nation of disease pathogenesis and consequently may hold great 
therapeutic significance (4).

An alternative approach to identifying relevant molecular events 
of malignant transformation and tumor progression is to char-
acterize both known and suspected oncogenic pathways and to 
establish their specific gene expression signatures (5). Although 
the presence of these expression signatures is frequently obscured 
by the etiological complexity of the human tumors, they could 
be revealed using in vitro experimental systems and genetically 
modified animal models, in which the number of experimental 
variables could be rigorously controlled (6). Cross-comparison of 

the well-defined expression signatures with transcription profiles 
of human tumors may also improve the current understanding of 
the oncogenic process.

The HGF/Met signaling pathway regulates multiple cellular 
functions, including cell proliferation, motility, differentiation, 
tubulogenesis, and angiogenesis (7, 8). The importance of intact 
HGF/Met signaling during embryogenesis is clearly demonstrated 
in mouse models, where homozygous deletion of either Hgf (9) or 
Met (10) is embryonic lethal. HGF/Met signaling also affects liver 
biology at several levels (11). In Hg f KO mice the hepatic plate is 
underdeveloped (9), while in adult livers Met activation alleviates 
chemically induced fibrosis (12) and protects hepatocytes from 
CD95-mediated apoptosis (13, 14). Increased HGF levels after par-
tial hepatectomy promote liver regeneration by enhancing prolif-
eration of mature hepatocytes and hepatic progenitor cells (15).

In addition to its physiological functions, the protooncogene 
MET is a master regulator of metastasis formation, tumor inva-
sion, and angiogenesis (8, 16). In various types of human carci-
nomas, including papillary renal cancer and gastric and small cell 
lung cancer, activating mutation, amplification, and overexpres-
sion of the MET gene have been associated with “metastatic phe-
notype” and poor prognosis (17). Consequently, Met is regarded 
as a promising molecular target for antimetastasis therapies (18). 
In human hepatocellular carcinoma (HCC), overexpression and 
mutation of the MET gene are associated with intrahepatic metas-
tases and vascular invasion, 2 of the most important clinical find-
ings determining disease outcome (17, 19).

In the present study we	have adopted a global genomic approach 
to comprehensively define the effect of HGF/Met signaling on the 
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hepatocyte transcriptome.	First, we assessed the HGF-induced 
gene expression patterns in primary hepatocytes isolated from 
Met KO (20) and WT mice and identified several potential Met 
target genes as well as novel regulatory functions of Met. We next 
applied comparative functional genomic analysis to evaluate the 
importance of the Met-regulated gene expression signature in the 
pathogenesis of human HCC. A study of 2 independent human 
data sets revealed that the Met-regulated gene expression signa-
ture characterizes a subgroup of HCC with aggressive phenotypic 
traits and poor prognosis.

Results
Characterization of the Met-regulated gene expression signature in primary 
hepatocytes. To identify HGF/Met–regulated genes, we performed 
expression microarray analysis after inducible activation of Met 
receptor in primary cultures of hepatocytes established from 
WT and Met conditional KO mice. Total RNA was isolated from 
untreated hepatocyte cultures as well as from cultures treated with 
50 ng/ml of HGF for 0.5, 2, 12, or 24 hours. RNA collected from 
these experiments was converted to fluorescently labeled cDNA 
and used for hybridizations of oligonucleotide microarrays con-

taining 21,997 features representing 19,140 unique mouse genes. 
After normalization of the data, 13,477 features with a sufficient 
number of valid expression values were selected for further analy-
sis as described in Methods.

To define the set of HGF/Met–regulated genes, we compared 
experiments using a multivariate permutation t test at each time 
point. In total, 730 unique features showed significant (P < 0.001) 
and at least 1.5-fold expression differences between the 2 geno-
types. As the only variable at these comparisons was the presence or 
absence of intact Met receptor, we could conclude that the expres-
sion of significant genes was regulated in a Met-dependent man-
ner. The diagram in Figure 1 gives a summary of the data analysis 
strategy applied to select the significant HGF-regulated genes.

The set of differentially expressed genes could be further divid-
ed into 2 major categories. The first category was represented by 
genes that showed permanent transcriptional changes in Met KO 
primary hepatocytes. Thus, expression of 60 genes was found to 
be altered in Met KO cultures at the 0 time point (after overnight 
incubation), and 57 of them remained differentially expressed dur-
ing 24 hours of HGF exposure as compared with control cultures  
(P < 0.005) (Figure 2A). The presence of the permanent gene expres-

Figure 1
Diagram of data analysis. HGF/Met–regulated 
genes were identified by comparison of expres-
sion profiles from WT and Met KO hepatocytes. 
Expression of common orthologous HGF target 
genes was also assessed in 2 independent HCC 
data sets. The classifier was constructed from 
cross-species–conserved HGF/Met target genes to 
predict patient survival. Results were validated with 
multiple prediction algorithms on separate training 
and validation sets of HCC samples. FDR, false 
discovery rate.
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sion changes implies that in the absence of Met signaling, KO cells 
undergo a genotype-specific transcriptional adaptation.

As expected, the majority of significant genes (672/730) were 
only detected in control hepatocytes after HGF treatment, since 
Met KO cells did not exhibit a specific response to HGF. The genes 
in this second category could be further separated on the basis of 
their temporal expression patterns. Up- or downregulated genes 
were divided into early and late target gene clusters, as they dis-
played maximal expression differences between the genotypes after 
a short-term (a half hour or 2 hours) or long-term (12 or 24 hours) 
HGF treatment. The heat map image created with the mean-cen-
tered	log2-transformed expression ratios of the significant Met-
regulated genes clearly demonstrates the presence of clusters with 

the distinctive temporal regulation and the reproducibility of the 
data in replicate experiments (Figure 2, B and C).

To validate the specificity of the Met targets, we also compared 
gene expression between HGF-treated and untreated control pri-
mary hepatocytes as well as between control cells treated at con-
secutive time points. This approach yielded 1,383 differentially 
expressed genes using the same selection criteria as in the previous 
comparisons. Notably, some of these genes did not show significant 
expression differences between the WT and KO hepatocytes, as they 
probably reflect common adaptive responses to the culture condi-
tions with time. However, 353 from the previously determined Met 
targets were also identified with both selection strategies. In most 
cases, the timing and magnitude of the most significant responses 

Figure 2
Gene expression patterns of HGF-regulated genes in primary mouse hepatocytes. Gene expression ratios from duplicated dye-swapped hybrid-
izations per sample were averaged before generation of the heat map. (A and B) Two matrices were constructed from normalized, log2-trans-
formed expression ratios of genes with permanent (A) and HGF-induced (B) expression differences between the WT and Met KO cells. Red and 
blue columns at the top represent triplicate WT and Met KO samples, respectively, from the consecutive treatment points (0, 0.5, 2, 12, and 24 
hours). Rows represent individual genes. (C) HGF/Met–dependent genes also formed clusters with different temporal induction patterns. Bar 
graphs show the mean expression differences ± SEM between the WT and Met KO samples in 6 gene clusters with expression peaks at early 
(C1, C4), late (C3, C6), or both early and late (C2, C5) HGF treatment points. Other gene clusters displayed permanently higher expression 
levels either in the WT or in the Met KO samples.
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overlapped in the horizontal and vertical comparisons, indicating 
that the majority of the differentially expressed genes represented 
a specific response to HGF induction.

