Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Usage Information

Genes required for B cell development
Mary Ellen Conley
Mary Ellen Conley
Published December 1, 2003
Citation Information: J Clin Invest. 2003;112(11):1636-1638. https://doi.org/10.1172/JCI20408.
View: Text | PDF
Commentary

Genes required for B cell development

  • Text
  • PDF
Abstract

Mutations in a variety of genes can cause congenital agammaglobulinemia and a failure of B cell development. The currently known genes encode components of the pre–B cell receptor or proteins that are activated by cross-linking of the pre–B cell receptor. Defects in these genes result in a block in B cell differentiation at the pro–B to pre–B cell transition. A patient with a translocation involving a previously unknown gene, LRRC8, demonstrated a block at exactly the same point in B cell differentiation (see the related article beginning on page 1707). It will be interesting to determine whether the protein encoded by this gene interacts with the pre–B cell receptor signal transduction pathway or is involved in a new pathway.

Authors

Mary Ellen Conley

×

Usage data is cumulative from January 2020 through January 2021.

Usage JCI PMC
Text version 332 459
PDF 57 534
Figure 334 0
Supplemental data 0 8
Citation downloads 14 0
Totals 737 1,001
Total Views 1,738
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts