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Minor histocompatibility antigens (mHAgs) selectively expressed by cells or cell subsets of the hematopoietic system are
targets of the T cell–mediated graft-versus-leukemia response that develops following allogeneic hematopoietic stem cell
transplantation (HSCT) for the treatment of hematological malignancies. This observation has served as the rationale for
utilizing mHAg-specific immunotherapy for the treatment of particular patients. However, at present, only a select and
small number of patients could potentially benefit from mHAg-based immunotherapy. A report from de Rijke et al. in this
issue of the JCI describes a new hematopoietic lineage–specific HLA-B7–restricted mHAg associated with remission of
chronic myeloid leukemia. This result represents another example of an mHAg-mediated graft-versus-leukemia response,
thereby expanding the number of patients eligible for mHAg-based immunotherapy in the setting of HSCT.
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Minor histocompatibility antigens (mHAgs) selectively expressed by cells or 
cell subsets of the hematopoietic system are targets of the T cell–mediated 
graft-versus-leukemia response that develops following allogeneic hemato-
poietic stem cell transplantation (HSCT) for the treatment of hematologi-
cal malignancies. This observation has served as the rationale for utilizing 
mHAg-specific immunotherapy for the treatment of particular patients. 
However, at present, only a select and small number of patients could poten-
tially benefit from mHAg-based immunotherapy. A report from de Rijke 
et al. in this issue of the JCI describes a new hematopoietic lineage–specific 
HLA-B7–restricted mHAg associated with remission of chronic myeloid leu-
kemia (see the related article beginning on page 3506). This result represents 
another example of an mHAg-mediated graft-versus-leukemia response, 
thereby expanding the number of patients eligible for mHAg-based immu-
notherapy in the setting of HSCT.
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Characteristics of minor 
histocompatibility antigens 
applicable for immunotherapy
Minor histocompatibility antigens (mHAgs) 
were originally defined in mice by character-
ization of in vivo rejection responses to skin 
grafts and tumors exchanged between mice 
of different inbred strains (1, 2). Simultane-

ous with the discovery that matching HLA 
antigens are necessary for optimal suc-
cess of allogeneic BM transplantation (3), 
clinical results demonstrated the powerful 
alloimmune reactions against mHAgs. In 
an HLA-matched hematopoietic stem cell 
transplantation (HSCT) setting, mHAg 
disparities between recipient and donor can 
lead to graft-versus-host disease (GVHD) 
(4) or graft rejection (5). Aside from these 
detrimental effects, the mHAg-induced 
alloimmune response also causes the cura-
tive graft-versus-leukemia (GVL) effect. 
Since mHAg-specific T cells are involved in 
both GVHD and GVL, dissecting the role of 
these cells in the immunobiology of GVHD 
and GVL has proven challenging. The first 
indication that led us to propose the use 
of mHAgs as immunotherapeutic tools in 
HSCT (6) was provided by the results of in 
vitro studies showing differential modes of 
recognition of various cell types by mHAg-
specific CTLs, i.e., ubiquitous or hemato-
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poietic system–restricted (7). mHAgs are 
ubiquitously expressed, includeing on t 
fibroblasts, melanocytes, and keratinocytes; 
cell types present within organs affected 
by GVHD. The CTLs directed to the ubiq-
uitous mHAgs are therefore particularly 
relevant to the development of GVHD. In 
addition to in vitro cellular analyses, an 
in situ readout was performed to analyze 
the postulated differential in vivo effects 
of mHAgs. For this, an ex vivo in situ skin 
explant assay was used, wherein skin sec-
tions were incubated with CTLs specific 
for a ubiquitously expressed mHAg, H-Y, 
or for the hematopoietic system–restricted 
mHAgs HA-1 and HA-2 (8). CTLs specific 
for the H-Y mHAg induced severe graft-ver-
sus-host reactions of grades III–IV. CTLs 
specific for HA-1 and HA-2 induced no or 
weak graft-versus-host reactions.

mHAgs with tissue expression limited to 
cells of the hematopoietic system are espe-
cially relevant to GVL activity. CTLs spe-
cific for hematopoietic system–restricted 
mHAgs are capable of lysing leukemic cells 
in vitro (9) and in vivo in a translational 
mouse model (E. Goulmy et al., unpub-
lished observations). In the clinical setting 
of HSCT, complete hematological respons-
es and conversion from mixed to complete 
donor chimerism after donor lymphocyte 
infusion (DLI) for the treatment of chronic 
myeloid leukemia and multiple myeloma 
are associated with a rapid increase in the 
numbers of functional HA-1– and HA-2– 
specific T cells in peripheral blood (10). 