Expression differences observed with microarray profiling were 
verified by quantitative RT-PCR analysis. Good correlation with 
microarray data was found for all 10 randomly selected signifi-
cant genes (Figure 3).

Functional analysis of	target genes confirms the role of Met as an essen-
tial regulator of cell motility. In accordance with previous studies, we 
detected significant changes in the expression levels of known Met 
target genes, including Hmga1, Spp1 (21), Itgβ1 (22), Egr1 (23), and 
Cldn2 (24). Consecutive functional analysis of the Met target genes 
allowed a more detailed insight into the cellular machinery asso-
ciated with the Met-induced phenotype. A significant number of 
genes induced at 12 and 24 hours were involved in cell motility 
(Cxcl10, Capn2, Spp1, Fn1), angiogenesis (Vcam1, Anptl4, Ctgf, Neo1, 
Robo1), cell adhesion (Cldn2, Tjp3, Cdh17), and cytoskeletal orga-
nization (Hspa5, Arpc1b, Cap1, Nck2, Tpm2, Msn, Mid1, Vim, Dnm3, 
Tubb3, Tubb6, Krt2-8, Tuba1). Some of these significant genes, 
arranged by their postulated functions, are listed in Table 1. We 
also observed an early induction of several transcription factors 
(Hmga1, Egr1, JunB, MafF) after HGF treatment. A number of these 
immediate early targets of the Met pathway could regulate the 
expression of other differentially expressed genes at the later treat-
ment points. This type of multistep regulation is well documented 
in the case of the HGF-Egr1-fibronectin (Fn) sequence (25).

HGF treatment had an especially prominent effect on the expres-
sion of genes involved in actin cytoskeleton organization and 
lamellipodium formation. Thus, HGF significantly upregulated 
Arpc1b and Nck2, a member and an important activator, respec-
tively, of the Arp2/3 complex, which is involved in the regulation 

of the actin polymerization, particularly at the leading edge of 
moving cells (26). Furthermore, genes such as the Ras-responsive 
adenylyl cyclase–associated protein (Cap1), a key regulator of actin 
and cofilin turnover (27), as well as moesin (Msn), which con-
nects actin filaments to the cell membrane (28), were induced by 
HGF treatment. Similarly, upregulation of tubulin-α1, -β3, and 
-β6 demonstrated that microtubular elements are transcriptional 
targets of Met signaling. The peak expression of the cell motility–
related genes occurred at 12 and 24 hours coincidently with the 
onset of HGF-induced scattering in hepatocyte cultures. Differen-
tial expression of genes involved in actin cytoskeleton and micro-
tubular organization as well as cell adhesion was consistent with 
the phenotypic differences revealed by immunofluorescence stain-
ing of WT and KO hepatocytes with antibodies against F-actin, 
α-tubulin, and vinculin after 24 hours of HGF treatment (Supple-
mental Figure 1, A–F; supplemental material available online with 
this article; doi:10.1172/JCI27236DS1).

We also found that osteopontin (Spp1), a secreted glycoprotein, 
was upregulated by HGF in primary hepatocytes, in agreement 
with published data (21). Previously, CD44v6, a surface receptor for 
osteopontin, was also identified as a Met target gene (23). Although 
CD44 was not differentially expressed in our model, we detected a 
concomitant induction of several integrin family members, includ-
ing integrin-αV (ItgαV), integrin-α3 (Itgα3), and integrin-β1 (Itgβ1) 
(29). Interestingly, αvβ3 integrin binding to osteopontin forms a 
complex that facilitates angiogenesis and tumor cell migration 
(30). Thus our data provide genetic evidence that transcriptional 
induction of genes controlling migratory and angiogenesis pro-
grams represents an essential part of Met signaling.

Expression profiling reveals a novel regulatory function of the Met path-
way in oxidative stress response. Among the most striking observa-

Figure 3
Comparison of gene expression patterns 
of selected Met-regulated genes from 
microarray and real-time PCR experiments. 
Gene expression levels in real-time PCR 
experiments were normalized to β2-micro-
globulin expression, and the average expres-
sion ratios between WT control and Met KO 
hepatocytes were calculated from triplicate 
experiments at the different treatment points. 
Each bar represents the log2-transformed 
mean expression ratios ± SEM.



research article

1586	 The	Journal	of	Clinical	Investigation   http://www.jci.org   Volume 116   Number 6   June 2006

Table 1
Functional classification of selected HGF/Met target genes

Gene symbol UniGene ID Temporal regulation WT control vs. Met KO WT control vs. WT control

   Time point Fold difference Time point Fold difference
Nuclear proteins 
Ankrd1 Mm.10279 Persistent 0 h 0.39 0.5–2 h 0.59
Cebpa Mm.349667 Late down 24 h 0.57 0–24 h 0.47
Chd1 Mm.8137 Early and late up 12 h 3.27 0–12 h 1.62
Ctcf Mm.269474 Late up 12 h 2.10 2–12 h 1.68
Egr1 Mm.181959 Early up 2 h 2.64 0–0.5 h 1.97
Foxp1 Mm.234965 Late up 12 h 2.11 2–12 h 2.39
Gsh2 Mm.218752 Persistent 12 h 0.54 0.5–2 h 0.86
Hmga1 Mm.4438 Early and late up 24 h 3.28 2–12 h 2.11
Kpnb1 Mm.251013 Late up 12 h 1.51 2–12 h 2.19
MafF Mm.86646 Early up 2 h 3.36 0–2 h 2.38
Ncl Mm.154378 Early up 2 h 1.65 0.5–2 h 2.22
Nfe2l2A Mm.1025 Late down 24 h 0.13 2–12 h 0.62
Nfyb Mm.245998 Late down 24 h 0.60 2–12 h 0.57
Signal transduction 
Acvr1 Mm.689 Late up 12 h 2.67 0–12 h 3.09
Cai Mm.2442 Early and late up 0.5 h 4.51 2–12 h 3.08
Clic1 Mm.29524 Early and late up 12 h 2.78 0–12 h 2.13
Eif4a2 Mm.260084 Persistent 2 h 2.01 0.5–2 h 1.69
Epha7 Mm.257266 Persistent 12 h 0.66 0–12 h 0.62
G0s2 Mm.3283 Late up 12 h 3.12 2–12 h 3.80
Gpc6 Mm.234129 Early and late down 24 h 0.44 2–12 h 0.43
Hbegf Mm.289681 Early up 0.5 h 2.56 0–0.5 h 2.29
Ngfb Mm.1259 Late up 12 h 2.71 2–12 h 2.55
Pik3r1 Mm.259333 Persistent 12 h 0.38 2–12 h 0.56
Ppp1r10 Mm.29385 Early up 2 h 1.58 0.5–2 h 1.68
Pps Mm.1458 Late up 24 h 2.82 0–24 h 2.04
Rab12 Mm.248313 Late up 24 h 2.48 0–24 h 1.78
Rab19 Mm.123866 Early up 0.5 h 3.69 0–0.5 h 3.34
Rrad Mm.29467 Early and late up 12 h 2.99 0–12 h 2.42
Smurf2 Mm.340955 Late up 12 h 1.68 0–12 h 1.83
Angiogenesis 
Angptl3 Mm.28341 Early and late down 12 h 0.47 2–12 h 0.45
Angptl4 Mm.196189 Early up 0.5 h 1.94 0–0.5 h 1.82
Anxa2 Mm.238343 Late up 12 h 1.54 2–12 h 2.35
Ctgf Mm.1810 Late up 12 h 2.93 0–12 h 5.91
Neo1 Mm.42249 Late up 24 h 2.70 0–24 h 3.65
Robo1 Mm.256956 Early and late down 24 h 0.42 2–12 h 0.58
Rtn4 Mm.192580 Late up 12 h 1.65 2–12 h 1.92
Vcam1 Mm.76649 Early up 0.5 h 1.75 0–0.5 h 1.93
Apoptosis regulation 
Bak1 Mm.2443 Late up 12 h 1.73 2–12 h 1.37
Bnip3 Mm.2159 Persistent 12 h 0.63 2–12 h 0.69
Fas Mm.1626 Early and late down 2 h 0.45 2–12 h 0.38
Moap1 Mm.291222 Early up 24 h 0.61 0–24 h 0.51
Pea15 Mm.544 Early and late up 24 h 2.62 0–24 h 1.93
Tnfrsf23 Mm.290780 Late up 24 h 2.52 0–24 h 2.32
Cell adhesion 
Cdh17 Mm.33402 Late up 24 h 3.98 0–24 h 6.90
Cldn2 Mm.117068 Late down 24 h 0.48 0–24 h 0.56
Tjp3 Mm.27984 Persistent 2 h 0.45 0–2 h 0.77
Cytoskeletal organization and cell motility 
Cxcl2 Mm.4979 Persistent 0.5 h 1.87 0–0.5 h 0.99
Hspa5 Mm.330160 Early and late up 0.5 h 3.97 2–12 h 2.63
Mmp7 Mm.4825 Early and late up 0.5 h 2.06 2–12 h 2.14
Tpm2 Mm.646 Persistent 0.5 h 0.28 0.5–2 h 0.78
Cap1 Mm.8687 Early and late up 2 h 6.30 2–12 h 1.75
Cxcl10 Mm.877 Early up 2 h 1.86 0–2 h 1.39
Mid1 Mm.34441 Early up 2 h 2.28 0.5–2 h 2.46
Vim Mm.268000 Early down 2 h 0.40 0–0.5 h 0.78
Arpc1b Mm.30010 Late up 12 h 1.64 2–12 h 1.73
Capn2 Mm.19306 Late up 12 h 1.69 2–12 h 2.23
Dnm3 Mm.29567 Late up 12 h 1.78 2–12 h 1.70
Msn Mm.138876 Late up 12 h 1.88 0–24 h 2.73
Tubb3 Mm.40068 Early and late up 12 h 2.07 0–12 h 1.74
Tubb6 Mm.181860 Late up 12 h 2.05 0–12 h 1.80
Krt2-8 Mm.358618 Late up 24 h 1.55 0–24 h 1.66
Tuba1 Mm.371591 Late up 24 h 2.41 0–24 h 6.13
Spp1 Mm.288474 Late up 24 h 4.38 0–24 h 2.34
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tions was a profound misregulation of genes involved in anti-
oxidative stress response and glutathione metabolism in Met 
KO hepatocytes. Notably, the transcription factor nuclear factor 
(erythroid-derived 2)–like 2 (Nfe2l2), as well as numerous oxida-
tive stress response genes (Aldh1a1, Aldh1a7, Adh1, Ephx1, Ephx2), 
glutathione-S-transferase isotypes (Gsta1, Gsta3, Gstm6, Mgst1, 
Gstm2, Gstm3), and glutamate-cysteine ligase (Gclc), a regulator of 
glutathione metabolism (31), showed significant overexpression in 
the Met KO hepatocytes. The majority of these genes are well-docu-
mented targets of the basic helix-loop-helix transcription factor 
Nfe2l2 (32), a key regulator of a detoxifying pathway activated by 
increased oxidative or xenobiotic stress in cells. Consistent with 
the microarray data, increased nuclear levels of Nfe2l2 protein 
were detected both in cultured hepatocytes and in intact livers 
from Met KO mice (our unpublished observations). In contrast, 
nuclear dimerization partners and possible antagonists of Nfe2l2, 
the nuclear factors MafF and MafK (33), were more abundant in 
the control hepatocytes. Upregulation of the antioxidant genes 
may reflect the altered redox homeostasis of the KO cells. This was 
also evidenced by decreased oxidized/reduced glutathione ratios 
(Supplemental Figure 1G) as well as by increased staining with the 

oxidation-sensitive probe 2′,7′-dichlorofluorescin (Supplemental 
Figure 1H) in the Met KO hepatocytes.

Comparative functional genomic analysis identifies a subgroup of 
human HCCs with a prominent Met gene expression signature. Based 
on the previous reports (5, 34), we hypothesized that a consider-
able part of the Met gene expression signature may be conserved 
between mouse and human hepatocytes. Therefore, the expres-
sion signature generated using mouse hepatocytes could be 
applied to identify human HCCs with a prominent activation of 
the Met pathway. To test this hypothesis, we directly compared 
the expression profiles of the Met-regulated genes in mouse 
hepatocytes with those from 242 human HCC samples. Based 
on a list of curated homologous UniGene clusters (http://ncbi.
nlm.nih.gov/UniGene/), we collected available human orthologs 
of the 730 Met-dependent mouse genes in 2 human HCC data 
sets. The first set, composed of 139 HCC samples (35, 36), has 
been previously analyzed in our laboratory (LEC [Laboratory of 
Experimental Carcinogenesis, National Cancer Institute] set), 
while the second set, containing expression profiles of 103 HCCs 
and 7 liver metastases, was obtained from the Stanford Univer-
sity microarray database (37).

