Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Renal allograft rejection is prevented by adoptive transfer of anergic T cells in nonhuman primates
Hisashi Bashuda, … , Satoshi Teraoka, Ko Okumura
Hisashi Bashuda, … , Satoshi Teraoka, Ko Okumura
Published July 1, 2005
Citation Information: J Clin Invest. 2005;115(7):1896-1902. https://doi.org/10.1172/JCI23743.
View: Text | PDF
Research Article Transplantation

Renal allograft rejection is prevented by adoptive transfer of anergic T cells in nonhuman primates

  • Text
  • PDF
Abstract

Anergic T cells generated ex vivo are reported to have immunosuppressive effects in vitro and in vivo. Here, we tested this concept in nonhuman primates. Alloreactive T cells were rendered anergic ex vivo by coculture with donor alloantigen in the presence of anti-CD80/CD86 mAbs before adoptive transfer via renal allograft to rhesus monkey recipients. The recipients were briefly treated with cyclophosphamide and cyclosporine A during the preparation of the anergic cells. Thirteen days after renal transplantation, the anergic T cells were transferred to the recipient, after which no further immunosuppressive agents were administered. Rejection-free survival was prolonged in all treated recipients, and 3 of 6 animals survived long term (410–880 days at study’s end). In the long-surviving recipients, proliferative responses against alloantigen were inhibited in a donor-specific manner, and donor-type, but not third-party, skin allografts were also accepted, which demonstrated that antigen-specific tolerance had been induced. We conclude that anergic T cells generated ex vivo by blocking CD28/B7 costimulation can suppress renal allograft rejection after adoptive transfer in nonhuman primates. This strategy may be applicable to the design of safe clinical trials in humans.

Authors

Hisashi Bashuda, Masaaki Kimikawa, Kenichiro Seino, Yojiro Kato, Fumiko Ono, Akira Shimizu, Hideo Yagita, Satoshi Teraoka, Ko Okumura

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Effect of anti-human CD80/CD86 mAbs on MLR in rhesus monkeys and functio...
Effect of anti-human CD80/CD86 mAbs on MLR in rhesus monkeys and functional activities of the cultured cells. (A) Freshly isolated CD4+ T cells (fresh cells) from peripheral blood of rhesus monkeys were cocultured with irradiated allogeneic PBMCs (stimulator) in the presence or absence of anti-human CD80/CD86 mAbs (10 μg/ml each) for 5 days. (B) Peripheral blood CD4+ T cells (fresh cells, white bars) or the cultured cells (black bars) were stimulated with donor or third-party splenocytes (gray bars). After 3 days culture or 5 days (for fresh cells), the responder cells were evaluated for their proliferation. (C and D) Dose-dependent suppression of the alloresponses of peripheral blood CD4+ T cells to donor-type stimulator cells by the cultured anergic cells. Cultures were set up with recipient CD4+ T cells (105 cells/well) and donor (C) or third-party (D) stimulators (105 cells/well) for 7 days. Cultured donor splenocytes (105) or different numbers of the cultured cells were also added in some wells. In all assays, cells were incubated for 6 days and then pulsed with 10 μCi of [3H]thymidine for the last 18 hours and counted. The bars represent the mean of triplicate values and the brackets indicate the SD. rIL-2, recombinant IL-2.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts