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To test the hypothesis that chronic stimulation of T cells with a weak agonistic antigen will generate regulatory T cells and
immune tolerance, a study reported in this issue employed the redesign of a minor histocompatibility antigen. Using
knowledge of residues at which the antigen contacts the T cell receptor, a weak agonist was produced. Pretreatment with
this altered antigen produced transplant tolerance, generation of regulatory T cells, and a loss of many antigen-reactive T
cells.
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World Health Organization’s plan to eradi-
cate poliovirus from the planet will neces-
sitate. Given some of the ongoing logistical
problems with this noble effort, researchers
may yet have time to uncover some of the
long-standing mysteries of viral pathogenesis
presented by the unique tropism and disease
characteristics of poliovirus infections.

Address correspondence to: Bert L. Semler,
Department of Microbiology and Molecu-
lar Genetics, College of Medicine, Medical
Sciences B240, University of California,
Irvine, California 92697, USA. Phone: (949)
824-7573; Fax: (949) 824-2694; E-mail:
blsemler@uci.edu.

—

.Kitamura, N., et al. 1981. Primary structure,
gene organization and polypeptide expression of’
poliovirus RNA. Nature. 291:547-553.

. Racaniello, V.R., and Baltimore, D. 1981. Molecu-
lar cloning of poliovirus cDNA and determination
of the complete nucleotide sequence of the viral
genome. Proc. Natl. Acad. Sci. U. S. A. 78:4887-4891.

. Stanway, G., et al. 1983. The nucleotide sequence
of poliovirus type 3 leon 12 alb: comparison with
poliovirus type 1. Nucleic Acids Res. 11:5629-5643.

4. Toyoda, H., et al. 1984. Complete nucleotide sequenc-
es of all three poliovirus serotype genomes. Implica-
tion for genetic relationship, gene function and anti-
genic determinants. J. Mol. Biol. 174:561-585.

.Nomoto, A., et al. 1982. Complete nucleotide-
sequence of the attenuated poliovirus Sabin 1 strain
genome. Proc. Natl. Acad. Sci. U. S. A. 79:5793-5797.

6. Stanway, G., et al. 1984. Comparison of the com-

plete nucleotide sequences of the genomes of the

[SS)

[}

wn

neurovirulent poliovirus P3/Leon/37 and its atten-
uated Sabin vaccine derivative P3/Leon 12a1b. Proc.
Natl. Acad. Sci. U. S. A. 81:1539-1543.
7. Wimmer, E., Hellen, C.U., and Cao, X. 1993. Genet-
ics of poliovirus. Annu. Rev. Genet. 27:353-436.
8.Evans, D.M.A,, et al. 1985. Increased neuroviru-
lence associated with a single nucleotide change in
a noncoding region of the Sabin type 3 poliovac-
cine genome. Nature. 314:548-550.

. Gromeier, M., and Nomoto, A. 2002. Determinants
of poliovirus pathogenesis. In Molecular biology of
picornaviruses. B.L. Semler and E. Wimmer, editors.
ASM Press. Washington, DC, USA. 367-379.

10. Minor, P.D., and Almond, J. 2002. Poliovirus vac-
cines: molecular biology and immune response. In
Molecular biology of picornaviruses. B.L. Semler and
E. Wimmer, editors. ASM Press. Washington, DC,
USA. 381-390.

.Hellen, C.U., and Sarnow, P. 2001. Internal ribo-
some entry sites in eukaryotic mRNA molecules.
Genes Dev. 15:1593-1612.

12. Svitkin, Y.V., Maslova, S.V., and Agol, V.I. 1985.
The genomes of attenuated and virulent poliovirus
strains differ in their in vitro translation efficien-
cies. Virology. 147:243-252.

13. Svitkin, Y.V.,, Cammack, N., Minor, P.D.,and Almond,
J.W. 1990. Translation deficiency of the Sabin type 3
poliovirus genome: association with an attenuating
mutation C472 — U. Virology. 175:103-109.