Integrin-mediated signaling 
Itgav Mm.227 Late up 12 h 1.52 2–12 h 2.38
Itga3 Mm.57035 Late up 12 h 1.57 0–24 h 2.21
Adam24 Mm.67403 Early and late up 12 h 2.79 2–12 h 1.70
Fn1 Mm.193099 Late up 24 h 1.52 0–24 h 2.91
Itgb1 Mm.263396 Late up 24 h 1.54 2–12 h 1.71
Stress response 
Adh1 Mm.2409 Persistent 24 h 0.13 2–12 h 0.49
Aldh1a1A Mm.250866 Persistent 24 h 0.16 2–12 h 0.69
Aldh1a7 Mm.14609 Persistent 24 h 0.21 2–12 h 0.75
Ephx1A Mm.9075 Late down 24 h 0.11 0–24 h 0.39
GclcA Mm.89888 Late down 12 h 0.48 0–12 h 0.58
Gsta1A Mm.335309 Late down 24 h 0.27 0–24 h 0.45
Gsta3A Mm.14719 Early and late down 24 h 0.18 0–24 h 0.30
Gstm2A Mm.272792 Persistent 24 h 0.19 0–24 h 0.39
Gstm3A Mm.347436 Persistent 24 h 0.22 0–24 h 0.44
Gstm6A Mm.347437 Early and late down 24 h 0.30 0–24 h 0.34
Gstz1A Mm.358602 Early and late down 24 h 0.51 2–12 h 0.50
Mgst1 Mm.14796 Late down 24 h 0.40 0–24 h 0.40
Orm2 Mm.14173 Early down 2 h 0.58 0.5–2 h 0.40
Saa4 Mm.3489 Late down 24 h 0.55 0–24 h 0.47
Lipid metabolism 
Acox1 Mm.356689 Persistent 24 h 0.53 0–12 h 0.67
Ass1 Mm.3217 Persistent 0.5 h 0.55 2–12 h 0.62
Bucs1 Mm.33731 Early and late down 12 h 0.50 2–12 h 0.19
Crot Mm.28197 Early and late down 24 h 0.39 0–24 h 0.62
Cyp4a10 Mm.10742 Early and late down 12 h 0.22 2–12 h 0.11
Cyp4a14 Mm.250901 Early and late down 0.5 h 0.47 2–12 h 0.34
Dgat2 Mm.180189 Early up 0.5 h 1.60 0–0.5 h 1.43
Ech1 Mm.291776 Persistent 24 h 0.56 2–12 h 0.58
Fabp1 Mm.22126 Late down 24 h 0.23 2–12 h 0.04
Fasn Mm.236443 Early and late down 0.5 h 0.32 2–12 h 0.23
Gcdh Mm.2475 Persistent 12 h 0.50 2–12 h 0.48
Gckr Mm.100043 Early and late down 24 h 0.50 0–24 h 0.28
Gldc Mm.274852 Late up 12 h 1.64 2–12 h 2.29
Glyat Mm.39974 Early and late down 24 h 0.23 12–24 h 0.35
Gpam Mm.210196 Persistent 24 h 0.51 12–24 h 0.69
Lip1 Mm.157545 Early and late down 2 h 0.45 0.5–2 h 0.54
Lipc Mm.362 Persistent 12 h 0.53 0–12 h 0.64
MGC29978 Mm.224885 Early and late down 24 h 0.37 2–12 h 0.38
Mrpl38 Mm.29974 Persistent 24 h 2.05 0–24 h 1.41
Mscp Mm.293635 Late up 12 h 2.26 2–12 h 1.78
Otc Mm.2611 Persistent 12 h 0.52 2–12 h 0.31
Pklr Mm.8359 Early and late down 2 h 0.45 12–24 h 0.49
Scp2 Mm.209568 Late down 24 h 0.25 0–24 h 0.21

APreviously reported Nfe2l2 target genes.
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Expression values were standardized for each gene by adjustment 
of SD to 1 and mean to 0 separately across all samples independent-
ly in the 3 different platforms as previously described (38). Next, we 
constructed 2 composite mouse-human data sets. One contained 
the expression profiles of 440 common genes from the LEC HCCs 
and from the mouse hepatocyte samples, whereas the second data 
set included 303 orthologous genes from the Stanford HCC tumors 
and from the mouse samples. Cluster analysis identified 2 distinc-
tive clusters in both independent mouse-human data sets (Figures 
4A and 5A), which divided HCC samples into 2 subgroups based 
on the presence (Met+) or absence (Met–) of Met gene expression 
signature. Tumors in the Met+ group showed an expression pattern 
highly similar to that of HGF-induced control hepatocytes. Strik-
ingly, all 7 extrahepatic liver metastases included in the Stanford 
data set also exhibited a clear Met activation pattern (Figures 4B 
and 5B). These results indicate that the Met gene expression signa-
ture identified in the mouse primary hepatocytes may successfully 
discriminate a significant subset of human HCC.

Prevalence of Met-regulated gene expression signature is associated with 
aggressive phenotype in human HCC. Kaplan-Meier plots and log-rank 

survival statistics showed that patients with tumors from the Met+ 
expression subgroup had a significantly shortened mean survival 
time (35.1 ± 7.15 months) compared with other HCC patients 
(70.3 ± 9.67 months) (Figure 6A). Hierarchical cluster analysis 
also revealed significant overlap between the Met+ group and the 
previously identified (35) bad-prognosis HCC group (cluster A) as 
shown in Figure 4B. Distribution of other clinicopathological vari-
ables among the Met+ and Met– clusters is summarized in Table 2.

Since Met signaling has long been regarded as a promoter of 
tumor invasion and angiogenesis, we determined the vascular 
invasion status in HCCs available for histological analysis. As 
expected, the vascular invasion rate was significantly higher in 
the HCCs with prominent Met expression signature (χ2 = 4.01,  
P ≤ 0.05) than in the rest of the tumors (Figure 6B). Previous 
studies found a good correlation between the expression levels 
of HGF or Met receptor and microvessel density (MVD) in vari-
ous human carcinomas (39, 40). Indeed, when MVD was assessed 
by CD34 immunohistochemistry in the representative HCC sam-
ples from each group, the results showed a significant correla-
tion between the presence of Met signature and increased MVD. 

Figure 4
Expression profiles of the Met-regulated genes in HCCs from the LEC data set. (A) Hierarchical cluster analysis of mouse hepatocyte samples 
and 139 HCCs from the LEC data set. Clustering was performed with 440 common orthologous genes that showed HGF/Met–regulated expres-
sion pattern in mouse hepatocytes. Normalized log2-transformed expression ratios are presented in a matrix where columns and rows represent 
individual genes and samples, respectively. (B) Dendrogram of cluster analysis indicates the presence of an HCC subset (Met+ group) in which 
the expression pattern of Met-regulated genes is similar to that in the HGF-treated WT hepatocyte samples. HCC samples in the Met– group 
and Met KO hepatocytes do not share the same gene expression pattern of Met activation. The figure also shows distribution of HCC samples 
between the previously described (37) worse-prognosis (cluster A) and better-prognosis (cluster B) tumor groups.
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Accordingly, the average OD of CD34+ vascular features was sig-
nificantly higher (P < 0.001) in the Met+ (90.78 ± 6.71) than in the 
Met– (44.55 ± 6.16) HCC subgroup (Figure 6, C–E).

Notably, in the LEC data set, average expression level of the Met 
was not significantly different between the Met– and Met+ clusters 
as detected by either microarray analysis or immunohistochemistry 
(data not shown). However, at least 2-fold upregulation of the Met 
receptor was found more frequently in the Met+ tumors (5/54) 
compared with the Met– group (2/85) in the LEC set. These data 
overlap well with the expression profile–based classification and 
suggest that, in some HCCs, overexpression of the Met receptor is 
the driving force behind the Met-dependent expression signature.

The Met expression signature predicts survival of HCC patients. To test 
the predictive value of the Met expression signature regarding 
prognosis of HCC patients, the expression patterns of the human 
homologs of the mouse Met-regulated genes were used to con-
struct a classifier with 6 different supervised prediction algorithms, 
including the compound covariate predictor (CCP), nearest neigh-
bors 1 and 3 (NN1 and NN3), nearest centroid (NC), support vector 
machine (SVM), and linear discriminator analysis (LDA) methods. 
Since survival data were only available for the patients from the 
LEC group, we randomly divided these samples into a training set 

(60 samples) and a validation set (79 samples). Next, we selected 
the common target genes with the matching expression pattern 
between tumors displaying the high and low Met gene expression 
signature in the primary hepatocytes and in the training set. Using 
these genes and all 6 algorithms, classifiers were built according 
to a leave-one-out cross-validation (LOOCV) strategy. The optimal 
classifier producing the highest correct classification rate in the 
training set contained 111 genes. When the classifier was applied 
to the validation set, all 6 algorithms could identify the subgroups 
of Met+ tumors. Moreover, membership of the Met+ group showed 
little fluctuation using different statistical methods (Table 3). 
Kaplan-Meier survival curves and results of the log-rank tests with 
all predictors showed that HCC patients with tumors harboring 
prominent Met gene expression signature have a worse survival rate 
compared with other patients (Figure 7, A–E). We also applied the 
prediction algorithms to the Stanford arrays, using the same LEC 
training set and only genes that were represented in both platforms. 
In the Stanford data set, the prediction rate of the metastatic liver 
lesions was 100% with 5 of 6 algorithms.

Beyond predicting the disease outcome in HCC patients, the clas-
sifier genes may also represent the most conserved cross-species 
part of prominent HGF/Met–regulated expression signature that 

Figure 5
Expression profiles of the Met-regulated genes in HCCs from the Stanford data set. (A) Hierarchical cluster analysis of mouse hepatocyte sam-
ples together with 103 HCC and 7 liver metastases from the Stanford data set. Clustering was performed with 303 common orthologous genes 
that showed HGF/Met–regulated expression pattern in mouse hepatocytes. Normalized log2-transformed expression ratios are presented in a 
matrix where columns and rows represent individual genes and samples, respectively. (B) Dendrogram of cluster analysis shows that several 
HCC samples and all metastatic tumors (Met+ group) share a similar expression pattern with the HGF-treated control hepatocytes (WT). HCC 
samples in the Met– group and Met KO hepatocytes do not share the same gene expression pattern of Met activation.
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plays a critical role in the Met-induced cellular transformation. 
Several of these genes either were previously defined as important 
contributors to metastasis formation, including HIG2 (41), EPHA2 
(42), MAPK3 (43), P85α (44), ITGαV (29), and ITGβ1 (29), or could 
be related to cell motility and invasiveness by their postulated 
functions (CAP1, ARPC1B, NCK2) (Table 4) (26, 27, 45).

Discussion
In the current study we used global gene expression profiling to 
identify the Met-regulated genes in primary mouse hepatocytes. 
Analysis of microarray data identified several new Met target 
genes. Some of these genes indicate a novel role for Met in the 
regulation of hepatocyte homeostasis. Furthermore, comparison 
of the Met-dependent gene expression signature between mouse 
hepatocytes and human HCC samples revealed the presence of 
a clinically significant subgroup of HCC patients with a pro-
nounced Met gene expression signature.

Although many etiological risk factors leading to HCC devel-
opment (HBV and HCV hepatitis or alcoholic liver disease) are 
well documented (46), the molecular events of HCC pathogenesis 
are still not clearly understood. Application of high-throughput 
techniques including expression microarrays could significantly 
improve our knowledge in this field. Indeed, recent studies suc-
cessfully identified the differentially expressed gene sets associ-
ated with phenotypic markers or clinicopathological conditions 
such as viral etiology (47), tumor recurrence (48), and intrahepatic 
metastases (49) in HCC samples. Furthermore, the use of expres-
sion profiling made it possible to divide the HCC patients into 
subgroups with a significantly different disease outcome and sur-

vival rate (35). However, the complexity of the expression profiles 
in the human tumors often prevents the identification of primary 
regulatory events. To overcome this limitation, we used a geneti-
cally modified mouse model and a functional genomic approach 
to identify a subgroup of HCCs characterized by a pronounced 
Met gene expression signature.

Multiple findings support the prominent clinical significance 
of the HCC classification based on the presence or absence of the 

Table 2
Clinicopathological variables in the LEC HCC set

Clinicopathological variable Met+  Met–  Total
 cluster cluster
Sex 
Male 43 59 102
Female 12 25 37
Age 
Mean (yr) 52.7 58.6 55.6
SD 12.5 13.9 13.2
Liver cirrhosis 
+ 30 39 69
– 24 46 70
Etiology 
HBV hepatitis 34 22 56
HCV hepatitis 4 10 14
Alcoholic liver disease 3 13 16
HBV + HCV hepatitis 1 3 4
Alcohol + HBV 0 1 1
Alcohol + HCV 0 3 3
Nonalcoholic steatohepatitis 0 2 2
Autoimmune hepatitis 1 1 2
Hereditary hemochromatosis 0 3 3
α1-Antitrypsin deficiency 0 1 1
Primary biliary cirrhosis 0 1 1
Wilson disease 1 0 1
Unknown 11 24 35
Tumor size 
>5 cm 33 34 67
<5 cm 15 26 41
AFP level 
>300 U 27 23 50
<300 U 17 37 54
Edmondson grade 
Grade I 0 2 2
Grade II 13 44 57
Grade III 39 35 74
Grade IV 3 3 6

AFP, α-phetoprotein.

Figure 6
Association between the different clinicopathological variables and the 
Met+ and Met– HCC subsets defined by hierarchical cluster analysis of 
the LEC samples. Kaplan-Meier plot (A) and log-rank statistics demon-
strate the difference in the overall survival between HCC patients from 
the Met+ and from the Met– groups. (B and C) Bar graphs represent vas-
cular invasion rate (B) and average MVD (C) in HCC samples from Met+ 
and Met– sets. MVD was determined by quantitative analysis of CD34+ 
vascular features. (D and E) Microscope images show CD34 staining of 
endothelial cells in representative samples from Met+ (D) and Met– (E) 
tumor sets. Pictures were taken with ×200 original magnification.
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Met expression signature. First, the prevalence of the Met expres-
sion signature showed a significant association with aggressive 
phenotypic traits including increased MVD and rate of vascular 
invasion. These findings are in agreement with the observations 
that designated HGF/Met signaling as one of the key promoters 
of metastasis formation and tumor angiogenesis (16). Second, the 
presence of Met signature had major prognostic significance for 
the HCC patients as evidenced by 6 different supervised prediction 
algorithms applied to the independent training and validation sets 
of HCC samples. The analysis revealed a significantly lower sur-
vival rate for patients with the predicted presence of Met expres-
sion signature compared with the group with the absence of Met 
signature. Third, the Met signature included the target genes with 
strong cross-species conservation. These genes support the Met-
regulated cellular programs associated with neoplastic transfor-
mation and may therefore constitute important therapeutic tar-
gets. Genes involved in focal adhesion formation, as well as in the 
organization of actin cytoskeleton at the leading edge of a motile 
cell, are good examples of these functionally related target genes. 
Finally, the observation that the colon metastatic tumor samples 
shared the hepatocyte-specific Met expression signature suggests 
a considerable overlap of Met target genes induced during the pro-
gression of carcinomas with a different cellular origin.

The use of WT and Met KO primary hepatocyte cultures provided 
a significant advantage over experiments conducted on cell lines. 
Transcriptional response of cultured hepatocytes closely mimicked 
the in vivo events following HGF stimulation. Moreover, the com-
parison with Met KO cells allowed us to eliminate the HGF-inde-
pendent cross-activation of the Met receptor by semaphorin/plexin 
B1 (50) or EGF/EGFR complexes (51) or by other mechanisms and 
therefore led to a more stringent detection of HGF target genes.

