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Epithelial hyperplasia and metaplasia are common features of inflammatory and neoplastic disease, but the
basis for the altered epithelial phenotype is often uncertain. Here we show that long-term ciliated cell hyper-
plasia coincides with mucous (goblet) cell metaplasia after respiratory viral clearance in mouse airways. This
chronic switch in epithelial behavior exhibits genetic susceptibility and depends on persistent activation of
EGFR signaling to PI3K that prevents apoptosis of ciliated cells and on IL-13 signaling that promotes transdif-
ferentiation of ciliated to goblet cells. Thus, EGFR blockade (using an irreversible EGFR kinase inhibitor des-
ignated EKB-569) prevents virus-induced increases in ciliated and goblet cells whereas IL-13 blockade (using
s-IL-13R02-Fc) exacerbates ciliated cell hyperplasia but still inhibits goblet cell metaplasia. The distinct effects
of EGFR and IL-13 inhibitors after viral reprogramming suggest that these combined therapeutic strategies
may also correct epithelial architecture in the setting of airway inflammatory disorders characterized by a
similar pattern of chronic EGFR activation, IL-13 expression, and ciliated-to-goblet cell metaplasia.

Introduction

Epithelial cell hyperplasia and metaplasia are common conse-
quences of inflammation and may be associated with protective
as well as pathogenic outcomes. In the lung, airway epithelial
remodeling can be life threatening, since mucous cell metaplasia
is the foundation for hypersecretion that can obstruct the airway
lumen. Despite the critical nature of this process, little is known
about how mucous cell metaplasia develops in the setting of acute
or chronic inflammatory disease. Particularly, little is known
about the mechanism for what is likely the most common cause
of mucous cell metaplasia in the lung, i.e., respiratory viral infec-
tion, since previous work has focused on bacterial, allergic, and
carcinogenic stimuli. Perhaps because of the paucity of mechanis-
tic information, no effective and specific pharmacologic treatment
is currently available to treat epithelial cell metaplasia in general or
mucous cell metaplasia in particular.

In this context, recent work on mucous cell metaplasia has often
focused on signaling pathways initiated by activation of the IL-13
receptor (IL-13R) and EGFR (also designated ErbB1 and HER1).
The experimental role of IL-13R was established when a decoy
receptor for IL-13 (soluble IL-13Ra2-Fc) was found to inhibit aller-
gen-induced mucous (goblet) cell formation in mice (1, 2). These
reports have been followed by evidence that IL-13 can directly drive
mucin gene expression in airway epithelial cells cultured under
physiologic conditions and in vivo (3-6). Moreover, IL-13 is often
overexpressed in the setting of mucous cell metaplasia in asthma
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and chronic obstructive pulmonary disease (COPD) (7-9). The
downstream events connecting IL-13R activation to mucin gene
expression are incompletely defined, but preliminary work with
inhibitors indicates requirements for MEK/ERK, p38 MAPK, and
PI3K activation, at least in vitro (5). These effects appear to develop
in concert with calcium-activated chloride conductance to promote
fluid secretion and consequent mucociliary clearance (10). This
function may be connected to expression of a calcium-activated
chloride channel (CLCA) that is specific for goblet cells (11). Thus,
IL-13 appears to directly stimulate epithelial mucin formation, but
the type of epithelial cell that is targeted and the cellular process for
mucous cell differentiation remain less certain.

Similar to the case for IL-13, the pathway for EGFR activa-
tion leading to mucous cell metaplasia is not well defined. First,
altered EGFR expression has been found in humans with asthma
(known to exhibit goblet cell metaplasia) and in animal models of
asthma, but expression has been variably found on goblet cells as
well as other types of airway epithelial cells, e.g., squamous, basal,
ciliated, and Clara cells (12-21). This variability is further compli-
cated by uncertainty over the specificity of anti-EGFR antibodies
and their capacity to define EGFR activation status. Second, simi-
lar to the case for IL-13, animal models often rely on allergen chal-
lenge that appears to drive mucin gene expression predominantly
in cells that resemble Clara cells by morphology (22-24). These
cells express Clara cell secretory protein (CCSP), but tracking cell
lineage is complicated by EGFR and IL-13-dependent stimulation
of CCSP expression, perhaps in multiple cell types (25). Third,
extensions of these studies to signaling mechanisms have often
been performed in transformed cell lines (17, 19, 26-31), and even
when primary airway epithelial cells were used, cultures were not
fully differentiated under physiologic conditions to a respiratory
epithelium (18, 32-34). Thus, 1 biochemical scheme from this
work suggests that IL-13 stimulation of EGFR signaling leads to
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mucin gene expression (21), but studies of airway epithelial cells
under physiologic conditions show that IL-13 fully stimulates
goblet cell metaplasia despite EGFR blockade (5). Thus, there is
likely a fundamental requirement for EGFR activation in muco-
ciliary differentiation (5, 35), but how this requirement may be
linked to the modification of epithelial cell growth or differen-
tiation during cytokine stimulation, inflammation, and/or infec-
tion still needed to be defined. Fourth, the whole subject of EGFR
regulation of cell survival, which appears so critical for neoplasia,
has not yet been taken into account in the process of epithelial
cell metaplasia during inflammatory disease. Finally, previous
approaches concentrate predominantly on the acute phase of epi-
thelial remodeling without addressing chronic goblet cell meta-

Results

Persistent activation of EGFR on ciliated epithelial cells. Common human
paramyxoviruses often replicate poorly in mice, but mouse parain-
fluenza virus (Sendai virus; SeV) replicates with high efficiency in
the bronchiolar mucosa, with consequent induction of immune-
response gene expression, immune cell infiltration, and damage of
the epithelium (37). This host response allows for complete clearance
of SeV by 10-12 days after inoculation (36, 38). The injury is followed
by epithelial repair and restoration of normal airway architecture in
some mouse strains (see below) but can be followed by long-term
(likely permanent) goblet cell metaplasia in C57BL/6] mice that
appears at 21 days after inoculation (36). Since EGFR signaling is
broadly implicated in epithelial remodeling, we assessed EGFR

plasia that may be found in hypersecretory airway diseases
such as asthma and COPD.

To address these issues, we studied a mouse model of air-
way epithelial remodeling that is inducible by viral infection
and features a delayed but permanent switch to goblet cell
metaplasia (36). The observed patterns of acute infection
and chronic remodeling were characterized in detail, in par-
ticular the dissociation between the acute antiviral response
that allows for viral clearance versus the subsequent post-
viral response manifested by chronic airway hyperreactivity
and goblet cell metaplasia (36, 37). When we examined the
behavior of EGFR signaling in this model, we detected acute
activation of EGFR during the epithelial repair phase that
was replaced by chronic activation of EGFR localized to cili-
ated epithelial cells. This chronic activation coincides with
ciliated cell hyperplasia without a requirement for ongo-
ing epithelial proliferation. Both ciliated cell hyperplasia
and goblet cell metaplasia could be prevented by treatment
with a new irreversible inhibitor of EGFR tyrosine kinase.
These findings suggested a role for EGFR-dependent signal-
ing pathways in ciliated cell survival, and we subsequently
detected and defined such a mechanism that proceeds via
PI3K/Akt signaling to selectively protect ciliated epithelial
cells from apoptosis. However, this mechanism did not read-
ily explain a requirement for EGFR signaling in goblet cell
metaplasia until we next detected ciliated cells that appeared
to transdifferentiate to goblet cells under pressure from IL-13
stimulation. Thus, in vivo inhibition of IL-13 signaling
blocks goblet cell formation but also, by preventing trans-
differentiation, further increases the level of ciliated cell
hyperplasia. The results thereby provide a new paradigm
for chronic goblet cell metaplasia that depends on persis-
tent activation of 2 complementary pathways: EGFR-PI3K
signals that protect against ciliated cell apoptosis and IL-13
signals that promote ciliated to goblet cell transdifferentia-
tion. This scheme is consistent with EGFR and IL-13 effects
on epithelial cells as well as evidence of ciliated cell EGFR
activation, IL-13 production, and goblet cell metaplasia
in the epithelium of asthmatic subjects. Therefore, treat-
ment to fully restore normal epithelial behavior in asthma
and related hypersecretory conditions such as COPD may
need to be directed at combined correction of EGFR- and
IL-13-dependent abnormalities in airway epithelial cell
survival and differentiation. In that regard, we establish the
efficacy of an orally active and irreversible EGFR inhibitor
and a soluble IL-13 decoy to prevent these abnormalities in
epithelial architecture.
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Figure 1

