(EBV) BMLF1-stimulated T cell line ## Supplementary Figure 1 A BMLF1-specific T cell line demonstrates a difference in avidity for the BMLF1 versus the M1 peptide. A preserved T cell line derived from healthy donor D-002 had been cultured for 4 weeks in the presence of BMLF1 peptide-pulsed T2 cells and was used in a standard intracellular IFNγ assay that included a titration of peptide concentrations. (▲ tyrosinase, O M1, ◆ BMLF1 stimulation) ## Supplementary Figure 2 Acute EBV infection selectively expands cross-reactive M1-specific memory cells that can recognize BMLF1. CD8 T cells were isolated ex vivo from patient E1178 at various time points post-presentation with symptoms of acute infectious mononucleosis. (a) The percentages of CD8 T cells staining positive when co-stained with M1- and BMLF1-loaded tetramers are shown. The number of events shown is variable because the maximum number possible was collected for each sample. (b) CD8 T cells isolated at days 0, 19 and 174 were cultured for 3 weeks in the presence of M1 peptide-pulsed T2 cells. Following the RNA isolation and cDNA synthesis of those T cell lines, the CDR3\$ region of V\$17+ sub-clones was sequenced. The pie charts illustrate the percentage of unique V\$17+ sub-clones using each J\$ family, where N = the total number of unique sub-clones. The complete CDR3 sequences of all the sub-clones analyzed are displayed in Supplementary Table 1, structured according to Chothia et al. (57). ## **Supplementary Table 1** | A. | IM patient: E1101 | | | | | | B. IM patient: E1178 | | | | | | | |---------|-------------------|----------------|-------|------------|--|--|----------------------|---------------------|--------------|------|-------|--|---| | M1 line | | i ido i | Freq: | | | Nucleotide sequence of the V/N/D/N/J junction: | M1 line | ¹ Length | | | | | Nucleotide sequence of the V/N/D/N/J junction; | | Day 22 | 7 AA | H2.1
H2.2 | 1 | 1.2 | AS-SIGLYGY-TF
AS-SIGYYGY-TF | gccagtagtattggtctctatggctacaccttc
gccagtagtatcgggtactatggctacaccttc | Day 0 | 7 AA | v1mi
v1mi | | | | gccagtagtatagggagctatggctacaccttc
gccagtagtataggtgtctatggctacaccttc | | | | H2.3 | 1 | 1.2 | AS-STGVYGY-TF | gccagtagtaccggtgtctatggctacaccttc | | 8 AA | v1m | 2 5 | 2.7 | AS-SIRSSYEQ-YF | gocagtagtataaggagotoctacgagcagtacttc | | | 8 AA | H4.3
H4.10 | 7 | 1.2 | AS-S MGS YGY-TF
AS-SI R SGNTI-YF | gccagtagtatgggttcctatggctacaccttc
gccagtagtattcgttccggaaacaccatatatttt | | | v1m | | 2.7 | 7 AS-S TRS SYEQ-YF
B AS-SI R STDTQ-YF | gccagtagtaccaggagctcctacgagcagtacttc
gccagtagtaccaggagcacagatacgcagtatttt | | | OAN | H2.6 | 4 | 2.1 | AS-STRAGVEQ-FF | gccagtagtacacgggcgggggttgagcagttcttc | | | v1m1 | 11 1 | 2.7 | AS-SI RS SYEQ-YF | gocagtagtataaggagctoctacgagcagtacttc | | | | H4.24
H2.10 | 2 | 2.3 | AS-S GRSA DTQ-YF
AS-S RR STDTQ-YF | gccagtagcggacggagcgcagatacgcagtatttt
gccagtagtcgacggagcacagatacgcagtatttt | Day 19 | 7.00 | v1m1
v4m | | 2.7 | AS-SIRSSYEQ-YF AS-SIGVYGY-TF | gocagtagtatcogcagttoctacgagcagtacttc
gocagtagtataggggtctatggctacaccttc | | | | H2.4 | 1 | 1.6 | AS-SI G YNSPL-HF | gocagtagtatoggctataattcacccctccacttt | Day 15 | 1.77 | v4m | 1 1 | 1.2 | AS-SIGSYGY-TF | gccagtagtattgggagttatggctacaccttc | | | | H2.5 | 1 | 2.1 | AS-SI RSGY EQ-FF
AS-S AGLAS EQ-FF | gccagtagtataagatctgggtatgagcagttcttc
gccagtagtgccggacttgctagtgagcagttcttc | | | v4m2 | | 1.2 | | gccagtagtattgggagctatggctacaccttc
gccagtagtattgggtgttatggctacaccttc | | | | H2.8 | 1 | 2.3 | AS-SIRSTDTQ-YF | gccagtagtatacggagcacagatacgcagtatttt | | 8 AA | v4mi | | | | gocagtagtatocgttocgcotagagcagtacttc | | | | H5.19 | 1 | 2.3 | AS-SI R STDTQ-YF
AS-S GR STDTQ-YF | gccagtagtataaggagcacagatacgcagtatttt | | 0.44 | v4m | | | | gocagtagtataagaagotootacgagcagtacttc | | | | H2.9
H2.11 | 1 | 2.5 | AS-S NRAG ETQ-YF | gocagtaggggggggggggggggggggggggggggggggg | | 9 AA | v4m
v4m | | 1.1 | | gccagtagtataactagcggggggcaactgaagcagtacttc
gccagtagtctcggcagggtgcacactgaagctttcttt | | | | H2.12 | 1 | 2.7 | AS-SI RSST EQ-YV | gccagtagtattaggtctagcaccgagcagtacgtc | Day 174 | 7 AA | v7mi | 2 10 | 0 1.2 | AS-SI GI YGY-TF | gccagtagtatcgggatctatggctacaccttc | | | 9 AA | H2.13
H2.14 | 1 | 2.7 | AS-S VRSAYT Q-YF
AS-S PR SGANVL-TF | gccagtagtgtccggagtgcttatacgcagtatttt
gccagtagtccccgttctggggccaacgtcctgacttc | | 8 AA | v7m | 11 9 | 2.7 | 7 AS-S TRS SYEQ-YF | gocagtagtacgaggagctoctacgagcagtacttc | | | | H2.15 | 1 | 2.3 | SS-S SRSGE DTQ-YF | tocagtagtagccgatcgggagagaggatacgcagtatttt | | | | | | | | | Day 165 | 11 AA
7 AA | H2.16
H4.1 | 6 | 12 | AS-SIVMGSSYNEQ-FF
AS-SIGSYGY-TF | gccagtagtatagtaatggggagctcctacaatgagcagttcttc
gccagtagtatcggatcgtacggctacaccttc | 1 | | | | | | | | Day 100 | ,,,, | H4.3 | 5 | 1.2 | AS-SMGSYGY-TF | gccagtagtatgggttcctatggctacaccttc | | | | | | | | | | | H4.2
H4.4 | 1 | 1.2 | AS-SI GSN GY-TF
AS-S MGS YGY-TF | gccagtagtateggategaaeggetacaeette
gccagtagtateggategaaeggetacaeette | | | | | | | | | | | H4.5 | 1 | 1.2 | AS-SI GLH GY-TF | gccagtagtataggccttcatggctacaccttc | | | | | | | | | | | H4.6
H4.7 | 1 | 1.2 | AS-SIGIHGY-TF | gocagtagtatagggatccacggctacaccttc | | | | | | | | | | | H4.7
H4.8 | 1 | 1.2 | AS-SI GVH GY-TF
AS-S TGL YGY-TF | gocagtagtateggggteeatggetaeacette
gocagtagtaeeggettatatggetaeaeette | | | | | | | | | | | H4.9 | 1 | 1.2 | AS-STGVYGY-TF | gocagtagcacaggggtttatggctacacettc | | | | | | | | | | 8 AA | H4.13
H4.10 | 9 | 2.3 | AS-SI RSG DTQ-YF
AS-SI R SGNTI-YF | gccagtagtattacggagtggagatacgcagtatttt
gccagtagtattcgttccggaaacaccatatatttt | | | | | | | | | | | H4.19 | 4 | 2.3 | AS-SPRSTDTQ-YF | gccagtaqtccacqqaqcacaqatacqcaqtatttt | | | | | | | | | | | H4.11
H4.21 | 2 | 2.1 | AS-S TFHS NEQ-FF
AS-S QR STDTQ-YF | gocagtagtacettecacagcaatgagcagttette
gccagtagccaaaagatecacagatacgcagtatttt | | | | | | | | | | | H4.12 | 1 | 2.1 | AS-SILVSHNEQ-FF | gocagtagtotagtatcccacaatgagcagttottc | | | | | | | | | | | H4.20
H4.17 | 1 | 2.3 | AS-S TR STDTQ-YI
AS-S MR STDTQ-YF | gccagtagtactaggagcacagatacgcngtatntn
gccagtagtatggagcacagatacgcagtatttt | | | | | | | | | | | H4.17 | 1 | 2.3 | AS-SMRSTDTQ-YF | gccagtagtatgcggagcacagatacgcagtatttt | | | | | | | | | | | H4.14 | 1 | 2.3 | AS-SI R STDTQ-YF | gocagtagtatcaggagcacagatacgcagtatttt | | | | | | | | | | | H4.16
H4.15 | 1 | 2.3 | AS-S GR STDTQ-YF
AS-S GR STDTQ-YF | gccagtagcggggggagcacagatacgcagtatttt
gccagtagtggccggagcacagatacgcagtatttt | | | | | | | | | | | H4.22 | 1 | 2.3 | AS-SLRSTDTQ-YF | gocagtagoctaagatocacagatacgcagtatttt | | | | | | | | | | | H4.23
H4.24 | 1 | 2.3 | AS-SI V STDTQ-YF
AS-S GRSA DTQ-YF | gccagtagtatagtcagcacagatacgcagtatttt
gccagtagcggacgcagatacgcagtatttt | | | | | | | | | | | H4.25 | 1 | 2.3 | AS-S VRSAY TQ-YF | gccagtagtgtccggagtgcttatacgcagtatttt | | | | | | | | | | | H4.26
H4.27 | 1 | 2.5 | AS-S GRAS ETQ-YF
AS-S MRSG ETQ-YF | gccagtaggggggggggagacccagtacttc
gccagtagtatgcgatcggggggagacccagtacttc | | | | | | | | | | | H4.28 | 1 | 2.7 | AS-SIRSSYEQ-YF | gocagtagtattaggagctoctacgagcagtacttc | | | | | | | | | | 9 AA | H4.29
H4.30 | 2 | 1.5 | AS-SI FSGD QPQ-HF
AS-S TVGG INFQ-FF | gccagtagtattttctcaggggaccagcccagcatttt | | | | | | | | | | | H4.31 | 1 | 2.4 | AI-LRGSGVHIQ-YF | gccagtagtaggggggggggggggggggggggggggggg | | | | | | | | | | 10 AA | H4.32
H4.33 | 1 | 2.1 | AS-SI GASD YNEQ-FF
AS-S QGGNF YNEQ-FF | gccagtagtataggggctagcgactacaatgagcagttcttc
gccagtagccagggggtaatttttacaatgagcagttcttc | | | | | | | | | | 11 AA | H4.33 | 1 | 2.1 | AS-SIVGGRWGNEQ-FF | gocagtagtcaggggggaaggtgggggaatgagcagttcttc | | | | | | | | | Day 349 | | H4.35 | 1 | 2.2 | AS-SI EPSR NTGEL-FF | gccagtagtatagagcctagtcgaaacaccggggagctgtttttt | 1 | | | | | | | | Day 349 | 6 AA
7 AA | 5.1
4.6 | 2 | 2.1
1.2 | AS-SI WD EQ-FF
AS-SI GIH GY-TF | gccagtagtatatgggatgaccagttcttc
gccagtagtatagggatccacggctacaccttc | | | | | | | | | | | 4.1 | 2 | 1.2 | AS-SI GS YGY-TF
AS-S MGS YGY-TF | gocagtagtatoggatogtacggotacaccttc | | | | | | | | | | | 4.3
5.30 | 1 | 1.2 | AS-SMGSYGY-TF
AS-GMGSYGY-TF | gccagtagtatgggttcctatggctacaccttc
gccagtggtatgggatcctatggctacaccttc | | | | | | | | | | | 5.2 | 1 | 1.2 | AS-SIGLYGY-TF | gocagtagtatoggoctotatggotacacotto | | | | | | | | | | | 5.3
4.8 | 1 | 1.2 | AS-SI GL YGY-TF
AS-S TGL YGY-TF | gccagtagtatogggctctatggctacaccttc
gccagtagtaccggcttatatggctacaccttc | | | | | | | | | | | 5.4 | 1 | 1.2 | AS-SIGSYGY-TF | gccagtagtataggctcttatggctacaccttc | | | | | | | | | | 8 AA | 4.10
5.9 | 9 | 1.3 | AS-SI R SGNTI-YF
AS-S VRS SYEQ-YF | gccagtagtattcgttccggaaacaccatatatttt
gccagtagtgtacggagctcctacgagcagtacttc | | | | | | | | | | | 5.19 | 5 | 2.3 | AS-SIRSTDTQ-YF | gccagtagtataaggagcacagatacgcagtatttt | | | | | | | | | | | 4.28
4.24 | 4 | 2.7 | AS-SIRSSYEQ-YF
AS-SGRSADTQ-YF | gccagtagtattaggagctcctacgagcagtacttc
gccagtagcggacggagcagatacgcagtatttt | | | | | | | | | | | 5.11 | 2 | 1.5 | AS-SIRSNQPQ-HF | gccagtagtattcgctctaatcagccccagcatttt | | | | | | | | | | | 4.13
5.9 | 2 | 2.3 | AS-SI RSG DTQ-YF