Nevertheless, it is highly likely that in human liver tumors the 
Met-regulated expression signature is not always associated with 
the alteration of the receptor itself. Activation of the HGF/Met 

pathway at different levels could produce the same expression 
patterns. There is also a possibility that distinct but functionally 
homologous signaling pathways could induce the same effector 
genes as HGF/Met. In this case, the shared expression signatures 
would reflect common phenotypic changes but different regula-
tory mechanisms. EGF and TGF-α are likely candidates, since they 
induce similar intracellular signaling events and cellular responses 
to Met (51). Comparison of LEC human HCCs with HCC samples 
from the different transgenic mouse models showed that human 
tumors with a bad prognosis were the most similar to MYC/TGF-α 
mouse tumors, suggesting the dominance of TGF-α/EGFR signal-
ing in these samples (38). Thus, some of the Met target genes may 
be cross-regulated by the TGF-α/EGFR pathway or other tyrosine 
kinases. Currently, little information is available on the extent of 
overlap between the expression signatures of different tyrosine 
kinase pathways. However, previous studies suggested that activa-
tion of EGFR receptor could lead to direct transactivation of the 
Met in transformed cells. It is therefore possible, at least under cer-
tain conditions, that target genes specific for Met activation could 
be induced by the EGFR signaling (52). On the other hand, when 
similarities between HGF- and VEGF-induced expression profiles 
were investigated in endothelial cells, the data did not show a close 
resemblance between the 2 gene sets (53).

We believe that changes detected in gene expression can also 
provide mechanistic explanations for the phenotypic altera-
tions observed in KO hepatocytes. Absence of induction of genes 
involved in motility and cytoskeletal organization correlates well 
with previously reported defects in KO cells such as impaired 
motility and decreased proliferation potential (20). A significant 
new finding in this study was the identification of the effect of 
Met activation on cellular homeostasis. Numerous genes partici-
pating in oxidative and xenobiotic stress response (Ephx1, Aldh1a1, 
Aldh1a7) or related to glutathione metabolism (Gsta3, Gstm3, Gclc) 
had elevated expression levels in Met KO cells. Most of them are 

Table 3
Summary of the class prediction results

 CCP NN1 NN3 NC SVM LDA

Predicted subclass Met+ Met– Met+ Met– Met+ Met– Met+ Met– Met+ Met– Met+ Met–

LEC data set 
 Training set 
 Cluster Met+ (n = 30) 27 3 27 3 27 3 27 3 29 1 27 3
 Cluster Met– (n = 30) 2 28 1 29 1 29 2 28 2 28 2 29
 Correctly classified (%) 92 93 93 92 95 92
 Validation set 
 Cluster Met+ (n = 28) 23 5 23 5 24 4 22 6 24 4 23 5
 Cluster Met– (n = 51) 1 50 1 50 0 51 1 50 2 49 1 50
 Correctly classified (%) 92 92 95 91 92 92
Stanford data set 
 Human HCC 
 Cluster Met+ (n = 22) 21 1 11 10 9 13 21 1 15 7 21 1
 Cluster Met– (n = 81) 11 70 8 73 10 71 12 69 11 70 11 70
 Correctly classified (%) 88 82 78 87 83 88
 Metastasis 
 Cluster Met+ (n = 7) 7 0 7 0 7 0 7 0 6 1 7 0
 Cluster Met– (n = 0) 0 0 0 0 0 0 0 0 0 0 0 0
 Correctly classified (%) 100 100 100 100 86 100 
Significance of LOOCV P < 5 × 10–4 P < 5 × 10–4 P < 5 × 10–4 P < 5 × 10–4 P < 5 × 10–4 P < 5 × 10–4
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well-established targets of Nfe2l2 transcription factor (54), as they 
contain antioxidant response element in their promoter sequence. 
Although this pathway is essential for the detoxification of toxic 
metabolic intermediates, the permanent activation of Nfe2l2 in 
a mouse model is lethal (32). A connection between the Nfe2l2 
and Met pathways could exist at multiple levels. Activation of ERK 
signaling by Met may inhibit retinoic X receptor α (RXRα) (55), 
which together with PPARγ positively regulates Nfe2l2 targets 
and lipid metabolic enzymes (56). Alternatively, elevated oxidative 
stress together with accumulation of toxic metabolic intermedi-
ates in Met KO animals may cause the high Nfe2l2 activation (32). 
Together these data implicate HGF/Met signaling as an important 
regulator of metabolic homeostasis in hepatocytes.

In conclusion, our study demonstrates that characterization of 
pathway-specific gene expression signatures in well-suited experi-
mental models facilitates the discovery of novel intracellular regu-
latory mechanisms and can improve the molecular classification 
of human cancers.

Methods
Animal model. Hepatocyte-specific deletion of exon 16, essential for Met func-
tion, was achieved by crossing of the albumin-Cre transgene against the floxed 

Met allele as described previously (18). The genotypes of the control and 
mutant mice used in this study were Met+/+AlbCre+/– and Met–/–AlbCre+/–, respec-
tively. All animal experiments were conducted according to the NIH guidelines 
for animal care. All animal experiments and procedures were approved by the 
National Cancer Institute Animal Care and Use Committee.

Hepatocyte isolation and culture. Hepatocytes were isolated by 2-step col-
lagenase perfusion of the mouse livers followed by isodensity purification 
in Percoll gradient (57). Cells were seeded at 2 × 106 in 10-cm dishes in the 
plating medium supplemented with 10% FBS as described in ref. 57. After 4 
hours, the plating medium was replaced with serum-free medium. The fol-
lowing day, cells were treated with 50 ng/ml of recombinant human HGF 
(PeproTech) for 0.5, 2, 12, and 24 hours. Triplicate cell cultures were estab-
lished from 3 individual mice. Cells without treatment were collected at the 
beginning of each time course experiment and served as 0 time control.

RNA isolation and microarray hybridization. The Mouse OligoLibrary Release 
1 plus Extension oligonucleotide set containing 21,997 65-mer oligonucle-
otides representing 19,740 unique genes was purchased from Compugene 
Inc. Microarrays were produced in the Laboratory of Molecular Technol-
ogy, National Cancer Institute. Total RNA was extracted from the prima-
ry cultures using TRIZOL (Invitrogen Corp.) protocol. Each sample was 
hybridized against a common reference sample isolated from B6/129 WT 
primary hepatocytes, in a reverse-fluor design, and gene expression values 
were defined as a target-per-reference ratio. Twenty micrograms of total 
RNA was used to synthesize fluorescently labeled (Amersham Biosciences) 
cDNA probes. Preparation of the labeled cDNA samples and hybridization 
of oligonucleotide microarrays were performed with small modifications 
(37). Briefly, RNA samples were denaturated	with 4 µg (d)T20 primer at 
70°C for 5 minutes, chilled on ice, and incubated for 1 hour at 42°C in a  
50-µl reaction mix containing 10 µl 10× First-Strand buffer (Invitrogen 
Corp.), 2.5 µl 20× deoxynucleotide triphosphate (dNTP) mix (10 mM dATP, 
dGTP, and CTP; 4 mM dTTP; and 6 mM aminoallyl-dUTP; Sigma-Aldrich), 
5 µl of 0.1 M DTT, 2 µl SuperScript II (Invitrogen Corp.) reverse transcrip-
tase, and 1 µl SUPERaseIn (Ambion Inc.). After digestion with 4 U RNase H  
(Ambion Inc.) at 37°C for 20 minutes, the samples were cleaned up with 
a MinElute PCR Purification Kit (QIAGEN). The eluted cDNA samples 
were concentrated by Speed Vac (Global Medical Instrumentation Inc.) and 
resolved in 20 µl 0.1 M NaHCO3 solution. The Cy3 and Cy5 dyes (Amersham 
Biosciences) were also dissolved in 20 µl of water. For the coupling reaction, 
2 µl of dye was added to each sample, and the mix was left in a dark box for 
an hour. Labeled cDNA was purified again with a MinElute kit (QIAGEN), 
and Cy3- and Cy5-labeled target and reference samples were combined. 
Before the hybridization, oligonucleotide microarrays were pretreated with 
a 5× SSC, 1% BSA, 0.1% SDS blocking solution. The samples were applied 
on the microarray slides in a hybridization mix containing 25% formamide, 
0.1% SDS, and 5× SSC in 28 µl final volume. After overnight incubation, 
the slides were washed in a 1× SSC 0.1% SDS solution for 2 minutes and 
then consecutively in 1× SSC and 0.2× SSC solutions. Air-dried arrays were 
scanned in a GenePix 4000A scanner (Molecular Devices) in such a way that 
photomultiplier tube voltage was adjusted to achieve optimal signal inten-
sity at both channels with less than 1% saturated spots. Image analysis was 