Persistent EGFR activation on ciliated epithelial cells after viral infection. (A)
Representative photomicrographs of airway sections from C57BL/6J mice
obtained at 21 days after inoculation with SeV or an equivalent amount of
SeV-UV and then immunostained for EGFR and p-EGFR as well as compe-
tition by 50-fold antigen (Ag) excess. Scale bar: 20 um. (B) Representative
photomicrographs of airway sections obtained from mice at 21 days after
inoculation with SeV and then subjected to immunofluorescent staining for
EGFR, p-tubulin, CCSP, and MUC5AC alone and in combination. Primary
anti-EGFR Ab binding was detected by anti-CY3 Ab (red fluorescence) while
others were detected by anti-FITC Ab (green fluorescence). Scale bar: 20 um.
Similar results were obtained for mice treated with SeV-UV.

Volume 116 ~ Number2  February 2006



>

+ CCSP

SeV-Uv

B [ sevuv [l sev Pl day 21
[] sev Piday 12 B sev Pl day 21 + EKB
75+ 10

4]

=

o

£ E i

E - _

=

= *

@

E 50+ * 5+

@

w

[1+]

o

E : 4 *

5

@

O |

pB-Tubulin CCSP MUCS5AC

Figure 2

Effect of EGFR blockade on airway epithelial remodeling after viral
infection. (A) Photomicrographs of airway sections obtained at 21 days
after inoculation with SeV or SeV-UV and then subjected to immuno-
fluorescent staining for p-tubulin (green fluorescence) and CCSP (red
fluorescence) and immunostaining for MUC5AC. Immunostaining with
nonimmune IgG gave no signal above background (data not shown).
Scale bars: 20 um. (B) Corresponding quantitative data for conditions in
A plus postinoculation day 12 (Pl day 12) without treatment and day 21
after treatment with EKB-569 for days 10-21 after inoculation. Values
represent mean + SEM. *Significant difference from SeV-UV control.

behavior in mouse airway epithelium in this model. Western blot
analysis indicated that anti-EGFR and anti-phospho-EGFR (anti-
p-EGFR) antibodies specifically recognized the receptor in airway tis-
sue samples (data not shown). Immunostaining of airway tissue with
anti-EGFR antibody indicated that EGFR expression was predomi-
nantly localized to the apical membrane of ciliated epithelial cells,
although other cell types (e.g., basal cells and airway smooth muscle
cells) were also weakly immunostained (Figure 1A). No significant
difference was observed in the pattern or the level of anti-EGFR
immunostaining between mice infected with SeV and control mice
that were inoculated with UV-inactivated SeV (SeV-UV). In contrast,
immunostaining for p-EGFR (using an anti-p-EGFR antibody that
recognizes phosphorylated Tyr84) indicated that levels of activated
EGFR were persistently increased at 21 days after inoculation with
SeV compared with uninoculated or SeV-UV-inoculated control
mice. Similar to the pattern for EGFR expression, p-EGFR was also
localized mainly to the apical surface of ciliated epithelial cells, but
in this case, apical cell staining was also accompanied by correspond-
ing nuclear staining in this same ciliated cell population (Figure 1A).
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Other cell types (e.g., basal cells) were also weakly immunostained in
nuclear and cytosolic locations. These findings are consistent with
reports of nuclear translocation of activated EGFR (39). This pat-
tern of immunostaining indicated that the initial EGFR antibody
recognizes predominantly the unphosphorylated receptor. For both
antibodies, immunostaining was completely abolished by preabsorp-
tion with corresponding antigen. In addition, normal rabbit IgG was
used as a negative isotype control and showed no significant signal
above background. In further support of EGFR expression local-
ized predominantly to ciliated epithelial cells, double labeling and
immunofluorescence detected by laser scanning confocal microscopy
indicated that EGFR colocalized with a marker for ciliated epithelial
cells (i.e., B-tubulin) but not with markers for Clara cells (i.e., CCSP)
or goblet cells (i.e., MUCSAC) in mouse airways (Figure 1B).

This pattern of EGFR immunostaining found in mice was simi-
lar to the one in human subjects. In particular, EGFR expression
was also localized to the apical cell membrane of ciliated epithelial
cells in normal and asthmatic subjects, and p-EGFR was increased
in asthmatic subjects that also manifested goblet cell metaplasia
(Supplemental Figure 1; supplemental material available online
with this article; doi:10.1172/JCI25167DS1). Expression of p-EGFR
was similarly localized to the apical portion of ciliated epithelial
cells, and expression was accompanied by corresponding nuclear
staining in the same ciliated cells. Additional, albeit weaker, p-EGFR
immunostaining was also present on basal cells in both normal and
asthmatic subjects. This finding was also consistent with previous
reports of EGFR expression in this basal cell population (12, 15,
18, 19). The present pattern of EGFR localization to the apical and
ciliary regions of ciliated epithelial cells is consistent with obser-
vations in developing lung and other sites (40-43). Others report
basolateral localization of EGFR in some epithelial tissues (e.g., gut
and kidney) (44, 45) and in airways (46); we find expression at this
location as well but without any predilection for ciliated cells. In
either case, the consistent finding of EGFR and p-EGFR expression
on ciliated epithelial cells in mouse and human airways led us to
continue these studies in a mouse model of asthma, where experi-
mental conditions and genetic background are more completely
controlled and more extensive lung sampling is possible.

EGFR as a critical component in epithelial remodeling. To define a func-
tional role for persistent EGFR signaling on ciliated epithelial cells,
lung sections were subjected to immunostaining with markers for
ciliated epithelial cells, Clara cells, and goblet cells. Quantitative anal-
ysis of cell types found in the airway epithelium indicated that SeV-
infected mice developed increases in ciliated and goblet cells and con-
comitant decreases in Clara cells at day 21 (but not by day 12) after
inoculation compared with control mice inoculated with SeV-UV
(Figure 2). We next determined whether EGFR signaling was neces-
sary for these observed changes in epithelial architecture. For these
studies, we used a new irreversible EGFR inhibitor (EKB-569) that
selectively inhibits EGFR signaling in airway epithelial cells in vitro
(Supplemental Figure 2). To achieve blockade in vivo, we adminis-
tered EKB-569 orally each day from postinoculation day 10 (so as not
to interfere with viral clearance or epithelial repair) through day 21
(when the remodeling response developed). Under these treatment
conditions, EKB-569 also blocked EGFR signaling in vivo (Supple-
mental Figure 2). Moreover, when provided in this way, EGFR
inhibitor treatment also helped to correct all 3 aspects of epithelial
remodeling. Specifically, we observed complete blockade of ciliated
cell increases and Clara cell decreases and partial but significant inhi-
bition of goblet cell metaplasia (Figure 2B). EKB-569 treatment had
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no effect on the total number of airway epithelial cells (cytokeratin-
staining cells were 133 + 3 after vehicle and 137 + 5/mm basement
membrane after drug treatment on postinoculation day 21), consis-
tent with compensatory changes in other epithelial cell (e.g., basal
and Clara cell) populations. Based on immunohistochemical data
showing localization of EGFR and f-tubulin expression together
in the same ciliated cell population, we expected that EGFR block-
ade might influence ciliated cell hyperplasia. However, the effect of
interrupting EGFR signals on goblet cell (or Clara cell) levels was
unexpected based on the relative absence of activated EGFR expres-
sion on either of these cell types. Further experiments were therefore
designed to better understand the mechanisms underlying the role
of EGFR in chronic epithelial remodeling.