14. La Monica, N., and Racaniello, V.R. 1989. Differ-
ences in replication of attenuated and neuroviru-
lent polioviruses in human neuroblastoma cell line
SH-SYSY. J. Virol. 63:2357-2360.

15. Haller, A.A., Stewart, S.R., and Semler, B.L. 1996.
Attenuation stem-loop lesions in the 5" noncoding
region of poliovirus RNA: neuronal cell-specific
translation defects. J. Virol. 70:1467-1474.

16. Kauder, S.E., and Racaniello, V.R. 2004. Poliovirus
tropism and attenuation are determined after inter-
nal ribosome entry. J. Clin. Invest. 113:1743-1753.
doi:101172/JC1200421323.

el

1

—_

commentaries

17. Ren, R.B., Costantini, F., Gorgacz, EJ., Lee, ].J., and
Racaniello, V.R. 1990. Transgenic mice expressing a
human poliovirus receptor: a new model for polio-
myelitis. Cell. 63:353-362.

18. Koike, S., et al. 1991. Transgenic mice susceptible to
poliovirus. Proc. Natl. Acad. Sci. U. S. A. 88:951-955.

19. Ren, R.,and Racaniello, V.R. 1992. Human poliovirus
receptor gene expression and poliovirus tissue tro-
pism in transgenic mice. J. Virol. 66:296-304.

.Holland, J.J. 1961. Receptor affinities as major
determinants of enterovirus tissue tropisms in
humans. Virology. 15:312-326.

. Gromeier, M., Alexander, L., and Wimmer, E. 1996.
Internal ribosomal entry site substitution eliminates
neurovirulence in intergeneric poliovirus recombi-
nants. Proc. Natl. Acad. Sci. U. S. A. 93:2370-2375.

22. Gromeier, M., Bossert, B., Arita, M., Nomoto, A.,
and Wimmer, E. 1999. Dual stem loops within the
poliovirus internal ribosomal entry site control
neurovirulence. J. Virol. 73:958-964.

23.Yanagiya, A., et al. 2003. Tissue-specific replicating
capacity of a chimeric poliovirus that carries the
internal ribosome entry site of hepatitis C virus
in a new mouse model transgenic for the human
poliovirus receptor. J. Virol. 77:10479-10487.

24. Borman, A.M., Deliat, F.G., and Kean, K.M. 1994.
Sequences within the poliovirus internal ribosome
entry segment control viral RNA synthesis. EMBO
J.13:3149-3157.

25. Shiroki, K., et al. 1995. A new cis-acting element for
RNA replication within the 5’ noncoding region of
poliovirus type 1 RNA. J. Virol. 69:6825-6832.

26. Crotty, S., Hix, L., Sigal, L.J., and Andino, R. 2002.
Poliovirus pathogenesis in a new poliovirus recep-
tor transgenic mouse model: age-dependent paraly-
sis and a mucosal route of infection. J. Gen. Virol.
83:1707-1720.

27.Nagata, N, et al. 2004. A poliomyelitis model
through mucosal infection in transgenic mice bear-
ing human poliovirus receptor, TgPVR21. Virology.
321:87-100.

2

(=]

2

—_
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To test the hypothesis that chronic stimulation of T cells with a weak agonistic
antigen will generate regulatory T cells and immune tolerance, a study report-
ed in this issue (see the related article beginning on page 1754) employed the
redesign of a minor histocompatibility antigen. Using knowledge of residues
at which the antigen contacts the T cell receptor, a weak agonist was pro-
duced. Pretreatment with this altered antigen produced transplant tolerance,
generation of regulatory T cells, and a loss of many antigen-reactive T cells.