Figure 7
Survival analysis based on the predicted Met activation in the LEC 
validation set. Log-rank test results and Kaplan-Meier plots demon-
strate the overall survival of HCC patients from the LEC validation set. 
Patients were stratified into 2 groups based on the expression pattern 
of preselected classifier genes using the CCP (A), NN1 (B), NN3 (C), 
NC (D), SVM (E), and LDA (F) algorithms. In the tumors from the Met+ 
patients, higher activation of the Met signaling pathway is predicted 
compared with that in the Met– group.
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performed with GenePix Pro 5.1.0.11 software (Molecular Devices), follow-
ing the manufacturer’s recommendations.

Real-time RT-PCR experiments. Real-time PCR quantification of mRNA lev-
els for 10 selected HGF/Met target genes was performed on the same RNA 
samples that we used for microarray hybridization. After DNase digestion 
with a DNA-free kit (Ambion Inc.), 3 µg total RNA was reverse transcribed 
in 20 µl reaction volume with a SuperScript (Invitrogen Corp.) first-strand 
synthesis kit according to the manufacturer’s instructions. The real-time 
quantitative PCR analysis was performed with an ABI PRISM 7900HT 
(Applied Biosystems) thermal cycler in a 96-well reaction plate. The  
25-µl PCR reaction mix contained 12.5 µl 2× SYBR Green PCR Master Mix 
(Applied Biosystems), 400 nM of each primer, and 1 µl cDNA template. 
Reactions were incubated for 10 minutes at 95°C followed by 40 cycles 
of 30 seconds at 95°C and 60 seconds at 60°C. Melting analysis of the 
PCR products was also conducted to validate the amplification of the spe-
cific product. The expression level of mouse β2-microglobulin was used as 
an internal reference. Relative gene expression levels were calculated with 
the 2–∆∆CT method (58). Primer sequences together with expected product 
length are listed in Table 5.

Immunohistochemistry and calculation of MVD. Detection of protein 
expression levels of human Met receptor and CD34 surface antigen 
was performed on representative human HCC samples from the sub-
groups with or without Met activation signature (12 samples each). For 
immunohistochemistry, 5-µm-thick sections were cut from 10% formalin-
fixed, paraffin-embedded tissues. Sections were routinely deparaffinized, 
and endogenous peroxidase was blocked with 3% H2O2 for 20 minutes. 

Antigen retrieval was performed by placing samples into boiling citrate 
buffer (pH 6.0) for 20 minutes. Sections were blocked for 30 minutes 
with 10% serum, then incubated overnight at 4°C with a 1:100 dilution of 
anti–human MET (Santa Cruz Biotechnology Inc.) or anti-CD34 (Zymed 
Laboratories Inc.) antibodies. For visualization of the specific staining, 
VECTASTAIN ABC Elite kits (Vector Laboratories) and diaminobenzidine 
peroxidase substrate (Dako) were used. Slides were counterstained with 
hematoxylin. The staining intensities for Met were classified as weak (+), 
intermediate (++), or strong (+++). At least 10 visual fields were assessed for 
each specimen with ×200 magnification.

MVD was determined by CD34 immunostaining in 12 representative 
samples from both the Met+ and Met– subclasses in the LEC set. The densi-
ty of CD34+ features was determined in 5 angiogenetic “hot spots” in each 
sample using Image-Pro Plus version 3 (MediaCybernetics) software. MVD 
was expressed as mean OD ± SEM per visual field. Two-tailed Student’s  
t test was used to compare tumor vessel density. The differences were con-
sidered statistically significant with P < 0.01.

Data analysis for identification of HGF/Met	expression signature. First, image 
spots with diameter less than 10 µm or more than 300 µm or signal inten-
sity below background intensity for any of the 2 fluorescent channels were 
excluded. Only genes with at least 4 data points out of 6 experiments in at 
least 2 experimental groups in the mouse primary hepatocyte data set were 
selected for further data analysis. Gene expression values were normalized 
by median-centering log ratios	across all primary hepatocyte samples. For 
each spot, the target-per-reference intensity ratio was log2 transformed and 
averaged between duplicate experiments.

Table 4
Expression of selected classifier genes in HCC subclasses

Gene symbol Description Expression ratios Expression ratios  UniGene t value Parametric 
  in Met+ class in Met– class  ID  P value
Cell motility, metastasis formation 
CAP1 CAP, adenylate cyclase–associated protein 1 1.229 0.582 Hs.370581 4.56 0.000027
ARPC1B Actin-related protein 2/3 complex, subunit 1B 1.234 0.641 Hs.489284 3.85 0.000293
TUBB6 Tubulin β6 1.616 0.702 Hs.193491 4.52 0.000032
ITGB1 Integrin β1 1.531 0.68 Hs.429052 4.51 0.000042
NCK2 NCK adaptor protein 2 1.806 0.736 Hs.529244 5.24 0.000004
ITGAV Integrin αV 1.664 0.752 Hs.436873 4.06 0.000148
FGD6 FYVE, RhoGEF and PH domain–containing 6 1.709 0.868 Hs.506381 3.52 0.000894
MDFI MyoD family inhibitor 1.665 0.889 Hs.520119 3.82 0.000381
PIK3R1 Phosphatidylinositol 3-kinase, regulatory subunit 1 0.565 1.33 Hs.132225 –5.58 < 0.000001
ANXA5 Annexin A5 1.344 0.605 Hs.480653 4.76 0.000014
Cell proliferation 
CKS2 CDC28 protein kinase, regulatory subunit 2 1.568 0.695 Hs.83758 5.45 0.000001
MAPK3 Mitogen-activated protein kinase 3 1.548 0.74 Hs.861 4.17 0.000102
KPNB1 Karyopherin (importin) β1 1.467 0.705 Hs.532793 4.7 0.000016
STK25 Serine/threonine kinase 25 1.551 0.761 Hs.516807 4.04 0.000161
PLCE1 Phospholipase Cε1 1.353 0.61 Hs.549158 4.88 0.000009
DENR Density-regulated protein 1.647 0.69 Hs.22393 6.84 < 0.000001
Prognosis 
HMGA1 High-mobility group AT-hook 1 1.541 0.587 Hs.518805 6.29 < 0.000001
CD63 CD63 antigen 1.35 0.644 Hs.445570 4.5 0.000034
HIG2 Hypoxia-inducible protein 2 1.511 0.726 Hs.521171 3.88 0.000319
Stress response 
ALDH1A1 Aldehyde dehydrogenase 1 family, member A1 0.558 1.095 Hs.76392 –4 0.000183
ALDH6A1 Aldehyde dehydrogenase 6 family, member A1 0.504 1.378 Hs.293970 –7.38 < 0.000001
EPHX1 Epoxide hydrolase 1 0.466 1.143 Hs.89649 –7.47 < 0.000001
EPHX2 Epoxide hydrolase 2 0.537 1.285 Hs.212088 –5.71 < 0.000001
GSTT1 Glutathione-S-transferase θ1 0.72 1.27 Hs.268573 –3.76 0.000418
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Genes differentially expressed between groups of Met KO and Cre-con-
trol hepatocyte samples were identified by a multivariate permutation t test 
using the BRB ArrayTools 3.3 software package (Biometric Research Branch, 
National Cancer Institute; http://linus.nci.nih.gov/BRB-ArrayTools.html). 
We set parameters in the multivariate permutation test to provide 90% con-
fidence level at false discovery rate less than 10% after 1,000 random per-
mutations. Selection criteria for individual genes included a significance 
level of P < 0.001 in the univariate t test plus more than 1.5-fold expression 
difference between the compared groups. Selected significant genes were 
further divided into subgroups based on their temporal expression pattern. 
The group of permanently different genes contained genes whose expres-
sion was significantly different (P < 0.005) between the 2 genotypes by uni-
variate t test at 0 hour plus at least 1 early (0.5 or 2 hours) and 1 late (12 or 
24 hours) treatment point. The rest of the significant genes were classified 
as early or late up- or downregulated genes based on the treatment point at 
which they showed the most significant regulation by HGF.