We reasoned that epithelial hyperplasia could either be a result
of increased proliferation or decreased cell death. We therefore ini-
tially looked for evidence of increased proliferation in mice with
epithelial remodeling. As noted previously, there was transient epi-
thelial proliferation (marked by BrdU labeling) during days 5-12
after infection (Figure 3, A and B, and ref. 47). The same pattern of
immunostaining was found for Ki-67 and proliferating cell nuclear
antigen (PCNA) proliferation markers (data not shown). This pro-
liferative response likely allows for replacement of host cells that
suffer direct cytopathic effects and immune-mediated cell death in
the wake of viral replication (38). Not surprisingly, this repair phase
is accompanied by EGFR activation in epithelial cells (generally
basal cells) as well as subepithelial (likely immune) cells (Figure 3C).
However, by postinoculation day 21, there was no longer evidence
of an ongoing proliferative response, since cellular proliferation
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Figure 3

Airway epithelial remodeling without cellular prolifer-
ation in genetically susceptible mice. (A) Represen-
tative photomicrographs of airway sections obtained
i from C57BL/6J and Balb/cJ mice at indicated
days after inoculation with SeV and subjection to
immunostaining for BrdU. (B) Corresponding quan-
titative data for conditions in A. (C) Representative
photomicrographs of airway sections from indicated
conditions, immunostained for p-EGFR. (D) Repre-
sentative photomicrographs of airway sections from
indicated conditions, immunostained for MUC5AC.
(E) Quantitative morphometry for airway sections
that were obtained from Balb/cJ mice at 21 days after
inoculation with SeV or SeV-UV and subjection to
immunostaining for -tubulin, CCSP, and MUC5AC.
For B and E, values represent mean + SEM.
*Significant difference from day 0 or SeV-UV control.
Scale bars: 20 um.

*

L —r

12 21

CCsP
MUCSAC

was no different than in noninoculated control mice (Figure 3,
Aand B). Moreover, this replacement phase (marked by BrdU uptake
and EGFR activation in the basal cell compartment) was the same
in a strain of mice (Balb/cJ) that does not develop long-term epi-
thelial remodeling (Figure 3, A-E). Thus, this transient proliferative
response could not account for the subsequent long-term remod-
eling that was found only in genetically susceptible (C57BL/6])
mice. Moreover, the lack of an ongoing epithelial proliferative
response suggested that ciliated cell hyperplasia might reflect a
selective increase in EGFR-dependent cell survival based on sup-
pression of cell death in this subpopulation of epithelial cells.
EGEFR signaling and ciliated cell survival in culture. To determine
whether EGFR provides necessary survival signals to ciliated epi-
thelial cells, we next analyzed EGFR blockade in tissue culture
where macrophage clearance would not obscure detection of apop-
totic cells and where signaling events could be better defined. Initial
experiments aimed to determine whether EGFR was localized to
ciliated epithelial cells in culture as was found in vivo. We therefore
reconstituted the epithelial system in vitro using air-liquid interface
cultures of airway epithelial cells harvested from mouse trachea. In
this system, ciliated (B-tubulin-positive) cells represented 45% + 1%
of the total cell population, a level that was similar to normal mouse
airways (36% for large-sized airways) and to values for mouse tra-
cheal specimens reported previously (48). As was the case in vivo,
the ciliated epithelial cells in culture exhibited constitutive expres-
sion of EGFR and p-EGFR along the apical cell membrane; p-EGFR
was found in this location as well as a nuclear one following activa-
tion by ligand (Figure 4A and data not shown). Others reported
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Figure 4

Effect of EGFR signaling pathways on cili-
ated epithelial cell death in culture. (A) Rep-
resentative photomicrographs of airway epi-
thelial cell cultures placed under air-liquid
interface conditions for 10 days followed by
immunostaining for EGFR (top panel) or double
immunofluorescence and confocal microscopy
for B-tubulin and either EGFR (middle panel)
or p-EGFR (bottom panel). Scale bars: 20 um.
(B) Western blot analysis of mTEC cultures that
were placed in basic medium for 1 day and then
treated with EGF (1 or 10 ng/ml) for 10 minutes
with or without concomitant inhibitor. Each inhib-
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that EGFR may also be localized to the basolateral cell membrane
in cultured airway epithelial cells (46), but any differences could
depend on culture conditions, receptor heterogeneity that influ-
ences recognition by different antibodies, or receptor abundance
that may influence apical versus basolateral localization (49).

We next defined the role of EGFR signaling in ciliated epithelial
cell growth and survival using treatment with selective inhibitors.
Initial experiments to validate inhibitor specificity used cultures
that were first removed from complete medium and then stimu-
lated with EGF to maximize EGFR-dependent signals. Under these
conditions, we found that EGFR tyrosine kinase inhibition with
PD153035 blocked all downstream signals, while PI3K inhibition
with LY294002 blocked phosphorylation of Akt,and MEK1/2 inhibi-
tion with PD98059 blocked phosphorylation of ERK1/2 (Figure 4B).
The next experiments determined the effect of these EGFR signals
on ciliated cell survival. We found that treatment with PD153035
caused a dose-dependent loss of ciliated cells out of proportion to
the consequent decrease in total epithelial cells (Figure 4C). Similar
results were obtained with another EGFR-specific inhibitor, AG1478
(data not shown). Recognizing that EGFR activation triggers several
downstream signaling pathways, we next treated mouse tracheal epi-
thelial cell (mTEC) cultures with inhibitors of PI3K and MEK1/2 and
found that only treatment with LY294002 caused a similar loss of
ciliated epithelial cells (Figure 4D). Since this culture system does not
exhibit significant cell growth at high density, it appeared likely that
the loss of ciliated epithelial cells was due to decreased cell survival.

Accordingly, we next tested whether blockade of EGFR signaling
led to concordant changes in the level of apoptosis. In parallel with
loss of ciliated epithelial cells, we also observed rapid activation of
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tions to the lower chamber for 6 hours and the
upper chamber for 2.5 hours before addition
of EGF to both chambers. For each condition,
cell lysates were blotted against anti-EGFR,
p-EGFR, p-Akt, or p-ERK1/2 Ab, and Ab bind-
ing was detected by enhanced chemilumines-
cence. (C) Representative photomicrographs of
mTEC cultures that were treated with vehicle or
PD153035 (0.3 uM) for 7 days at 37°C and sub-
jected to immunofluorescent staining for 3-tubu-
lin IV and Hoescht 33432. Scale bar: 20 um. (D)
Quantitative analysis of $-tubulin staining cells
(expressed as a percentage of total Hoechst
staining cells) without and with treatment with
PD153035, LY294002, and PD98059, given at
the indicated doses for 7 days. *Significant dif-
ference versus 0 uM.

