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Mutations in lamins A and C, nuclear intermediate-filament proteins
in nearly all somatic cells, cause a variety of diseases that primarily
affect striated muscle, adipocytes, or peripheral nerves or cause fea-
tures of premature aging. Two new studies (see the related articles
beginning on pages 357 and 370) use lamin A/C–deficient mice, which
develop striated muscle disease, as a model to investigate pathogenic
mechanisms. These reports provide evidence for a stepwise process in
which mechanically stressed cells first develop chromatin and nuclear
envelope damage and then develop secondary alterations in the tran-
scriptional activation of genes in adaptive and protective pathways.
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Table 1
Diseases caused by mutations in lamins A and C

Striated muscle diseases (cardiomyopathy with variable skeletal muscle involvement)
Autosomal dominant Emery-Dreifuss muscular dystrophy (no. 181350)
Autosomal recessive Emery-Dreifuss muscular dystrophy (no. 604929)
Cardiomyopathy dilated 1A (no. 115200)
Limb-girdle muscular dystrophy type 1B (no. 159001)

Partial lipodystrophy syndromes (with or without developmental abnormalities)
Dunnigan-type familial partial lipodystrophy (no. 151660)
Lipoatrophy with diabetes, hepatic steatosis, hypertrophic cardiomyopathy, and
leukomelanodermic papules (no. 608056)
Mandibuloacral dysplasia (no. 248370)

Peripheral neuropathy
Charcot-Marie-Tooth disorder type 2B1 (no. 605588)

Premature aging syndromes
Hutchinson-Gilford progeria syndrome (no. 176670)
Atypical Werner syndrome (no. 277700 for Werner syndrome)

Additional information and original references can be found within ref. 5 and at the Online Mendelian Inher-
itance in Man database (OMIM; ref. 19). OMIM entry numbers are given in parentheses.

The nuclear lamina is a meshwork of
intermediate filaments, primarily
localized on the inner aspect of the
inner nuclear membrane, that forms
from polymerization of proteins called
lamins (1–3). In humans, two genes
encode B-type lamins, which are con-
stitutively expressed in somatic cells.
LMNA (Lmna in mice) encodes devel-
opmentally regulated A-type lamins,
including the major somatic cell iso-
forms lamins A and C (4).

Since 1999, mutations in LMNA
have been shown to cause several dif-
ferent inherited diseases (Table 1).

Some, such as Emery-Dreifuss muscu-
lar dystrophy (EDMD) and Dunnigan-
type familial partial lipodystrophy
(FPLD), are rather tissue-specific (5).
Others, such as Hutchinson-Gilford
progeria syndrome, which is caused by

a unique mutation in lamin A (6, 7),
are more generalized. Before these dis-
coveries, the predominant functions of
lamins A and C were thought to be to
provide mechanical support to the
nucleus and to anchor “silent” hete-
rochromatin to the inner nuclear
membrane. The discoveries linking
lamins A and C to inherited disorders
have led to a new question: How do
mutations in these proteins, expressed
in nearly all differentiated somatic
cells, cause different diseases, some of
which are tissue-specific?

Mechanical stress versus 
gene expression
Investigators in the field have pro-
posed two nonexclusive hypotheses to
address this question. The “mechani-
cal stress” hypothesis states that
abnormalities in nuclear structure,
which result from lamin mutations,
lead to increased susceptibility to cel-
lular damage by physical stress. This
hypothesis is supported by observa-
tions that fibroblasts from patients
with lamin A/C mutations and trans-
fected cells expressing the mutant pro-

 



teins often have severe abnormalities
in nuclear morphology and that
fibroblasts from subjects with FPLD
are susceptible to damage by heat
shock (6–12). The “gene expression”
hypothesis, which proposes that the
nuclear envelope plays a role in tissue-
specific gene expression that can be
altered by mutations in lamins, is
based primarily on observed interac-
tions between nuclear envelope and
chromatin components.

A paucity of affected tissue from
human subjects with “laminopathies”
has limited the ability to test these
hypotheses. This has been partially
overcome by the ground-breaking
work of Colin Stewart and collabora-
tors (13), who generated a lamin A/C
knockout mouse. While heterozygous
mice are apparently normal, homozy-
gous null mice develop cardiac abnor-

malities and regional skeletal myopa-
thy that resemble human EDMD.
Fibroblast nuclei from these mice also
show structural alterations similar to
those from affected human subjects.
Thus, despite the fact that most
patients with autosomal dominant
EDMD have missense mutations,
small deletions, or, rarely, haploinsuf-
ficiency of lamins A and C, the lamin
A/C–deficient mouse is a useful model
to study the disease. Two articles in
this issue of the JCI (14, 15) use these
mice to test the mechanical-stress and
gene-expression hypotheses.

Impaired nuclear mechanics leading
to alterations in gene expression
Nikolova et al. (14) carefully analyzed
lamin A/C–deficient mice and showed
that they develop dilated cardiomy-
opathy with an impairment of physio-

logical hypertrophy. They showed that
nuclei of cardiac tissue and isolated
myocytes have abnormal nuclear
architecture with fragmented cen-
tromeric heterochromatin relocated
from the periphery to the interior of
the nucleus, and they correlated these
alterations with possible defects in
nucleocytoplasmic transport and gene
expression. They also observed
changes in desmin localization and
speculated that a cellular skeleton
integrating cytoplasmic desmin and
nuclear lamina networks at the
nuclear pore complexes is altered (Fig-
ure 1). Although there is no evidence
for connections between the lamina
and desmin networks in vivo, the
strength of this study is the demon-
stration of impressive changes in chro-
matin structure, which may indeed
have pathological consequences. In
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Figure 1
Schematic diagrams showing nuclear envelopes of a normal myocyte (a) and a myocyte from a mouse lacking lamins A and C (b). The nuclear
envelope contains the inner nuclear membrane, pore membranes, and the outer nuclear membrane, which is directly continuous with the endo-
plasmic reticulum (ER). It also contains the nuclear lamina and nuclear pore complexes. The nuclear lamina of a normal myocyte (a) is composed
of A-type (lamins A and C) and B-type (lamin B) lamins, which form a meshwork of intermediate filaments (yellow, red, and green). At the periph-
ery of the nucleus, heterochromatin is preferentially associated with the inner nuclear membrane and the lamina. Putative connections (? in fig-
ure) may exist between cytoplasmic desmin filaments and the external faces of the nuclear pore complexes. In a myocyte of a lamin A/C–deficient
mouse (b), the lamina is composed of only B-type lamins (green), and the nuclear envelopes are irregularly shaped with morphological abnor-
malities. Nikolova et al. (14) showed that heterochromatin is largely relocated from the nuclear envelope to the interior, which could cause alter-
ations in gene expression. They also showed changes in desmin localization and hypothesized that this may result from alterations of its putative
association (? in figure) with the nuclear envelope. Using fibroblasts from lamin A/C–deficient mice, Lammerding et al. (15) showed that nuclear
deformities are increased by applied mechanical strain with resultant defective mechanotransduction and attenuated expression of mechanore-
sponsive genes. Adapted with permission from the Massachusetts Medical Society, Copyright 2000 (20). All rights reserved.



general, there is a correlation between
gene activity and nuclear location with
genes physically localized near the
periphery of the nucleus being inactive
(16). Dynamic changes in gene activa-
tion may also occur during cellular dif-
ferentiation, with silenced genes pref-
erentially shifted to the nuclear
periphery, close to centromeric hete-
rochromatin, and activated ones
translocated to a more central, euchro-
matic environment (17). A similar
chromatin-reorganizing mechanism
may normally be operative in nuclei of
differentiating myoblasts or as a pro-
tective response in differentiated
myocytes; loss of lamins A and C may
disrupt this, leading to inappropriate
gene activation or repression and
resultant myopathy.

Lammerding et al. (15) directly
explored nuclear mechanics and me-
chanotransduction in cultured em-
bryonic fibroblasts from lamin A/C–
deficient mice. Although connective
tissue is not obviously abnormal in
these mice, fibroblasts have misshaped
nuclei with ultrastructural damage,
validating the use of this cell type.
Using magnetic-bead microrheology,
the authors showed that the cyto-
plasm and nucleus have decreased
stiffness in lamin A/C–deficient fibro-
blasts. They further showed that, in
response to applied mechanical strain,
these fibroblasts have increased
nuclear deformations (Figure 1),
defective mechanotransduction, atten-
uated expression of mechanosensitive
genes activated by NF-κB, and dimin-
ished viability. Cytokine-stimulated
NF-κB transcriptional activation was
also attenuated.

These two studies (14, 15) suggest
that impaired nuclear mechanics and
secondary alterations in gene expres-
sion may cause striated muscle dam-
age in subjects with certain lamin A/C

mutations. By preferentially affecting
transcriptional responses to mechani-
cal stress or possibly other signals in
nonmuscle cells, different mutations
in lamins A and C may generate a
diversity of tissue-specific pathological
phenotypes. More generalized pheno-
types, such as premature-aging syn-
dromes, may result from mutations
that cause more global abnormalities
in chromatin structure and transcrip-
tional control, much as classical Wern-
er syndrome may result from muta-
tions in a DNA helicase (18). Since the
puzzling variety of diseases caused by
mutations in lamins A and C has gen-
erated such a flurry of speculations as
to pathogenic mechanisms (including
our own work), it is refreshing to see
solid experimental data that address
this matter in this issue of the JCI.
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