In brackish waters once trafficked by old-
school cellular immunologists, precious
texts describing the wonders of somewhat
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ill-defined suppressor lymphocytes (1)
were jettisoned. Later works, also discard-
ed, described lymphocytes able to protect
rather than destroy foreign tissues in adult
hosts rendered tolerant to organ trans-
plants (2-4). CD4", IL-2 receptor-positive
(CD25%) T cells capable of countering the
graft-destroying properties of alloaggres-
sive T cells were identified by Hall and his
colleagues in rodent transplant models (2).
Nonetheless, following the fashion of the
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time, many of us cleansed our grants and
manuscripts of any mention of suppres-
sor T cells. Following a revival of interest
in suppressor, or regulatory, T cells, Chen
et al. in this issue of the JCI (S) have now
redesigned a minor histocompatibility
antigen to test the hypothesis that chronic
stimulation of T cells with a weak agonistic
antigen will generate regulatory T cells and
produce immune tolerance.

In the 1990s, an era in which the phrase
“suppressor T cells” was uttered only in
hushed tones, a series of brilliant experi-
ments by Waldmann (6, 7) and his col-
leagues identified a crucial graft-protect-
ing T cell-dependent network in hosts
rendered tolerant to transplants by means
other than creation of total and enduring
deletion of antidonor clones. Tolerant host
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As compared with antigenic stimulation (A), stimulation of female transgenic mice with an APL of the Dby minor histocompatibility (mH) antigen,
which delivers incomplete signals to naive T cells, (a) promotes the production of Foxp3+ regulatory T cells, (b) limits the development of effector
T cells, and (c) magnifies the apoptotic loss of activated T cells (B), resulting in tolerance to male skin grafts. Ag, antigen.

antidonor CD4* T cells can recruit nontol-
erant syngeneic T cells to protect the donor
graft. The detailed cellular basis of this
CD4* T cell-dependent network remains
somewhat elusive, although rapid progress
is being made.

With the discovery that antigen-stimu-
lated CD4* T cells can polarize into either a
Th1 ora Th2 response, it became clear that
graft rejection was usually the result of a
Thl-type immune response. In contrast,
many donor-reactive CD4" T cells in tol-
erant hosts manifest a Th2-type program
(8, 9). The possibility that Th2-type T cells
served as the cellular basis of peripheral
transplant tolerance was a welcome relief
to many, because, unlike the shadowy sup-
pressor cells of old, IL-4- and IL-10-pro-
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ducing Th2 cells have a defined molecular
program. Unlike the situation that per-
tains to MHC-matched allografts, Th1-to-
Th2 immune deviation does not provide a
comprehensive basis for transplant toler-
ance in MHC-mismatched models (10).
Vigorous rejection of MHC-mismatched
allografts can be mounted despite marked
Th1-to-Th2 immune deviation. Perhaps,
Th1-to-Th2 immune deviation is necessary
but not sufficient to produce tolerance in
many situations.

Recovering the legacy of suppressor
lymphocytes

A revival in interest in suppressor (also
known as regulatory) T cells began with
the discovery that CD4*CD25" T cells pres-
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ent in naive hosts can counteract autoreac-
tive, Th1-dependent cytopathic programs
(reviewed in ref. 11). Similar observations
were soon made in mouse transplant mod-
els (reviewed in ref. 12). In the naive host,
CD4°CD25" regulatory T cells express
cell surface glucocorticoid-induced TNF
receptor (GITR) molecules (11-13). The
CD4'CD25*GITR" phenotype does not
clearly define the regulatory T cell popula-
tion, since activated, nonregulatory T cells
can express CD25 and GITR. Expression of
Foxp3 provides a more precise marker for
regulatory T cell development and function
(14, 15). Moreover, Foxp3 serves as a master
switch to trigger the suppressor function
of regulatory T cells. Insofar as TGF-, a
cytokine with known immunosuppressive
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effects, can trigger expansion of Foxp3* reg-
ulatory T cells (16), a link between immu-
nosuppressive cytokines and T cell-based
immunoregulation has been uncovered.
While CD4*CD25*Foxp3* T cells have been
clearly identified as regulatory T cells, there
is no evidence that all immunoregulatory T
cells express this phenotype. IL-10-produc-
ing CD4* Tr1 cells and other T cell subtypes
have been implicated as serving an immu-
noregulatory function in several immune
system models (17).

Manufacturing transplant tolerance
The belief that the outcome of allograft
response — rejection or tolerance — follow-
ing the withdrawal of immunosuppressive
therapy is determined by the balance of
alloaggressive to graft-protecting T cells
is now emerging. In most situations, toler-
ance is not accompanied by permanent and
complete deletion of alloaggressive donor-
reactive T cells, and regulatory networks
are required. Regimens that temporar-
ily deplete cytopathic T cells aid tolerance
induction (18-20) but do not replace the
requirement for regulatory T cells (21).
Itis in the context of favorably altering the
balance of cytopathic to protective T cells
that the importance of the work of Chen
et al. (5), appearing in this issue of the JCI,
must be considered. Can regulatory T cells
be manufactured to aid tolerance induction?
Yes, they can. How? Persistent and subopti-
mal stimulation of the T cell receptor (TCR)
complex has been linked to the recruit-
ment of T cells into the pool of regulatory T
cells (22). To probe the implications of this
hypothesis, Chen et al. rationally designed an
altered peptide ligand (APL) for the antigen-
ic epitope of the Dby peptide. The Dby gene,
located on the Y chromosome, stimulates
rejection of male skin grafts by same-strain
female recipients. As anticipated, the target-
ed alterations in the TCR-binding epitope
compromise the binding affinity with the
TCR (Figure 1). Moreover, challenge of Dby-
reactive TCR transgenic T cells with the APL
generated “incomplete” T cell activation sig-
nals, as deduced by several assays. Interest-
ingly, stimulation of the TCR with the APL,
but not with the native epitope, triggered
copious secretion of IL-10 by CD4'CD25- T
cells. The propensity of APL-stimulated TCR
transgenic T cells to robustly express IL-10 is
an attribute shared with naturally occurring
Trl-type and other regulatory cells (17). Pre-
treatment of female mice with the APL, but
not pretreatment with saline or the native
Dby epitope, induced a state of prolonged
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tolerance to male skin transplants even when
coadministered with saturating doses of a
blocking anti-IL-10 receptor mAb. IL-10is a
surrogate marker for the effector molecules
driving tolerance in this model. T cells in
APL-treated mice counteract the ability of
untreated T cells to reject donor, male-type
skin transplants.

In keeping with other models of peripheral
transplant tolerance, robust Foxp3 expres-
sion in APL-treated tolerant, but not in con-
trol, transplanted tissue (skin) or spleen is
manifest (5). Nonetheless, in other models
of peripheral tolerance in which Foxp3* T
cells have been found within the graft and
peripheral lymphoid tissues, thymic Foxp3*
T cells are also present. In this APL-driven
model of transplant tolerance, Foxp3* T cells
cannot be identified within the host thymus.
This observation unequivocally proves that
Foxp3-expressing regulatory T cells need
not be derived only from CD4*CD25*Foxp3*
thymic T cells, as they can be recruited from
peripheral Foxp3-null T cells not predestined
to become Foxp3* regulatory T cells. Finally,
stimulation with a weakly agonistic APL
serves not only to generate regulatory T cells;
it also produced gross depletion of periph-
eral, but not thymic, antigen-reactive T cells
(5). In keeping with the hypothesis that tol-
erance is efficiently promoted by generation
of donor-reactive regulatory T cells plus par-
tial depletion of donor-reactive aggressive T
cells, APL treatment produced a depletion of
splenic, but not thymic, Dby-reactive T cells.

Taken together, this work (5) indicates that
chronic stimulation of T cells with a weak
TCR agonist promotes post-thymic differ-
entiation of potent regulatory T cells and
partial but extensive post-thymic depletion
of donor-reactive aggressive T cells. While
there has been great emphasis on treatments
that curtail the destructive properties of
conventional T cells, the knowledge that T
cells with graft-protective properties can be
trained and propagated in vivo provides a
new tool for attempting to tilt the allograft
response toward tolerance. Insofar as the
same treatment destroys antigen-reactive
effector T cells, a very favorable alteration in
the balance of graft-destroying to graft-pro-
tective T cells becomes manifest.
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