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Introduction

A common phrase attributed to the ancient Greek physician Hip-
pocrates is, “all diseases begin in the gut.” While this gut-centric
approach to medicine did not persist, recent research has impli-
cated interactions between the digestive system, the gut microbi-
ome, and other organ systems in wide-ranging pathophysiologies,
including heart (1-3), lung (4), and chronic kidney diseases (5-7),
cerebrovascular abnormalities (8), and cancer (9, 10). Due in part
to a defined signaling pathway between the two organs via the
vagus nerve (11), research on communication between the gas-
trointestinal tract and brain has given rise to the new field of gut-
brain interactions.

Recognition of bidirectional communication between the gut
and the brain is not new, as numerous historical examples, includ-
ing William Beaumont’s 1833 finding that emotional arousal
affects gastric function (12) and Ivan Pavlov’s Nobel Prize-win-
ning work on the cephalic phase of digestion (13), suggested a
physiologic connection between the two organs. However, only
recently have the pathways and mechanisms underlying gut-brain
interactions been described, and an array of disease phenotypes in
which altered gut-brain communication is directly implicated been
discovered. Furthermore, with the increasing use of incretin-based
therapies (i.e., glucagon-like peptide 1 [GLP-1] receptor agonists)
that leverage gut-brain mechanisms, gut-brain communication has
become an important topic in both clinical and translational medi-
cine. Here, we describe the four main mechanisms of communica-
tion between the gut and brain: hormonal, microbiome-mediated,
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microbiome, the wide use of incretin-based therapies (i.e., glucagon-like peptide 1 [GLP-1] receptor agonists), technological
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neural circuit, research in the past 10 years has made it abundantly clear that the gut-brain connection plays a role both in
clinical disease as well as the actions of therapeutics. In this Review, we describe mechanisms by which the gut and brain
communicate and highlight human and animal studies that implicate changes in gut-brain communication in disease states
in gastroenterology, neurology, psychiatry, and endocrinology. Furthermore, we define how GLP-1 receptor agonists for
obesity and guanylyl cyclase C agonists for irritable bowel syndrome leverage gut-brain mechanisms to improve patient
outcomes. This Review illustrates the critical nature of gut-brain communication in human disease and the potential to

immune-mediated, and direct signaling. We evaluate the role of
disordered gut-brain interactions in the pathophysiology of several
diseases (Table 1) and explain how the GLP-1 receptor agonists
(e.g., semaglutide) for obesity and guanylyl cyclase C agonists (e.g.,
linaclotide) for irritable bowel syndrome (IBS) work through a gut-
brain mechanism.

Mechanisms of gut-brain interaction

Interactions between the gut and the brain are bidirectional,
involving multiple communicating systems including the gut and
its contents, the microbiome, peripheral nerves, the enteric ner-
vous system (ENS), autonomic nervous system, and the brain (14).
Innervation of the gut is complex, with transcriptional profiles
suggesting 21 neuronal and 3 glial cell subtypes in the ENS alone
(15). The basic structure of the ENS consists of a submucosal
plexus that controls mucosal processes and a myenteric plexus that
controls movement, both of which are supported by interneurons
and glia that refine function (16). In addition, intrinsic primary
afferent neurons that project from the myenteric plexus to the sub-
epithelial space receive sensory input from the gut epithelium via
neurotransmitters (17). The colon is capable of peristalsis ex vivo,
illustrating that extrinsic innervation is not required for the ENS
to function. However, in vivo, the ENS is tightly connected to the
autonomic nervous system via viscerofugal neurons that project
out of the gut to connect to the sympathetic nervous system with
direct feedback to the ENS to modulate motor activity (18). Sepa-
rate from sympathetic pathways, the ENS communicates with the
central nervous system (CNS) via the vagus and pelvic nerves (19).
These nerve fibers are heterogeneous (20, 21), receive input from
distinct sensory cells (22) and other neurons, and interact with
ascending pathways. Consequently, gut-to-brain and brain-to-gut
pathways involve interconnected networks of different sensory
cells, neurons, interneurons, and glia.
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Table 1. Defined changes in gut-brain communication in reviewed disease states

Disease Gut-brain mechanism

Irritable bowel syndrome

Hormonal: Increased gastrin and insulin secretion (82), changes in the number of enteroendocrine cells (variable by study and region) (86)

Direct connection: Hyperexcitability of enterochromaffin cells (87)
Microbiome: Changes (92-95), increases in organisms that ferment sugar carbohydrates (95)
Immune: Increased intestinal permeability (77) and stress-induced hypersensitivity to foods (103)

Functional dyspepsia Microbiome: Changes (97, 98)

IBD Hormonal: Increased ghrelin (115) and GLP-1 (116), increases in the number of enteroendocrine cells (112, 113), CRH-dependent activation of

enteric glial cells in states of stress (108)
Direct connection: Decreases in vagal tone (118)
Microbiome: Altered (120-122)

Immune: CNS representation of colitis (67), immune cell migration to the CNS (104), inflammation-dependent changes in brain activity (60),
stress-associated increases in inflammation through the ENS (108)

Motility disorders

Hormonal: Ghrelin (129) and motilin control of gastric emptying (128), serotonin activation (130) and GLP-1inhibition (131) of small bowel

peristalsis, serotonin-mediated effects on colonic motility (132)

Direct connection: Control of lumbosacral defecation center via brainstem neurons (136)

Parkinson’s disease

Direct connection: Gut-to-brain transfer of a-synuclein (145, 146)

Microbiome: Proinflammatory and pro-a-synuclein changes (151)

Immune: Inflammation- (141) and infection-dependent (140) increases in a-synuclein

Multiple sclerosis Microbiome: Altered (153, 154)

Immune: Activation of gastrointestinal immune cells (156, 157) and production of gut-specific autoantibodies (152)

Depression

Direct connection: Serotonin-mediated changes in vagal signaling (88)

Microbiome: Changes (159), potentially involving a proinflammatory state in the hippocampus (160)

Schizophrenia
Obesity

Microbiome: Changes related to increased inflammation (164) and metabolic pathways (165)
Hormonal: Resistance to ghrelin and leptin (171), reduced GLP-1 (172, 173)

Direct connection: Vagal activation of central reward pathways (176, 179) responsive to sugar (47,177) and fat (178)

Microbiome: Changes (181, 182)

Hormonal regulation of the gut-brain axis. The gut is the largest
endocrine organ and secretes more than 30 individual hormones
(23). These hormones are central in coordinating digestion and are
one of four known processes that facilitate communication between
the gut and the brain (Figure 1A). Hormonal signaling from gut to
brain originates in enteroendocrine cells (EECs) that make up a
small fraction of the gut epithelium. EECs are functionally defined
by their hormonal expression, which varies according to location in
the intestine and distribution along the crypt-villus axis (24). While
the current naming convention is largely alphabetical (i.e., L cells)
and mostly unrelated to function, there have been calls to rename
these cells according to hormone secreted and location (25). It is
not uncommon for EECs to secrete multiple hormones (26), and
recent studies using intersectional genetics highlight a heteroge-
neous assortment of EEC types with differential effects on feeding
behavior and gut motility (27, 28).

While EECs can secrete hormones to affect digestive function
in nearby organs (29), receptors for several gut hormones also exist
in the CNS, including those for serotonin (30), cholecystokinin
(CCK) (31), secretin (32), ghrelin (33), peptide YY (PYY) (34),
and GLP-1 (35). Strikingly, some hormones have a more profound
effect on gastrointestinal function when injected directly into the
brain than when acting in the periphery (36). However, for periph-
eral hormones to exert a direct effect on the brain, they must over-
come the blood-brain barrier. Hormones such as ghrelin and leptin

are transported into the brain via specific transporter proteins (37,
38), but this is not a universal mechanism. In fact, serotonin, which
exists as a neurotransmitter in the brain but is produced mostly in
the gut (90% of total body content), does not cross into the CNS
(39). In some cases, hormones can bypass the blood-brain barri-
er by binding to hormone receptors on circumventricular organs
such the area postrema and subfornical organ (40). Alternatively,
peripheral hormones can modify CNS activity through release of
cytokines and nitric oxide from the blood-brain barrier itself (41).

Many of these same hormones can also act through peripheral
nerves that signal to the brain. Notably, signal transduction through
nerves such as the vagus, as well as afferent fibers with cell bod-
ies in the dorsal root ganglia, represent a fundamental mechanism
by which the CNS can receive information from the gut. In mice,
the vagus nerve innervates the length of the gastrointestinal tract
and contains receptors for hormones, including GLP-1, PYY, sero-
tonin, and CCK (42). Vagal innervation is the greatest in the prox-
imal intestine and declines across the length of the gastrointestinal
tract, with possible differences in extent of innervation between
human and mouse (43).

Direct connections. In the past decade, evidence has emerged
that the gut communicates with peripheral nerves in a way that is
distinct from hormonal signaling (Figure 1B). While it has been
known for some time that EECs are electrically excitable (44), the
discovery of neuropod cells, specialized EECs that contain podo-
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Figure 1. Mechanisms of signaling between the gut and the brain. Information can be transmitted from the gut lumen to the brain in a variety of ways,
but recent research has highlighted four distinct categories of signaling. (A) In hormonal signaling, hormones from the gut epithelium are either released
into the bloodstream (endocrine) or locally (paracrine), where they act via receptors to exert an effect. Hormones act on receptors in the ENS and CNS
(particularly the hypothalamus) to receive these signals. 5-HT, 5-hydroxytryptamine (serotonin). (B) In neuropod-mediated signaling, EECs form close
connections that rapidly transmit information from the gut lumen to the CNS. In more proximal regions of the gut (i.e., stomach, small intestine), signals
are typically transmitted via the vagus nerve and convey nutritive information. Neuropod signaling in more distal regions (i.e., colon) conveys information
related to visceral pain and stretch, which are received by the brain via the dorsal root ganglia. (C) Gut microbiota produce local effects in the gut lumen
that affect epithelial permeability and allow transmission of the microbiota or associated metabolites into the bloodstream. Some of these changes
induce an inflammatory response. Alternatively, microbes or metabolites (such as short-chain fatty acids) act locally on receptors to modify cell function.
(D) The gastrointestinal immune system surveils the gut lumen with resident T cells and neutrophils that are activated by microbes and their metabolites
and convey signals to the brain. Responses can be modified via inflammation within the gastrointestinal tract, leading to increased permeability and
allowing further immune interactions. Concurrently, top-down mechanisms have been described, including glucocorticoid-dependent activation of ENS

microglia leading to inflammation within the gut epithelium.

