Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Genetics of acquired long QT syndrome
Dan M. Roden, Prakash C. Viswanathan
Dan M. Roden, Prakash C. Viswanathan
Published August 1, 2005
Citation Information: J Clin Invest. 2005;115(8):2025-2032. https://doi.org/10.1172/JCI25539.
View: Text | PDF
Review Series

Genetics of acquired long QT syndrome

  • Text
  • PDF
Abstract

The QT interval is the electrocardiographic manifestation of ventricular repolarization, is variable under physiologic conditions, and is measurably prolonged by many drugs. Rarely, however, individuals with normal base-line intervals may display exaggerated QT interval prolongation, and the potentially fatal polymorphic ventricular tachycardia torsade de pointes, with drugs or other environmental stressors such as heart block or heart failure. This review summarizes the molecular and cellular mechanisms underlying this acquired or drug-induced form of long QT syndrome, describes approaches to the analysis of a role for DNA variants in the mediation of individual susceptibility, and proposes that these concepts may be generalizable to common acquired arrhythmias.

Authors

Dan M. Roden, Prakash C. Viswanathan

×

Figure 5

Options: View larger image (or click on image) Download as PowerPoint
Mechanisms of sudden death with HERG blockade. Drug blockade of the HERG...
Mechanisms of sudden death with HERG blockade. Drug blockade of the HERG channel (left) produces prolongation (blue) and an EAD (red) in the cardiac action potential. These changes, which are heterogeneous across the ventricular wall, generate QT interval prolongation and, through mechanisms described further in the text, torsade de pointes (right; upper panel). In this example, the arrhythmia degenerates to ventricular fibrillation (VF).
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts