The precise signals responsible for differentiation of blood-borne monocytes into tissue macrophages are incompletely defined. “Outside-in” signaling by integrins has been implicated in modulation of gene expression that affects cellular differentiation. Herein, using differential display PCR, we have cloned an 85-kDa forkhead transcription factor (termed Mac-1–regulated forkhead [MFH] and found subsequently to be identical to Foxp1) that is downregulated in β2-integrin Mac-1–clustered compared with Mac-1–nonclustered monocytic THP-1 cells. MFH/Foxp1 is expressed in untreated HL60 cells, and its expression was markedly reduced during phorbol ester–induced monocyte differentiation, but not retinoic acid–induced granulocyte differentiation. Overexpression of MFH/Foxp1 markedly attenuated phorbol ester–induced expression of c-fms, which encodes the M-CSF receptor and is obligatory for macrophage differentiation. This was accompanied by decreased CD11b expression, cell adhesiveness, and phagocytosis. Using electromobility shift and reporter assays, we have established that MFH/Foxp1 binds to previously uncharacterized sites within the c-fms promoter and functions as a transcriptional repressor. Deficiency of Mac-1 is associated with altered regulation of MFH/Foxp1 and monocyte maturation in vivo. Taken together, these observations suggest that Mac-1 engagement orchestrates monocyte-differentiation signals by regulating the expression of the forkhead transcription repressor MFH/Foxp1. This represents a new pathway for integrin-dependent modulation of gene expression and control of cellular differentiation.


Can Shi, Xiaobin Zhang, Zhiping Chen, Karina Sulaiman, Mark W. Feinberg, Christie M. Ballantyne, Mukesh K. Jain, Daniel I. Simon


Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.