Q

50 I+

caspase-3 and TUNEL-positive cells (within 6 hours) in the same
pattern that we had observed for cell loss, i.e., when EGFR or PI3K
but not MEK1/2 signaling was blocked (Figure SA). In this setting,
TUNEL-positive cells were undergoing apoptosis, since this process
was blocked by treatment with the caspase-inhibitor z-Val-Ala-Asp
fluoromethylketone (z-VAD-fmk) (Figure 5B) and was associated
with caspase-3 and caspase-9 cleavage/activation (Figure 5C) and
loss of mitochondrial membrane potential (Figure 4D). These results
therefore define an EGFR signaling pathway that protects against
ciliated cell apoptosis via selective PI3K signaling to downstream fac-
tors that prohibit mitochondrial dysfunction and consequent pro-
grammed cell death. As discussed below, the findings stand in some
contrast to reports of EGFR and other receptor signals to ERK1/2
that prevent cell death under other circumstances (38, 50, 51).
EGEFR signaling and goblet cell metaplasia in vitro and in vivo. As noted
above, the actions of EGFR signaling on ciliated cells did not read-
ily explain the effect of EGFR blockade on goblet cell metaplasia in
vivo. In particular, selective EGFR expression and consequent sur-
vival function on ciliated cells could account for inhibition of cili-
ated cell hyperplasia but could not account directly for blockade of
goblet cell metaplasia as well. Despite the low levels of EGFR expres-
sion on goblet cells, we next questioned whether EGFR might still
have a similar functional effect on goblet cell survival. To test this
possibility, we took advantage of concomitant studies that defined
IL-13 dependence of goblet cell metaplasia after viral infection (E.Y.
Kim and M.J. Holtzman, unpublished observations). This effector
pathway therefore overlaps with that established in studies of mucin
production after allergen challenge (1, 2). In addition, we recognized
the capacity of IL-13 treatment to stimulate goblet cell formation in
Volume 116 313
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Effect of EGFR signaling pathways on apoptosis in airway epithelial cell cultures. (A) Representative photomicrogaphs of mTEC cultures that
were treated with vehicle, PD153035 (0.3 uM), LY294002 (50 uM), and PD98059 (50 uM) for 3 days at 37°C and then subjected to immuno-
fluorescent staining for cleaved fragment of active caspase-3 (act caspase-3) or TUNEL reaction. Scale bar: 20 um. (B) Quantitative analysis
of information in A for active caspase-3 staining cells (expressed as percentages of total Hoechst staining cells), using treatment conditions
from A as well as PD15305 plus z-VAD-fmk (100 uM). (C) Immunoblot analysis of active caspase-3 and caspase-9 in cell lysates from mTEC
cultures using treatment conditions from A. Anti—caspase-9 antibody recognizes precursor (caspase-9) and the cleaved fragment of active
caspase-9. (D) Flow cytometric analysis of JC-1 staining of mTEC cultures using treatment conditions from A. Values represent percentages of
cells with decreased mitochondrial membrane potential (AWm) detected by shift from FL2 to FL1. For B and D, values represent mean + SEM.

*Significant difference from vehicle alone.

airway epithelial cells cultured from guinea pigs and humans (3-5) as
well as mice (J.D. Morton and M.J. Holtzman, unpublished observa-
tions). Cultured mTECs were therefore treated with IL-13, and the
subsequent development of goblet cells was marked by expression of
MUCSAC. Cell death was tracked with activation of caspase-3, since
the procedure for the TUNEL reaction appears to decrease mucin
content. In contrast to ciliated cells, we found that goblet cells did
not exhibit increased rates of cell death in response to EGFR inhi-
bition (Figure 6A). Quantifying the level of active caspase-3 cells in
MUCS5AC-positive versus MUCSAC-negative populations indicated
that the level of apoptosis was similar in goblet cells with or without
EGFR blockade, whereas the nongoblet cells (i.e., ciliated epithelial
cells) exhibited significant caspase-positive staining under these
treatment conditions (Figure 6B). Moreover, the level of nongoblet
cell death was similar with or without IL-13 treatment, indicating
that the death pathway in ciliated cells is not influenced by IL-13-
dependent actions on goblet cell formation.

Since EGFR blockade caused no effect on goblet cell survival
in vitro, we reasoned that the potent effects of EGFR blockade
on goblet cell metaplasia in vivo might be downstream of EGFR
blockade of ciliated cell hyperplasia. Support for that possibility
314
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was obtained when we found that IL-13 treatment led to the devel-
opment of cells that transiently shared characteristics of ciliated
and goblet cells. Thus, electron microscopy of mTEC cultures pro-
vided evidence of a subset of cilia-goblet cells with preservation of
cilia and the gradual development of mucous granules under the
influence of IL-13 (Figure 7). These transitional cells were most
prominent early (1-2 days) after initiation of IL-13 treatment,
while mature goblet cells without cilia were most abundant at
later times (5 days) after treatment. The morphologic characteris-
tics of cilia-goblet cells under these conditions appear quite simi-
lar to ciliated cells containing mucous granules found by electron
microscopy in airways of allergen-challenged mice (23).

Since airway epithelial cultures were established under conditions
that required IL-13 treatment to promote goblet cell formation in an
environment that would otherwise produce ciliated cells, these cilia-
goblet cells were likely being redirected by IL-13 to transdifferentiate
from a ciliated to goblet cell phenotype. The possibility that simi-
lar transdifferentiation also developed in vivo was next confirmed
in sections taken from mice exhibiting goblet cell metaplasia after
inoculation with SeV. Confocal microscopy indicated that, while
the majority of ciliated or goblet cells expressed either -tubulin or
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MUCSAC, respectively, there was a subpopulation of epithelial cells
that expressed both p-tubulin and MUCSAC (Figure 8A). Similarly,
confocal images also indicated that, in general, ciliated but not gob-
let cells expressed EGFR, but there was an additional subpopulation
of cells that expressed both EGFR and MUCSAC (Figure 8B). In each
case, multiple confocal sections along the z axis and 3D reconstruc-
tion were used to confirm colocalization within a single cell. The
subpopulation expressing MUCSAC and 3-tubulin and or MUCSAC
and EGFR appeared to be in transition, since they did not often reach
their characteristic shape and position at the lumenal surface of the
mucosal epithelial layer as was found for mature goblet cells. In addi-
tion, in these transitioning cells, the mucous granules were often
localized in a more basal compartment of the cells versus a more
apical location for fully differentiated goblet cells. This morphologic
behavior also suggests that these cilia-goblet cells represent goblet
cell precursors. As noted previously for allergen-induced goblet cell
metaplasia, we also detected a subpopulation of epithelial cells with
coexpression of CCSP and MUCSAC (Figure 8C) at levels compa-
rable to detection of cilia-goblet cells (Figure 8E).

We next aimed to establish whether IL-13 also promotes cilia to gob-
let cell formation in vivo as we had observed in vitro. For these experi-
ments, we took advantage of a recombinant soluble IL-13R a2 Fc
fusion protein (designated sIL-13Ra2-Fc) that acts as a decoy recep-
tor to specifically block IL-13 action when delivered to mice (1, 2).
Treatment conditions were chosen to be similar to those used for
EGEFR blockade, so treatment extended from day 12 to 21 after viral
inoculation. This time frame also coincides with the induction of
IL-13, mCLCA3, and MUCSAC gene expression in concert with the
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Figure 6

Effect of EGFR inhibition on ciliated but not goblet cell death in vitro.
(A) Representative photomicrographs of mTEC cultures treated with or
without IL-13 (100 ng/ml for 5 days) and with or without subsequent
PD153035 (0.3 uM for 3 days) and subjected to immunofluorescent
staining for MUC5AC (red) and active caspase-3 (green) as well as
counterstaining with Hoescht dye (blue). Scale bar: 20 um. (B) Corre-
sponding quantitative data for A. Values represent mean + SEM for per-
centage of active caspase-3+ goblet cells (number of MUC5AC* active
caspase-3* cells x 100 / number of MUC5AC* cells) and active caspase-
3+ nongoblet cells (total number of active caspase-3+ cells x 100 / total
Hoescht staining cells). *Significant difference from vehicle control.

development of goblet cell metaplasia (Figure 8D). Under these con-
ditions, we found that sIL-13Rai2-Fc treatment was highly effective
in preventing virus-induced goblet cell metaplasia (Figure 8E). How-
ever, in some contrast to EGFR blockade, sIL-13R0.2 treatment also
caused a further increase in the level of ciliated cell hyperplasia (con-
sistent with a block in their movement to goblet cells) and no change
in Clara cell levels (consistent with the possibility that goblet cell
formation derives at least in part from ciliated cell rather than Clara
cell populations). We cannot fully exclude the possibility that other
cellular sources (e.g., Clara cells or basal cells) may also contribute to
goblet cell metaplasia in this setting, but the close match of ciliated
cell increase to goblet cell decrease after IL-13 blockade suggests that
transdifferentiation of the ciliated cell population is a significant
pathway for goblet cell metaplasia under these conditions. Indeed,
together with previous and present evidence of Clara cell expression
of mucin genes, the present results may simply provide evidence of
additional plasticity of epithelial cell differentiation.

In a final 2 sets of experiments, we again extended our findings
from mice to studies of human subjects. In the first set of experi-
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Figure 7
Identification of IL-13—dependent ciliated-to-goblet cell transdifferen-
tiation in vitro. Representative transmission electron micrographs are
shown for cultured mTECs before treatment (upper left panel) and then
after treatment with IL-13 (100 ng/ml for 2 days at 37°C; all other panels).
Early cilia-goblet cells are identified with cilia that are visible on the sur-
face of cells that also contain a few mucous granules, late cilia-goblet
cells exhibit greater numbers of mucous granules in the cytoplasm, and
mature goblet cells contain characteristic mucous granules with no cilia.
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Identification and blockade of cilia-to-goblet cell transdifferentiation in vitro and in vivo. (A) Representative photomicrographs of airway sec-
tions obtained from mice at 21 days after SeV inoculation and subjected to confocal immunofluorescence microscopy for p-tubulin (green)
and MUC5AC (red). Arrows indicate ciliated cells staining for -tubulin (ci), goblet cells staining for MUC5AC (g), and cells staining for both
B-tubulin and MUC5AC (cig). (B) Representative photomicrographs of airway sections obtained as in A but immunostained for p-EGFR (red)
and MUCS5AC (green). Arrows indicate ciliated cells staining for p-EGFR (ci), goblet cells staining for MUC5AC (g), and cells staining for both
p-EGFR and MUCS5AC (cig). (C) Representative photomicrographs of airway sections obtained as in A but immunostained for CCSP (green)
and MUCS5AC (red). Arrows indicate cells staining for CCSP (cc) or CCSP and MUC5AC (ccg). Scale bars: 20 um. (D) Quantitative analysis of
MUCS5AC-expressing cells that also immunostained for CCSP or g-tubulin. (E) Real-time PCR analysis of lung IL-13, mCLCAS3, and MUC5AC
mRNA levels corrected for GAPDH control level at indicated times after SeV inoculation. (F) Quantitative analysis of f3-tubulin, CCSP, and
Muc5AC immunostaining in mice inoculated with SeV and treated with sIL-13Ra2-Fc or control IgG on days 12, 14, 17, and 20 after inoculation.

Values represent mean + SEM *Significant difference from corresponding SeV-UV control for D and E or IgG treatment for F.

ments, we analyzed airway tissue from a group of COPD patients
that exhibited markedly increased levels of goblet cells in the airway
and provided adequate lung tissue for analysis at the time of lung
transplantation. By applying the same immunostaining protocol
for immunofluorescence and confocal microscopy as for the mouse
model, we found that sections of lung explants from COPD patients
also exhibited evidence of -tubulin-MUCSAC coexpression in a
subset of airway epithelial cells (Figure 9A). We did not detect lume-
nal staining for B-tubulin in human (or mouse) airways, consistent
with the proposal that cilia may be processed by endosomal degrada-
tion rather than shedding. As noted previously (52), CCSP-MUCS5AC
coexpression was also found in a subset of epithelial cells. In the
second set of experiments, we again applied the strategy that we
used for mouse studies and analyzed the behavior of human airway
epithelial cells in air-liquid interface culture conditions without or
with IL-13. In this case, we found that airway epithelial cells cultured
from COPD patients led to the development of a subset of cells that
coexpressed B-tubulin and MUCSAC under the influence of IL-13.
As noted previously, f-tubulin is localized within the basal bodies
of ciliated cells (53) and so provides even closer colocalization with
316
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MUCSAC found in mucous granules. The same pattern of IL-13-
induced coexpression of ciliated and goblet cell markers was found
in airway epithelial cells cultured from otherwise healthy lung trans-
plant donors in response to IL-13, even within the first day of IL-13
treatment (Figure 9C). As we did for the studies of mouse and human
tissue, we examined multiple confocal images along the z axis and
3D reconstruction to establish colocalization of ciliated and goblet
cell markers within a single cell. Thus, similar to our experience for
EGFR activation in human subjects, we found that the downstream
mechanism for goblet cell metaplasia found in the mouse model, i.e.,
IL-13-driven ciliated-to-goblet cell transdifferentiation, appears to
have a counterpart in hypersecretory human disease.

Discussion
The present report provides initial evidence that transient viral
bronchiolitis causes a long-term switch to ciliated cell hyperplasia
as well as goblet cell metaplasia and that the hyperplastic ciliated
cell population exhibits persistent EGFR activation without pro-
liferation. This finding came in some contrast to the fate of cili-
ated cells in other lung injury models where this cell population is
Volume 116
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also primarily responsible for airway repair in concert with EGFR
expression but depends on a marked proliferative response (14, 54).
The present findings therefore raised the unexpected possibility
that prolonged EGFR-dependent cell survival (not proliferation)
is critical for remodeling of epithelial structure toward a chronic
asthma/bronchitis phenotype. Support for this possibility was
obtained when we showed that EGFR blockade prevented ciliated
cell hyperplasia in vivo and caused ciliated epithelial cell apoptosis
in vitro. Additional study of airway epithelial cells cultured under
physiologic conditions indicated that ciliated epithelial cell survival
depends on uninterrupted EGFR signaling to PI3K. Otherwise, the
ciliated cells proceed toward programmed cell death (via caspase
activation) in a manner that appears analogous to virus-inducible
apoptosis (38). The fidelity of the present model to human disease
is supported by initial experiments that detect ciliated epithelial
cells with activated EGFR in airway sections from subjects with
asthma, but further studies will be needed to verify this finding and
extend it to other chronic airway diseases. Nonetheless, the present
findings indicate that the plasticity and responsiveness of ciliated
cells in the setting of airway damage and inflammation is an under-
appreciated but seminal feature of airway epithelial remodeling.
The second major set of findings of the present study was focused
on IL-13 signaling and the capacity of ciliated cells to transdiffer-
entiate to goblet cells under IL-13 stimulation. This finding was
also unexpected, since previous work had suggested that IL-13 may
cause a decrease in ciliated cells and an increase in goblet cells, but
no apparent connection was drawn between the 2 phenomena (3, 5).
In the present work, we were able to capture snapshots of epithe-
lial cells in vitro and in vivo that appear to be transitioning from
a ciliated to a goblet cell phenotype under pressure from IL-13. In
addition, we detected reciprocal increases in ciliated cell levels dur-
ing IL-13 blockade in vivo. Additional cell lineage studies of this
process are needed to fully define the mechanism of transdifferen-
tiation, but the evidence points to a program that carefully coordi-
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Figure 9