These data strongly suggest that donor T 
cells specific for hematopoietic system–
restricted mHAgs expressed on recipient 
cells can be involved in the induction and/
or maintenance of remission of hemato-
logical malignancies after HSCT.

The accumulated in vitro and in vivo data 
underline the proposition that mHAgs 
could be used to induce the curative effect 
of HSCT. It is noteworthy that this appli-
cation is not restricted to hematological 
malignancies but extends to solid tumors 
as well (11). Protocols have been estab-
lished for the in vitro generation of donor-
derived HA-1– or HA-2–specific CTLs to 
treat recurrence of the original disease 
after HLA-matched HA-1–mismatched 
and/or HLA–matched HA-2–mismatched 
HSCT (12). A potentially efficient strategy 
is vaccination of patients by boosting the 
donor GVL response at appropriate times 
after HSCT with minor histocompatibility 
peptides. Currently, an HA-1/HA-2 phase 
I/II vaccination trial for HLA-A2/HA-1– 
positive and/or HLA-A2/HA-2 –posi-
tive patients with advanced hematologi-
cal malignancies receiving HLA-matched 
HA-1–mismatched and/or HLA-matched 
HA-2–mismatched HSCT is ongoing. It is 
hoped that this approach will elicit allo-
geneic responses against mHAgs HA-1 or 
HA-2 and will result in an anti-leukemic 
effect (Koen van Besien, University of Chi-
cago, Chicago, Illinois, USA, personal com-
munication). We expect that the results of 
this trial will serve as proof-of-principle 

and will lay the basis for second-generation 
vaccination trials.

Current possibilities for mHAg-
specific immunotherapy
The immunotherapeutic potential of cell- 
and/or tissue-restricted mHAgs demands 
serious searches for new mHAgs. Informa-
tion on their phenotypic frequency, tissue 
distribution, functional membrane expres-
sion, and epidemiology is indispensable. 
The disparity rate of the mHAg between 2 
unrelated individuals combined with the 
allele frequency of the HLA restriction mol-
ecule determines its overall applicability. 
With an overall applicability rate of 10.6%, 
HA-1 is currently the most interesting can-
didate for mHAg-based immunotherapy. 
So far, only 6 other mHAgs with hema-
topoietic system–specific tissue distribu-
tion have been described; 5 are encoded by 
autosomal genes, and 1 is encoded on the 
Y chromosome (Table 1; reviewed in ref. 
13). Despite inclusion of these mHAgs, the 
potential number of patients that could be 
treated remains low due to the phenotypic 
frequencies of the mHAgs and the HLA 
restriction molecule.

mHAg identification systems
Various biochemical and molecular 
approaches have been used to character-
ize mHAgs. The classical way to identify 
human mHAgs is elution of peptides from 
the relevant HLA molecules. The strength 
of this approach is that the identified 

Table 1
Immunotherapeutic mHAgs

mHAg	 mHAg 	 HLA-restriction 	 HLA 	 Overall 	 mHAg 	 mHAg tissue distribution	 Reference
	 disparityA	 molecule	 frequencyB	 applicability	 gene
HA-1	 24%	 HLA-A2	 43%	 10.6%	 HA-1	 Hematopoietic cells, myeloid and lymphoid 	 (29)
						      leukemic cells
HA-2	 4%	 HLA-A2	 43%	 1.7%	 Myosin 1G	 Hematopoietic cells, myeloid and lymphoid 	 (15)
						      leukemic cells
HB-1H/Y C	 6%/24%	 HLA-B44	 12%	 0.7%/2.9%	 Unknown	 B cell ALL	 (16)
ACC-1	 17%	 HLA-A24	 34%	 5.8%	 BCL2A1	 Hematopoietic cells, myeloid and lymphoid 	 (27)
						      leukemic cells
ACC-2	 17%	 HLA-B44	 12%	 2.7%	 BCL2A1	 Hematopoietic cells, myeloid and lymphoid 	 (27)
						      leukemic cells
UGT2B17	 11%	 HLA-A29	 5%	 0.6%	 UGT2B17	 DCs, B cells	 (17)
LRH-1	 13%D	 HLA-B7	 11%	 1.4%	 P2X5	 T cells, B cells, NK cells, myeloid leukemic	 (28)
						       progenitor cells
B8/H-Y	 25%	 HLA-B8	 8%	 2.0%	 UTY	 Hematopoietic cells	 (30)