For comparison of the Met signature in human HCC and mouse 
hepatocytes, we used 2 independent human HCC microarray data sets. The 
LEC set was generated in our laboratory (37) and contained expression 
profiles from 139 HCC samples. The other data set was obtained from the 
Stanford University microarray database (http://genome-www5.stanford.
edu/) and included 103 human HCC samples and 7 liver metastases from 
extrahepatic tumors. Detailed analysis of the human data sets, as well as 

available clinical information, is available in previous pub-
lications (35–37). In our analysis we selected genes repre-
sented on both the mouse and the human platform using 
curated mammalian orthologs from Jackson Laboratory. 
We found 440 common orthologs of the Met-regulated 
genes in the LEC set and 303 genes in the Stanford sets. 
Before collation of data into 2 mixed mouse-human sets, 
gene expression ratios were normalized separately on the 
different microarray platforms with mean set to 0 and SD to 
1 for each gene (38). Hierarchical cluster analysis based on 
Pearson correlation was performed with Cluster 2.11, and 
results were visualized with TreeView programs (Michael 
Eisen Laboratory, Lawrence Berkeley National Laboratory 
and University of California, Berkeley; http://rana.lbl.gov/
EisenSoftware.htm).

We used 6 algorithms, the CCP, NN1, NN3, NC, SVM, 
and LDA (BRB ArrayTools; Biometric Research Branch, 
National Cancer Institute), to perform the class prediction 
analysis with the Met target genes. The LEC data set was 
randomly divided into a training set (60 samples) and a 
prediction set (79 samples). To build an optimized classi-
fier list, which could estimate the probability of the iden-
tity of a particular sample, we used an LOOCV approach. 
During the cross-validation step, 1 sample was removed 
from the analysis, and the remaining samples were used to 
identify the most differentially expressed genes between the 
groups. Based on expression of these genes, identity of the 
left-out sample was predicted with a given algorithm. This 
process was repeated until each sample was left out once. 
The number of genes in the classifier was varied to provide 
the highest correct prediction rate in the training set. To 
estimate accuracy of the prediction model, class labels were 
randomly permuted, and the LOOCV process was repeated 
1,000 times. The significance level is the proportion of the 
random permutations that gave a cross-validated error rate 
no greater than the cross-validated error rate obtained with 
the real data. The 6 classification methods were also applied 

to the LEC validation set, and survival analysis was performed to assess the 
clinical significance of predicted HCC groups. Prediction of the metasta-
ses in the Stanford data set was performed in a similar manner using the 
same LEC training set but only with Met target genes commonly available 
on both platforms. Survival analysis was based on predicted presence or 
absence of Met activation–based hierarchical clustering or different predic-
tion algorithms. Kaplan-Meier survival analysis and log-rank test were per-
formed with the R 1.8.1 statistical package (http://www.r-project.org/).
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Table 5
Primers used in real-time PCR experiments

Gene GenBank Product
Adenylate cyclase–associated protein 1 (Cap1) NM_007598 101 bp
 Forward: 5′-GACAGCCCTTCAAAAGGAGCA-3′ 
 Reverse: 5′-CCCCCGATCTCCTTACTCATCT-3′ 
Aldehyde dehydrogenase 1 family, member A1 (Aldh1a1) NM_013467 215 bp
 Forward: 5′-CCTGCAACTGAGGAGGTCAT-3′ 
 Reverse: 5′-ACTTTCCCACCATTGAGTGC-3′ 
β2-Microglobulin (B2m) NM_009735 252 bp
 Forward: 5′-ATGGGAAGCCGAACATACTGAA-3′ 
 Reverse: 5′-ATCACATGTCTCGATCCCAGTA-3′ 
Cadherin 17 (Cdh17) NM_019753 176 bp
 Forward: 5′-ATCACTCAGGTGCAGTGGAA-3′ 
 Reverse: 5′-CCATTCTCATCCTTGGCAGT-3′ 
Glutathione-S-transferase α1 (Gsta1) NM_008181 153 bp
 Forward: 5′-CCCCTTTCCCTCTGCTGAAG-3′ 
 Reverse: 5′-TGCAGCTTCACTGAATCTTGAAAG-3′ 
Glutathione-S-transferase µ3 (Gstm3) NM_010359 213 bp
 Forward: 5′-TATGACACTGGGCTATTGGAACAC-3′ 
 Reverse: 5′-CTCTGGGTGACCTTGTGTGA-3′ 
Glycine-C-acyltransferase (Gcat) NM_013847 137 bp
 Forward: 5′-GGAGGCTCAGAAGCACAGG-3′ 
 Reverse: 5′-CATGGCATTCATCCACAAAG-3′ 
Moesin (Msn) NM_010833 248 bp
 Forward: 5′-ATGCCGAAGACGATCAGTGTG-3′ 
 Reverse: 5′-TTGGCCCGGAACTTGAAGA-3′ 
Nuclear factor (erythroid-derived 2)–like 2 (Nfe2l2) NM_010902 104 bp
 Forward: 5′-ATGCAGCTTTTGGCAGAGAC-3′ 
 Reverse: 5′-TGATGAGGGGCAGTGAAGAC-3′ 
Osteopontin (Spp1) NM_009263 170 bp
 Forward: 5′-TCTGATGAGACCGTCACTGC-3′ 
 Reverse: 5′-AGGTCCTCATCTGTGGCATC-3′ 
Phosphatidylinositol 3-kinase, regulatory subunit 1 (Pik3r1) NM_011085 184 bp
 Forward: 5′-GACCAATACTTGATGTGGCTGA-3′ 
 Reverse: 5′-GCAATAGGTTCTCCGCTTTG-3′ 
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