Evidence of cilia-to-goblet cell transdifferentiation in human
epithelial cells in vivo and in vitro. (A) Representative photo-
micrographs from lung sections obtained from COPD patients
and immunostained for p-tubulin and MUC5AC, counter-
stained with DAPI, and viewed with immunofluorescence
microscopy (left panel) or immunostained for B-tubulin and
MUC5AC or CCSP and MUC5AC and viewed with laser con-
focal scanning microscopy (middle and right panels). Arrows
and outlines indicate goblet cells that express MUC5AC (g),
Clara cells that express CCSP (cc), cilia-goblet cells that
coexpress B-tubulin and MUC5AC (cig), and goblet cells that
coexpress CCSP (ccg). (B) Representative photomicrographs
of human large airway epithelial cells (NLAECs) cultured from
COPD patients, incubated with IL-13 (100 ng/ml) for 5 days,
and then immunostained for B-tubulin (red) and MUC5AC
(green). (C) Representative photomicrographs of hLAECs
cultured from control (non-COPD) subjects, incubated with
IL-13 for 1 day, immunostained as in B, and then viewed with
laser confocal scanning microscopy in x-y axis and z axis
views. In B and C, arrows indicate cells that immunostained
for both y-tubulin and MUC5AC. Scale bar: 20 um.

nates ciliated and goblet cell formation to achieve proper mucosal
immunity. Indeed, epithelial EGFR activation, ciliated cell hyper-
plasia, IL-13 production, and goblet cell metaplasia appear to devel-
op together in time. This type of coordination is likely required for
efficient mucociliary function. The present results suggest that
abnormally prolonged IL-13 production may lead to goblet cell
metaplasia beyond the initial repair phase and so explain how gob-
let cell metaplasia may develop in this setting. Thus, genetic suscep-
tibility to the development of persistent EGFR activation as well as
IL-13 production after viral infection may allow for the consequent
development of goblet cell metaplasia. Whether a similar paradigm
applies to other asthmagenic stimuli (e.g., allergen exposure) will
need further study in models that mimic the human condition.
Nonetheless, the fidelity of the present model to human disease is
again supported by initial experiments that detect ciliated-to-goblet
cell transdifferentiation in airway sections and cultured cells from
patients with COPD likely under the influence of IL-13.

Together, our results on EGFR- and IL-13-dependent signaling
provide a new paradigm for epithelial host defense and remodeling
(summarized in Figure 10) that should be useful for developing a
rational basis for therapies aimed at downregulating hypersecretory
conditions. Thus, tyrosine kinase inhibitors in general and EGFR
tyrosine kinase inhibitors in particular are being broadly developed
for use in conditions exhibiting abnormal epithelial architecture,
including asthma and COPD, but the cellular signaling context
for their application to airway disease was uncertain. The present
strategy utilized an irreversible inhibitor of EGFR tyrosine kinase
activity that showed efficacy in preventing epithelial hyperplasia in
a model of intestinal neoplasia (55). In that setting, the pharmaco-
logic strategy was aimed at inhibiting epithelial proliferation, but
our findings indicate that interrupting antiapoptotic signals may be
the primary target in inflammatory airway disease. Further develop-
ment of approaches for targeting EGFR (as well as those directed
at IL-13-dependent events) will also benefit from further defining
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Number2  February 2006 317



research article

D
D

PD15305 _{%E
EKB-569 | @

RICIRICIOIC)

[
[
[
[
I
Viral clearance | :

the signaling events that regulate airway epithelial cell apoptosis
and transdifferentiation. In that regard, we provide evidence that
downstream signaling to prevent epithelial cell apoptosis proceeds
through EGFR-dependent PI3K but not MEK/ERK activation based
on selective inhibition. This finding implies that the targeted path-
way extends from EGFR homo- or heterodimerization and activation
of the receptor tyrosine kinase cytosolic domain to autophosphory-
lation of tyrosine resides within the cytoplasmic domain, docking of
Gab2/PI3K, and subsequent activation of Akt signaling (56).

As noted above, the present results for EGFR-PI3K survival sig-
naling stand in some contrast to reports of EGFR and other sig-
nals to ERK1/2 to promote cell survival under other circumstances
(51). In particular, respiratory syncytial virus may trigger EGFR
and ERK1/2 activation (and IL-8 release) in cultured epithelial
cells during the acute infection, but these studies were performed
using transformed (AS549) cells with necessarily altered death
pathways or in submerged cell cultures that do not differentiate
into ciliated epithelial cells (50). Nonetheless, acute infection with
respiratory syncytial virus (as well as SeV and influenza virus) may
promote epithelial cell survival in the acute setting based on che-
mokine-dependent activation of either PI3K/Akt or MEK/ERK sig-
naling both in vitro (using well-differentiated mouse and human
cells) and in vivo (using a mouse model of acute infection) (38).
In contrast to the situation for acute infection, the present find-
ings therefore highlight the change in epithelial survival signals in
the chronic setting and are again remarkable for using high-fidel-
ity models in vitro and in vivo to establish that EGFR signals via
PI3K/Akt selectively regulate ciliated cell survival.
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Figure 10

Scheme for virus-inducible EGFR- and IL-13—
dependent pathways controlling epithelial host
response and remodeling. EGFR activation
with receptor dimerization and receptor tyrosine
kinase phosphorylation leads to Gab1 recruit-
ment followed by PI3K activation that causes
generation of phosphatidylinositol-3,4,5-phos-
phate (PI-3,4,5-P3) and activation of PDK1/2 and
then Akt that inactivates proapoptotic factors at
the level of the mitochondria and promote cell
survival. IL-13 signaling activates IRS1/2-depen-
dent cascade to ERK1/2 and Stat6, which each
contribute to upregulation of genes (CLCA and
MUC) that promote cilia to goblet cell transdif-
ferentiation. Under physiologic conditions, these
pathways may (in conjunction with IFN-depen-
dent activation of Stat1) lead to protection from
viral infection, but if there is persistent activation
in a susceptible genetic background, the same
pathways may lead to ciliated cell hyperplasia
and goblet cell metaplasia. Rational use of spe-
cific inhibitors, e.g., EGFR and IL-13R blockers,
may fully restore normal epithelial architecture.
Grb2, growth factor receptor-bound 2; PTEN,
phosphatase and tensin homologue deleted on
chromosome 10; Sos, son-of-sevenless.

IL-13Rad

Ciliated cell hyperplasia ——— Goblet cell metaplasia |
—_

The selective effect of PI3K but not MEK1/2 inhibition in the
present system may also indicate that there is little contribution
from the interaction of downstream signaling pathway through
positive- or negative-feedback mechanisms. There is, however, sig-
nificant overlap between EGFR- and IL-13-signaling events despite
distinct outcomes. EGFR activation of a PI3K/Akt signal is directed
at preventing apoptosis, whereas IL-13 signaling to PI3K as well
as ERK1/2 and Stat6 are all directed toward increasing CLCA and
MUC gene expression to promote goblet cell formation (ref. 5 and
A.C. Patel, J.D. Morton, and M.J. Holtzman, unpublished observa-
tions). The distinct outcomes of EGFR and IL-13 activation of PI3K
and ERK1/2 are likely related to further diversity in downstream
signaling. For example, EGFR survival signals may be mediated by
Akt-dependent phosphorylation and inactivation of the proapop-
totic factor BAD whereas other downstream targets of Akt may con-
tribute to mucin gene expression (57, 58). The present results help
to lay the biologic basis for defining these downstream events.

The present results complement previous results suggesting that
Clara cells also give rise to mucous cells. Thus, allergen-induced gob-
let cell metaplasia is accompanied by morphologic and biochemical
evidence of CCSP-positive Clara cells containing mucous granules
in mice (22-24). Inhibitor effects were not reported in those studies,
butatleast 1 report showed a decrease in Clara cell level concomitant
with an increase in goblet cell level consistent with Clara-to-goblet
cell transdifferentiation (22). Similarly, others used the rat CCSP
promoter to delete endogenous IL-13R signaling and downregu-
late mucous cell metaplasia in allergen-challenged mice (6). Given
the present results, residual metaplasia in that model may have been
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derived from ciliated cells. However, comparison to the present results
is complicated by the change in stimulus (from allergen to virus) and
genetic background (from Balb/cJ to C57BL/6J). Moreover, IL-13
may regulate CCSP expression (Y. You and S. Brody, unpublished
observations, and ref. 25), and the rat CCSP promoter system may
not be specific for mouse Clara cell expression. In fact, significant
levels of CCSP-driven recombination can be found in ciliated airway
epithelial cells (59). Thus, it may be necessary to track other markers
of Clara cell lineage to fully define the relative contribution of Clara
versus ciliated cell populations to goblet cell metaplasia. We found
virus-induced decreases in Clara cell levels that were reversed by EGFR
blockade but unchanged after IL-13 inhibition, so the significance
of any Clara cell contribution to mucous cell metaplasia after viral
infection remains uncertain. Nonetheless, the present observations
of CCSP and B-tubulin colocalization with MUCSAC in mice and in
humans suggests that ciliated and Clara cells may each demonstrate
sufficient plasticity to contribute to mucous cell metaplasia.

Taken together, the present report extends the line of reasoning
that airway epithelial cells may be specially programmed for normal
immune defense (especially against respiratory viruses) and abnor-
mally programmed in airway disease. Previous work focused on
other epithelial immune responses (notably interferon signaling)
and how the epithelium clears infection in the short term (60, 61),
whereas the present work focuses on EGFR and IL-13 and how the
epithelium responds in the long term. Similar to other epithelial
responses, the EGFR and IL-13 signals were likely developed to pro-
tect host epithelial cells from the lethal effect of viruses and to opti-
mize mucosal immunity. As noted above (Figure 10), the epithelial
EGFR antiapoptotic system may protect the host cell (often the cili-
ated cell) from cytopathic effects that allow spread of infection. In
parallel, the IL-13 goblet cell system may direct increases in mucus
formation to aid mucociliary clearance of cellular and microbial
debris from the airway. Both of these strategies are likely achieved
in concert with epithelial interferon signaling that also protects the
host cell by inhibiting viral replication. The present work adds the
critical piece that demonstrates how, in some genetic settings, this
normally protective response may be skewed toward a persistent
response that results in a chronic asthma/bronchitis phenotype.
Further study is needed to determine whether this genetic suscep-
tibility is linked to EGFR mutations that confer antiapoptotic sig-
nals and inhibitor sensitivity in lung cancer cells (62) or whether
persistent EGFR activation is connected to IFN signaling and
chronic Stat1 activation found in asthma (63), as may be the case in
other epithelial barriers (64). Nonetheless, the present results dem-
onstrate that the abnormality in epithelial immune-response pro-
gramming can be corrected by targeted inhibition of critical signal-
ing steps. Treatment with EGFR tyrosine kinase inhibitors allows
for the ciliated cells to proceed toward programmed cell death ina
manner that appears analogous to virus-inducible apoptosis while
IL-13 blockade appears to prevent the transition from ciliated
to goblet cells. This new scheme thereby indicates that epithelial
remodeling toward an asthma/bronchitis phenotype depends on
both EGFR survival and IL-13 transdifferentiation signals such
that treatment to block both of these signals would be required to
fully restore the airway epithelium to its original architecture.

Methods

Mice and viral inoculation. CS7BL/6] and Balb/cJ mice were obtained from
Jackson Laboratory at 5 weeks of age and were maintained for study at 6-7
weeks of age as described previously (36-38) under protocols approved by
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the Washington University Animal Studies Committee. SeV was grown in
embryonated hen eggs and harvested to provide a viral stock solution such
that 5000 EIDs (50% egg infectious dose) was equivalent to 2 x 105 PFUs.
This inoculum or an equivalent amount of UV-inactivated SeV was deliv-
ered intranasally in 30 ul PBS under ketamine/xylazine anesthesia. Under
these conditions, viral tissue levels are maximal at 3-5 days after inocula-
tion, and viral clearance is complete by day 12 (36-38). Sentinel mice and
experimental control mice were handled identically to inoculated mice
and exhibited no serologic or histologic evidence of exposure to 11 rodent
pathogens (including SeV). For EGFR blockade, mice were treated with
EKB-569 (obtained from L.M. Greenberger, Wyeth Pharmaceuticals, Pearl
River, New York, USA; 20 mg/kg in pH 2.0 water given by gavage) or vehicle
control given daily for postinfection days 10-21. For IL-13 blockade, mice
were given subcutaneous injections of sIL-13Ra2-Fc (obtained from D.D.
Donaldson, Wyeth Ayerst, Cambridge, Massachusetts, USA; 200 ug/mouse
in PBS) or control Fc at 12, 14, 17, and 20 days after inoculation.
Histochemistry. Mouse lung was fixed by intratracheal instillation of 4%
paraformaldehyde at 25-cm H,O pressure, embedded in paraftin, and cutinto
3-um thick sections for H&E or immunostaining. For immunostaining, tissue
sections were deparaffinized, rehydrated in graded alcohol, and encircled with
a hydrophobic film (ImmEdge PEN; Vector Laboratories). For antigen retriev-
al, sections were digested with proteinase K (Sigma-Aldrich) at a final con-
centration of 40 ug/mlin PBS for 5 minutes and then treated in 3% hydrogen
peroxide in distilled water for 10 minutes to quench endogenous peroxidase
activity. Nonspecific protein binding was blocked with 3% BSA and 2% goat
serum in Tris-buffered saline (pH 8.0) with 0.2% Tween 20 (TBST) for 1 hour.
Primary antibodies were diluted in blocking buffer and incubated overnight
at4°Catafinal concentration of 0.05 or 0.1 ug/ml for human and mouse tis-
sue sections, respectively. EGFR was detected using rabbit anti-human EGFR
antibody SC-03 (Santa Cruz Biotechnology Inc.) directed against amino
acid residues 1005-1016, which are identical to corresponding sequences in
murine EGFR. Phosphorylated EGFR (p-EGFR) was detected using rabbit
anti-p-EGFR (Tyr®%) antibody 2231 (Cell Signaling Technology) directed
against phosphorylated Tyr#. For this antibody, final concentrations of 0.16
and 0.32 ug/ml were used for human and mouse tissues, respectively. Ciliated,
Clara, and goblet cells were identified using mouse anti-f-tubulin IV mAb
(Sigma-Aldrich), goat anti-CCSP antibody (Santa Cruz Biotechnology), and
mouse anti-human MUCSAC mAb 45M1 (Lab Vision Corp.), respectively.
To verify specificity, sections were also incubated with primary antibodies
that were preabsorbed with 10-fold excess of peptide antigen or with nonim-
mune rabbit IgG (Santa Cruz). After primary antibody binding, sections were
washed with TBST and then incubated with biotinylated goat anti-rabbit IgG
(2 ng/ml). Signals were amplified with the Elite ABC method and 3,3'-diami-
nobenzidine chromogen according to the manufacturer’s protocols (Vector
Laboratories). Sections were counterstained with hematoxylin, dehydrated,
and mounted with Cytoseal 60 (Stephens Scientific).
Immunofluorescence was performed in the same manner as
immunostaining for light microscopy except that tissues were frozen in Tis-
sue-Tek OCT (Sakura Finetek Co.), sections were blocked with 2% donkey
serum (Jackson ImmunoResearch Laboratories Inc.), primary antibody bind-
ing was detected using CY-3- or FITC-conjugated antibodies (Jackson Immu-
noResearch Laboratories Inc.) for 30 minutes at 25°C, and sections were
counterstained with Hoechst dye 33432 (Invitrogen Corp.). Sections were
imaged with light or immunofluorescent microscopy (BX-51; Olympus) inter-
faced to a digital photomicrography system (CCD Camera and MagnaFire
software, version 2; Optronix). Reporter was quantified by counting ciliated
cells in pulmonary airways per mm of basement membrane with analysis per-
formed using the NIH Image program (http://rsb.info.nih.gov/nih-image), as
described previously (36, 37, 63). Confocal microscopy was performed using a
Zeiss laser scanning system with LSM-S10 software, version 3.2.
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Human tissue procurement and analysis. Asthmatic patients with and with-
out glucocorticoid treatment and healthy control subjects were recruited,
characterized, and subjected to endobronchial biopsy as described previ-
ously (37, 63). Endobronchial biopsies were washed with PBS and incu-
bated with 10% neutral buffered formalin for 18 hours at 25°C followed
by histochemistry as described above. In addition, we obtained lung tis-
sue samples from COPD patients who were undergoing lung resection or
transplantation and processed them as described above. All human studies
were approved by the Washington University Human Studies Committee,
and all subjects gave informed consent.