ADisparity within the transplant pairs with the correct HLA allele. Calculations were based on the reported allele frequencies under the assumption of an 
HLA-matched unrelated donor. BPhenotype frequencies were calculated based on global allele frequencies reported in dbMHC (http://www.ncbi.nlm.
nih.gov/mhc). CHB-1 can be recognized bidirectionally. Data represent, respectively, the disparity for HB-1H and HB-1Y as positive alleles. DIt has not 
been reported whether the disparity rate for LRH-1 was determined in HLA-matched sibling pairs or in HLA-matched unrelated donor/recipient pairs. 
ALL, acute lymphocytic leukemia.
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peptide is by definition present on the 
cell surface (14, 15). The recent determi-
nation of the complete human genome 
sequence has facilitated identification of 
the gene encoding the relevant peptide. 
The drawback of the classical approach is 
the need for highly specialized equipment 
and personnel. Alternatively, cDNA library 
screening has successfully been executed 
for the identification of antigenic minor 
histocompatibility peptides. Although this 
technique can be applied for identifying 
autosomal mHAgs (16, 17), it is particu-
larly powerful for identifying H-Y epitopes, 
for which there are only a limited number 
of candidate genes (18–21).

Another possibility for the chemical iden-
tification of human mHAgs was put for-
ward by Gubarev et al. in 1996 (22); these 
authors suggested application of genetic 
linkage analysis to identify mHAg loci. The 
method uses EBV-transformed lymphoblas-
toid cell lines from large families (for exam-
ple, from the Centre d’Etude du Polymor-
phism Humain panel). The families studied 
consist of 3 generations, and all individuals 
have been typed for 3,000–10,000 genetic 
markers (23, 24). This approach led to the 
localization of mHAgs on chromosomes 22 
(22) and 11 (25). At that time, these mHAg 
loci could not be further refined, leaving 
the biochemical structure of the epitopes 
unsolved. The first indications that this 
approach could indeed lead to the molecu-
lar identification of minor histocompatibil-
ity peptides were provided by a retrospective 
study on the HA-8 antigen (26). Combining 
the genetic linkage data with HLA-bind-
ing prediction tools on nonsynonymous 
single nucleotide polymorphism–contain-
ing DNA sequences yielded an epitope that 
matched the eluted one. Subsequently, this 
methodology was utilized for the molecular 
identification of 2 BCL2A1-encoded mHAg 
T cell epitopes, i.e. ACC-1 and ACC-2 (27). 
The genetic linkage analyses combined with 
the T cell reactivities specific for mHAgs in 
question resulted in 46 candidate genes. 
Further identification was facilitated by 
the fact that ACC-1– and ACC-2–specific T 
cell clones only recognize cells of the hema-
topoietic system. The only gene that was 
reported by databases to match the expres-
sion pattern was BCL2A1. Peptide reconsti-
tution assays finally resolved the biochemi-
cal identity of the ACC-1 and ACC-2 mHAg 
T cell epitopes.

In this issue of the JCI, de Rijke et al. 
describe an identical approach that they 
used in order to identify lymphoid-restrict-

ed histocompatibility antigen–1 (LRH-1) 
(28). To circumvent the problem that tis-
sue distribution data in the various data-
bases might be incomplete or incorrect, 
real-time PCR analysis of candidate genes 
was performed. This additional selection 
procedure appeared to be crucial for iden-
tifying the correct gene. The results clearly 
show that molecular identification via 
genetic linkage analyses can successfully be 
executed for mHAgs with a limited tissue 
distribution. Genetic linkage identification 
of minor histocompatibility epitopes with 
a broad expression pattern, such as the 
GVHD-associated mHAgs, might turn out 
to be more difficult. For the identification 
of leukemia-specific mHAgs and mHAgs 
that are not expressed by EBV-transformed 
lymphoblastoid cell lines, this approach is 
not applicable.

Implications of LRH-1 use  
for adoptive immunotherapy
The novel mHAg LRH-1 is encoded by 
the hematopoietic system–specific P2X5 
gene, which has interesting properties 
with respect to HSCT-based immuno-
therapy of hematological malignancies. 
First, P2X5 transcripts were only detected 
in lymphoid cells and myeloid leukemia 
progenitor cells. De Rijke et al. analyzed 
the presence of LRH-1–specific T cells fol-
lowing HSCT and DLI in a patient with 
chronic myeloid leukemia (28). A mas-
sive rise in the number of LRH-1–specific 
CTLs coincided with a reduction in the 
number of Bcr-Abl–positive cells, indicat-
ing a potential role for these T cells in the 
clinical response to LRH-1–expressing 
CD34+ leukemia progenitor cells.

In addition to their hematopoietic sys-
tem–restricted expression, the mHAg phe-
notypic frequency and frequency of its HLA 
restriction molecule represent significant 
characteristics of mHAgs that make them 
suitable for use in adoptive immunother-
apy. Within the transplant pairs with the 
correct HLA allele, de Rijke et al. report a 
13% disparity, a situation where the trans-
plant donor is negative, and the transplant 
recipient is positive, for the LHR-1 antigen 
(28). The LRH-1 mHAg is presented to the 
immune system by the HLA-B7 molecule. 
With a phenotype frequency in the range of 
10–25%, HLA-B7 is among one of the more 
frequent HLA alleles (according to a search 
of the dbMHC; http://www.ncbi.nlm.nih.
gov/mhc). The combined LHR-1 and HLA-
B7 phenotypic frequency clearly positions 
LHR-1 on the list of candidate mHAgs 

suitable for immunotherapy of hemato-
logical malignancies. More importantly, 
the applicability of P2X5 gene products 
might exceed that of the LRH-1 epitope. 
De Rijke et al. found that the P2X5 gene of 
the HSCT recipient contained a deletion 
of a single nucleotide, resulting in a frame-
shift. To our knowledge, generation of an 
mHAg via nucleotide deletion/insertion 
has not been described before and pres-
ents interesting opportunities to further 
exploit the P2X5 gene product as a source 
for mHAgs to be used for immunotherapy. 
HSCT donor T cells might be able to recog-
nize peptides derived from the recipient’s 
P2X5 gene product fragment following the 
frameshift. Further investigations using 
the reverse immunology strategy on this 
part of the protein might yield new mHAgs 
in the context of the frequent HLA class I 
alleles. Moreover, it would be of interest 
to evaluate whether the C-terminal part 
of the P2X5 gene product might contain 
HLA class II–restricted mHAgs. Evidently, 
CD4 T cell help during the in vitro and/or 
in vivo generation of LRH-1–specific CTLs 
is crucial. Identification of a combination 
of functionally different types of mHAgs 
will definitely further support successful 
mHAg-based immunotherapy.
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Flushing out the role of GPR109A (HM74A)  
in the clinical efficacy of nicotinic acid

Nicholas B. Pike

Atherosclerosis Department, GlaxoSmithKline, Stevenage, United Kingdom.

The recent discovery of the Gi protein–coupled receptor GPR109A (HM74A 
in humans; PUMA-G in mice) as a receptor for nicotinic acid has provided 
the opportunity to gain greater understanding of the underlying biology 
contributing to the clinical efficacy (increases in HDL, decreases in VLDL, 
LDL, and triglycerides) and the characteristic side-effect profile of nicotinic 
acid. GPR109A has been proven to be the molecular target for the actions of 
nicotinic acid on adipose tissue, and in this issue of the JCI, Benyó et al. have 
confirmed the involvement of GPR109A in the nicotinic acid–induced flush-
ing response, a common side effect (see the related article beginning on page 
3634). The involvement of GPR109A in both the desirable and undesirable 
clinical actions of nicotinic acid raises interesting questions regarding the 
function of this receptor.
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glandin D2; PGE2, prostaglandin E2; PUMA-G, protein 
upregulated in macrophages by IFN-γ.
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The observation that nicotinic acid can 
modify lipoprotein profiles in humans was 
first made in the 1950s. Subsequent clinical 
experience has demonstrated that nicotinic 
acid produces a very beneficial modification 
of multiple cardiovascular risk factors. As a 

monotherapy, nicotinic acid is still the most 
effective therapy for elevating HDL levels 
while decreasing VLDL and LDL levels as well 
as other cardiovascular risk factors, which 
results in a reduction in mortality (1) (Figure 
1). In addition to its highly desirable profile 
of cardiovascular risk factor modulation, 
nicotinic acid has been shown to produce 
enhanced therapeutic effects when given 
in combination with other lipid-lowering 
drugs (e.g., statins and bile acid resins) (2–3). 
The past 50 years of nicotinic acid usage has 
been recently reviewed by Carlson (4).

Identification and function of Gi 
protein–coupled receptors for 
nicotinic acid
In 2003, several groups published stud-
ies showing that the orphan receptor 
GPR109A is activated by nicotinic acid at 
concentrations consistent with the expo-
sure achieved following therapeutic doses 
(5–7). Furthermore, additional compounds 
with a clinical profile similar to that of nic-
otinic acid (e.g., acipimox and acifran) were 
also confirmed as full agonists of GPR109A. 
Importantly, nicotinamide, which does not 
alter lipoprotein profiles but shares the 
vitamin-like properties of nicotinic acid, 
has virtually no GPR109A agonist activity. 
This pharmacological profile strongly sug-
gests that GPR109A is a molecular target 
involved in the clinical efficacy of nicotinic 
acid and therefore offers a potential focus 
to explore the biological processes involved 
in the highly desirable therapeutic profile 
achieved following chronic treatment with 
this drug (8–9).

The best-described action of nicotinic 
acid is the inhibition of adipocyte lipolysis. 