AS-SI RS SYEQ-YF | gccagtagtatacggagtggagatacgcagtatttt
gccagtagtattaggagctcctacgagcagtatttc | | | | | | | | | | | 5.5 | 1 | 1.3 | AS-SIRSGNTI-YF | gocagtagtattogttooggaaacaccatatatttt | | | | | | | | | | | 5.6
5.20 | 1 | 1.6 | AS-SIRSSNPL-HF
AS-SIMSLDEQ-FF | gccagtagtattaggtcgtcgaatcccctccacttt
gccagtagtataatgagcttggatgagcagttcttc | | | | | | | | | | | 5.17 | 1 | 2.2 | AS-SIRSTGEL-FF | gocagtagtatacggagcaccggggagctgttttt | | | | | | | | | | | 4.25 | 1 | 2.3 | AS-SVRSAYTQ-YF | gocagtagtgtccggagtgcttatacgcagtatttt | | | | | | | | | | | 5.14
5.15 | 1 | 2.3 | AS-S GR STDTQ-YF
AS-S TR STDTQ-YF | gccagtagtggtagaagcacagatacgcagtatttt
gccagtagtacccgtagcacagatacgcagtatttt | | | | | | | | | | | 5.16 | 1 | 2.3 | AS-STRSTDTQ-YF | gocagtagtactaggtccacagatacgcagtatttt | | | | | | | | | | | 4.19
5.18 | 1 | 2.3 | AS-S PR STDTQ-YF
AS-SI R STDTQ-YF | gccagtagtccacggagcacagatacgcagtatttt
gccagtagtattcggagcacagatacgcagtatttt | | | | | | | | | | | 4.21 | 1 | 2.3 | AS-SQRSTDTQ-YF | gocagtagocaaagatocacagatacgcagtatttt | | | | | | | | | | | 4.27
4.26 | 1 | 2.5 | AS-S MRSG ETQ-YF
AS-S GRAS ETQ-YF | gccagtagtatgcgatcgggggggagacccagtacttc
gccagtagcgggagggcctcagagacccagtacttc | | | | | | | | | | | 5.7 | i | 2.7 | AS-SIRSSYEQ-YF | gccagtagtattaggagctcctacgggcagtacttc | | | | | | | | | | | 5.8
5.12 | 1 | 2.7 | AS-SI RS SYEQ-YF
AS-SI RA SYEQ-YV | gocagtagtatocgaagctoctacgggcagtacttc
gocagtagtatocgggcttcatacgagcagtacgtc | l | | | | | | | | | 9 AA | 5.21 | 2 | 1.1 | AS-S ATIG NTEA-FF | gccagtagtgcgacgattgggaacactgaagctttcttt | l | | | | | | | | | | 4.30
5.24 | 2 | 2.1 | AS-S TVGGI NEQ-FF
AS-SI R SGNTK-YL | gccagtagtacggtgggtggaatcaatgagcagttcttc
gccagtagtattcgttccggaaacaccanatatttgga | | | | | | | | | | | 5.22 | 1 | 2.1 | AS-SSSTSNEQ-FF | gocagtagtagcagtacctcctacaatgagcagttcttc | l | | | | | | | | | 40.47 | 5.23 | 1 | 2.2 | AS-S ARASL GEL-FF | gocagtagtgocaggggaggotgggggggggggggggggg | l | | | | | | | | | 10 AA | 5.27
4.33 | 1 | 1.1 | AS-SI HGGG NTEA-FF
AS-S QGGNF YNEQ-FF | gccagtagtatocacggaggtggaaacactgaagctttcttt
gccagtagccaggggggaaatttttacaatgagcagttcttc | | | | | | | | | | | 5.25 | 1 | 2.2 | AS-RVLAGPAGEL-FF | gccagtagggttctagcgggccggccgggagctgttttt | l | | | | | | | | | 12 AA | 5.26
5.28 | 1 | 2.3 | AS-SI TRL STDTQ-YF
AS-S RLAGDAW YNEQ-FF | gccagtagtataacccgattaagcacagatacgcagtatttt
gccagtagtagactagcgggagatgcctggtacaatgagcagttcttc | l | | | | | | | | | 13 AA | 5.29 | 2 | 2.5 | AS-SISPSVFREEETQ-YF | gccagtagtattagcccatcggtcttccgcgaggaagagacccagtacttc | | | | | | | | ¹ Length of CDR3β loop according to Chothia et al., shown supported by 2 flanking framework regions 2 Each donotype is distinguished by a unique nucleotide sequence at the V/NVD/NVJ All of the V β 17+ sub-clones analyzed in this study are shown. ^{1,2} Each sub-clone is distinguished by the unique nucleotide sequence of the CDR3 loop of the TCR β -chain with length according to Chothia et al. (57). ³ Bolded residues represent the N/D/N region of the CDR3 β loop.