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World Health Organization’s plan to eradi-
cate poliovirus from the planet will neces-
sitate. Given some of the ongoing logistical 
problems with this noble effort, researchers 
may yet have time to uncover some of the 
long-standing mysteries of viral pathogenesis 
presented by the unique tropism and disease 
characteristics of poliovirus infections.
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Is transplantation tolerable?
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To test the hypothesis that chronic stimulation of T cells with a weak agonistic 
antigen will generate regulatory T cells and immune tolerance, a study report-
ed in this issue (see the related article beginning on page 1754) employed the 
redesign of a minor histocompatibility antigen. Using knowledge of residues 
at which the antigen contacts the T cell receptor, a weak agonist was pro-
duced. Pretreatment with this altered antigen produced transplant tolerance, 
generation of regulatory T cells, and a loss of many antigen-reactive T cells.

ill-defined suppressor lymphocytes (1) 
were jettisoned. Later works, also discard-
ed, described lymphocytes able to protect 
rather than destroy foreign tissues in adult 
hosts rendered tolerant to organ trans-
plants (2–4). CD4+, IL-2 receptor–positive 
(CD25+) T cells capable of countering the 
graft-destroying properties of alloaggres-
sive T cells were identified by Hall and his 
colleagues in rodent transplant models (2). 
Nonetheless, following the fashion of the 

time, many of us cleansed our grants and 
manuscripts of any mention of suppres-
sor T cells. Following a revival of interest 
in suppressor, or regulatory, T cells, Chen 
et al. in this issue of the JCI (5) have now 
redesigned a minor histocompatibility 
antigen to test the hypothesis that chronic 
stimulation of T cells with a weak agonistic 
antigen will generate regulatory T cells and 
produce immune tolerance.

In the 1990s, an era in which the phrase 
“suppressor T cells” was uttered only in 
hushed tones, a series of brilliant experi-
ments by Waldmann (6, 7) and his col-
leagues identified a crucial graft-protect-
ing T cell–dependent network in hosts 
rendered tolerant to transplants by means 
other than creation of total and enduring 
deletion of antidonor clones. Tolerant host 

In brackish waters once trafficked by old-
school cellular immunologists, precious 
texts describing the wonders of somewhat 

Nonstandard abbreviations used: altered peptide 
ligand (APL); glucocorticoid-induced TNF receptor 
(GITR); T cell receptor (TCR).
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antidonor CD4+ T cells can recruit nontol-
erant syngeneic T cells to protect the donor 
graft. The detailed cellular basis of this 
CD4+ T cell–dependent network remains 
somewhat elusive, although rapid progress 
is being made.

With the discovery that antigen-stimu-
lated CD4+ T cells can polarize into either a 
Th1 or a Th2 response, it became clear that 
graft rejection was usually the result of a 
Th1-type immune response. In contrast, 
many donor-reactive CD4+ T cells in tol-
erant hosts manifest a Th2-type program 
(8, 9). The possibility that Th2-type T cells 
served as the cellular basis of peripheral 
transplant tolerance was a welcome relief 
to many, because, unlike the shadowy sup-
pressor cells of old, IL-4– and IL-10–pro-

ducing Th2 cells have a defined molecular 
program. Unlike the situation that per-
tains to MHC-matched allografts, Th1-to-
Th2 immune deviation does not provide a 
comprehensive basis for transplant toler-
ance in MHC-mismatched models (10). 
Vigorous rejection of MHC-mismatched 
allografts can be mounted despite marked 
Th1-to-Th2 immune deviation. Perhaps, 
Th1-to-Th2 immune deviation is necessary 
but not sufficient to produce tolerance in 
many situations.

Recovering the legacy of suppressor 
lymphocytes
A revival in interest in suppressor (also 
known as regulatory) T cells began with 
the discovery that CD4+CD25+ T cells pres-

ent in naive hosts can counteract autoreac-
tive, Th1-dependent cytopathic programs 
(reviewed in ref. 11). Similar observations 
were soon made in mouse transplant mod-
els (reviewed in ref. 12). In the naive host, 
CD4+CD25+ regulatory T cells express 
cell surface glucocorticoid-induced TNF 
receptor (GITR) molecules (11–13). The 
CD4+CD25+GITR+ phenotype does not 
clearly define the regulatory T cell popula-
tion, since activated, nonregulatory T cells 
can express CD25 and GITR. Expression of 
Foxp3 provides a more precise marker for 
regulatory T cell development and function 
(14, 15). Moreover, Foxp3 serves as a master 
switch to trigger the suppressor function 
of regulatory T cells. Insofar as TGF-β, a 
cytokine with known immunosuppressive 

Figure 1
As compared with antigenic stimulation (A), stimulation of female transgenic mice with an APL of the Dby minor histocompatibility (mH) antigen, 
which delivers incomplete signals to naive T cells, (a) promotes the production of Foxp3+ regulatory T cells, (b) limits the development of effector 
T cells, and (c) magnifies the apoptotic loss of activated T cells (B), resulting in tolerance to male skin grafts. Ag, antigen.
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effects, can trigger expansion of Foxp3+ reg-
ulatory T cells (16), a link between immu-
nosuppressive cytokines and T cell–based 
immunoregulation has been uncovered. 
While CD4+CD25+Foxp3+ T cells have been 
clearly identified as regulatory T cells, there 
is no evidence that all immunoregulatory T 
cells express this phenotype. IL-10–produc-
ing CD4+ Tr1 cells and other T cell subtypes 
have been implicated as serving an immu-
noregulatory function in several immune 
system models (17).

Manufacturing transplant tolerance
The belief that the outcome of allograft 
response — rejection or tolerance — follow-
ing the withdrawal of immunosuppressive 
therapy is determined by the balance of 
alloaggressive to graft-protecting T cells 
is now emerging. In most situations, toler-
ance is not accompanied by permanent and 
complete deletion of alloaggressive donor-
reactive T cells, and regulatory networks 
are required. Regimens that temporar-
ily deplete cytopathic T cells aid tolerance 
induction (18–20) but do not replace the 
requirement for regulatory T cells (21).

It is in the context of favorably altering the 
balance of cytopathic to protective T cells 
that the importance of the work of Chen 
et al. (5), appearing in this issue of the JCI, 
must be considered. Can regulatory T cells 
be manufactured to aid tolerance induction? 
Yes, they can. How? Persistent and subopti-
mal stimulation of the T cell receptor (TCR) 
complex has been linked to the recruit-
ment of T cells into the pool of regulatory T 
cells (22). To probe the implications of this 
hypothesis, Chen et al. rationally designed an 
altered peptide ligand (APL) for the antigen-
ic epitope of the Dby peptide. The Dby gene, 
located on the Y chromosome, stimulates 
rejection of male skin grafts by same-strain 
female recipients. As anticipated, the target-
ed alterations in the TCR-binding epitope 
compromise the binding affinity with the 
TCR (Figure 1). Moreover, challenge of Dby-
reactive TCR transgenic T cells with the APL 
generated “incomplete” T cell activation sig-
nals, as deduced by several assays. Interest-
ingly, stimulation of the TCR with the APL, 
but not with the native epitope, triggered 
copious secretion of IL-10 by CD4+CD25– T 
cells. The propensity of APL-stimulated TCR 
transgenic T cells to robustly express IL-10 is 
an attribute shared with naturally occurring 
Tr1-type and other regulatory cells (17). Pre-
treatment of female mice with the APL, but 
not pretreatment with saline or the native 
Dby epitope, induced a state of prolonged 

tolerance to male skin transplants even when 
coadministered with saturating doses of a 
blocking anti–IL-10 receptor mAb. IL-10 is a 
surrogate marker for the effector molecules 
driving tolerance in this model. T cells in 
APL-treated mice counteract the ability of 
untreated T cells to reject donor, male-type 
skin transplants. 

In keeping with other models of peripheral 
transplant tolerance, robust Foxp3 expres-
sion in APL-treated tolerant, but not in con-
trol, transplanted tissue (skin) or spleen is 
manifest (5). Nonetheless, in other models 
of peripheral tolerance in which Foxp3+ T 
cells have been found within the graft and 
peripheral lymphoid tissues, thymic Foxp3+ 
T cells are also present. In this APL-driven 
model of transplant tolerance, Foxp3+ T cells 
cannot be identified within the host thymus. 
This observation unequivocally proves that 
Foxp3-expressing regulatory T cells need 
not be derived only from CD4+CD25+Foxp3+ 
thymic T cells, as they can be recruited from 
peripheral Foxp3-null T cells not predestined 
to become Foxp3+ regulatory T cells. Finally, 
stimulation with a weakly agonistic APL 
serves not only to generate regulatory T cells; 
it also produced gross depletion of periph-
eral, but not thymic, antigen-reactive T cells 
(5). In keeping with the hypothesis that tol-
erance is efficiently promoted by generation 
of donor-reactive regulatory T cells plus par-
tial depletion of donor-reactive aggressive T 
cells, APL treatment produced a depletion of 
splenic, but not thymic, Dby-reactive T cells.

Taken together, this work (5) indicates that 
chronic stimulation of T cells with a weak 
TCR agonist promotes post-thymic differ-
entiation of potent regulatory T cells and 
partial but extensive post-thymic depletion 
of donor-reactive aggressive T cells. While 
there has been great emphasis on treatments 
that curtail the destructive properties of 
conventional T cells, the knowledge that T 
cells with graft-protective properties can be 
trained and propagated in vivo provides a 
new tool for attempting to tilt the allograft 
response toward tolerance. Insofar as the 
same treatment destroys antigen-reactive 
effector T cells, a very favorable alteration in 
the balance of graft-destroying to graft-pro-
tective T cells becomes manifest.
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