Proliferation markers. For BrdU immunostaining, mice received BrdU
(100 mg/kg) intraperitoneally at 48 hours, 24 hours, and 4 hours prior to
euthanasia. BrdU was detected with an anti-BrdU staining kit (Zymed Labora-
tories Inc.) according to the manufacturer’s protocol. Ki67 immunostaining,
was performed with anti-Ki67 Ab (Novocastra) using the same protocol as
for EGFR immunostaining except for pretreatment of heat-induced antigen
retrieval using Antigen Unmasking Solution (Vector Laboratories). PCNA
staining was performed with biotinylated anti-mouse PCNA Ab (DakoCyto-
mation) using the ABC method (Vector Laboratories).

Airway epithelial cell culture and treatment. Primary air-liquid interface cultures
of mTECs were established as described previously (53). Human airway epi-
thelial cell cultures were established from tracheobronchial specimens har-
vested from lung explants of COPD patients undergoing transplantation and
from lung transplant donors without lung disease using the same culture
conditions. In all cases, cells were grown in basic medium (DMEM/Ham’s
F-12 with 30 mM HEPES, 4 mM L-glutamine, 3.5 mM NaHCOj3, 0.01% Fun-
gizone, and penicillin/streptomycin) supplemented with 10 pg/ml insulin,
10 pug/ml transferrin, 0.1 ug/ml cholera toxin, 25 ng/ml EGF (BD), 30 ug/ml
bovine pituitary extract, and 5% FBS in the upper and lower compartments.
After the cells developed transmembrane electrical resistance greater than
1000 Ohm/cm?, the air-liquid interface condition was established by wash-
ing the membrane with PBS and changing the medium in the lower compart-
ment to basic medium supplemented with 2% NuSerum (BD Biosciences).
For EGFR stimulation, cells were incubated in basic medium for 24 hours and
then in basic medium containing EGF (1-100 ng/ml; Upstate Biotechnol-
ogy) added to the upper and/or lower compartments for 10 minutes at 37°C.
EGFR signaling inhibitors or vehicle control (0.1 % DMSO) were added to the
lower compartments on a daily basis for long-term experiments or for 1.5-6
hours to the upper and lower compartments for short-term experiments.
EGFR tyrosine kinase inhibitor PD153035, MEK1/2 inhibitor PD98059,
EGEFR tyrosine kinase inhibitor AG1478, and PI3K inhibitor LY294002 were
from Calbiochem, and z-VAD-fmk was from Enzyme Systems Products.
Recombinant human or mouse IL-13 from Preprotech was added to upper
and lower compartments at 24 hours before air-liquid interface conditions
and was maintained in the lower compartment throughout the experiment.

Western blotting. For whole lung analysis, the left lobe of mouse lung was
homogenized in RIPA buffer (1% NP-40, 0.5% sodium deoxycholate, 0.1%
SDS in PBS) containing phosphatase inhibitor cocktail (Sigma-Aldrich). Tra-
cheal tissue and mTECs were collected in cell lysis buffer containing 20 mM
Tris-HCI, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton-X 100,
1.0 ug/ml leupeptin, 10 pg/ml aprotinin, 0.2 mM phenylmethylsulfonyl
fluoride, 1 mM sodium orthovanadate, 0.1 mM sodium fluoride, 2.5 mM
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3. Laoukili, ], et al. 2001. IL-13 alters mucociliary dif-
ferentiation and ciliary beating of human respira-
tory epithelial cells. J. Clin. Invest. 108:1817-1824.
doi:10.1172/JCI200113557.
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and Nagai, J. 2002. Interleukin-13 induces goblet
cell differentiation in primary cell culture from
guinea pig tracheal epithelium. Am. J. Respir. Cell
Mol. Biol. 27:536-541.

5. Atherton, H.C., Jones, G., and Danahay, H. 2003.
IL-13-induced changes in the goblet cell density of
human bronchial epithelial cell cultures: MAP kinase
and phosphatidylinositol 3-kinase regulation. Am. J.
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sodium pyrophosphate, and 1 mM B-glycerophosphate. Cell lysates were
cleared by centrifugation, and supernatant proteins were separated on
4-15% gradient SDS-PAGE and transferred to PVDF membranes (Milli-
pore). The membranes were blotted against antibodies to EGFR, p-EGFR,
p-ERK1/2, activated caspase-3, p-Stat6 (Cell Signaling Technology),
p-Akt (BD Biosciences), caspase-9 (Stressgen Biotechnologies), and f-actin
(Chemicon International). Primary antibody binding was detected with
secondary antibodies conjugated to horseradish peroxidase and enhanced
chemiluminescence (Amersham Pharmacia Biotech).

Immunocytochemistry. Cultured cells were washed twice with PBS at 4°C,
fixed in 4% paraformaldehyde for 10 minutes at 25°C, washed with PBS,
and permeabilized with ethanol:acetic acid (2:1, vol/vol) for 5§ minutes at
-20°C for TUNEL reaction or with 0.2% Triton-X for 5§ minutes at 25°C for
immunostaining. Permeabilized cells were then washed with PBS and sub-
jected to the TUNEL reaction (Intergen Co.) or blocked with 2% fish gel for
1 hour at 25°C and incubated with rabbit anti-active caspase-3 (BD Biosci-
ences), rabbit anti-EGFR (Santa Cruz Biotechnology Inc., rabbit anti-p-EGFR
(Cell Signaling Technology), mouse anti-B-tubulin IV, or rabbit anti-y-tubulin
(Sigma-Aldrich) antibodies overnight at 4°C. Primary antibody binding was
detected with goat anti-mouse or donkey anti-rabbit FITC or CY3 secondary
antibody. Cells were counterstained with 4 ug/ml Hoescht 33258 (Invitrogen
Corp.) to check nuclear morphology, and then imaged as described above.

Flow cytometry. mTECs were cultured as above and removed from Tran-
swell culture using cell dissociation solution (Sigma-Aldrich) containing
0.25% trypsin and 0.1% EDTA. Cells were washed with HBSS containing
0.2% BSA and incubated with 5 ug/ml JC-1 (Invitrogen Corp.) for 15 min-
utes at 25°C. Cells with mitochondrial membrane depolarization were
detected by a shift from low to high emission in green fluorescence (FL1)
using a FACSCalibur flow cytometer and CellQuest software (BD).

Electron microscopy. Cells on membranes were prepared for transmission
electron microscopy (TEM) as previously described (53). In brief, samples
were fixed with 2.5% glutaraldehyde and stained with 1.25% osmium
tetroxide. Cells were counterstained with 2.0% tannic acid, blocked for sec-
tioning, and imaged on a Zeiss 902 model microscope.

Statistics. Values for histochemistry of mouse tissues were analyzed using
a 1-way analysis of variance (ANOVA) for a factorial experimental design.
If significance was achieved by 1-way analysis, post-ANOVA comparison
of means was performed using Scheffe’s F test. P < 0.05 was considered
statistically significant.
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