cyte-like processes near afferent nerve terminals and contain all
necessary machinery for neurotransmission (45), suggested that
this electrical excitability could convey information via a synaptic
mechanism. Enterochromaffin cells are a large subset of EECs that
are also electrically excitable, in close contact with nerve fibers, and
can utilize neurotransmitters such as serotonin to directly modify
signaling to communicate with the brain (46). Retrograde tracing
techniques showed connections between neuropod cells and the
brain in as little as a single synapse (47). However, recently it has
been suggested that the distance between EECs and vagal and spi-
nal afferents is too large to be classified as a synapse (48, 49), or
that only a small subset of EECs form synaptic connections (50).
Regardless, whether synaptic or paracrine, an EEC-neuronal con-
nection distinct from hormonal signaling is a key mechanism of
gut-brain communication.

The microbiome. Within the gut, the microbiome can influence
brain function (Figure 1C). Microbiome composition is linked to
diet (51) and can affect health (52-54). Gut microbes influence the
CNS through hormone release, cytokine signaling, neurotransmit-
ters, and release of bacterial byproducts that can either act within
the gut or enter the systemic circulation (55). The microbiota and
their metabolites have been shown to directly affect EECs (46, 56,
57), EEC-dependent activation of the vagus nerve (58) or sympa-
thetic pathways (46), and hormone release (59). Thereby, the micro-
biome can modify gut-to-brain pathways to affect digestive func-
tion, CNS activity, and states of disease.

The immune system. Inflammation in peripheral organs, includ-
ing the gastrointestinal tract, is linked to proinflammatory changes
in the CNS (60, 61). Even in health, the gastrointestinal tract con-
tains abundant immune cells that surveil the intraluminal contents
(Figure 1D) (62, 63). In disease, cytokines can alter the permeability
of the gastrointestinal epithelium, leading to exposure of gastroin-
testinal immune cells to alimentary contents (64). This is colloqui-
ally referred to as a “leaky gut,” and while the clinical implications
of this are likely grossly overestimated (65), inflammation in the
gastrointestinal tract can affect immune pathways and in turn gut-
brain immune mechanisms. For example, a population of gut-de-
rived T cells that are transcriptionally and functionally distinct
from meningeal T cells migrate from the gastrointestinal tract to
the paraventricular subfornical organ to regulate CNS homeostasis
(66). Peripheral inflammation within the gastrointestinal tract can
also be encoded by the brain. One study showed re-activation of
gut-inflammation-responsive neurons in the insula reproduced gas-
trointestinal inflammatory patterns similar to the original periph-

eral insult (67). Taken together, these studies illustrate a role for
immune cells in communicating signals from the gut to the brain
and modifying CNS activity to respond to gut contents.

Gut-brain mechanisms of digestive disease
Disorders of gut-brain interaction. Over 40% of people worldwide
are estimated to have a disorder of gut-brain interaction (DGBI)
(68), which includes IBS and functional dyspepsia and negative-
ly impacts quality of life (69). Previously referred to as functional
gastrointestinal disorders, DGBIs were renamed by the Rome IV
criteria in May 2016 to recognize underlying gut-brain pathophysi-
ology (70). These conditions are unique in gastroenterology in that
serology, imaging, and endoscopy in DGBIs are normal without
any characteristic microscopic features on biopsy to establish a clin-
ical diagnosis. Therefore, diagnosis of DGBI is based on symptom
pattern with exclusion of alternative processes.

Clinically, the manifestations of DGBI are varied and include
multiple different organs (esophagus, stomach, colon, biliary sys-
tem), with symptoms ranging from dyspepsia to constipation and
diarrhea. Multiple studies have shown frequent overlap between
DGBI subtypes (i.e.,, IBS and functional dyspepsia) in the same
patients and, when this occurs, the risk of comorbid psychiatric
symptoms is greater (69, 71, 72). In fact, psychiatric comorbidities
of DGBI are common (73), and psychiatric symptom scores are
associated with a reduced likelihood to respond to any DGBI treat-
ment, including neuromodulators (74).

Given this frequent overlap between DGBI and psychiatric
symptoms, changes in circulating hormones, which affect both
the gut and CNS, have been proposed to explain disease patho-
physiology. For example, DGBIs are closely associated with psy-
chological stress (75) to the extent that both adult stress and early
life stress mouse models are used to simulate IBS (76). Accord-
ingly, stress-dependent changes in corticotropin-releasing hor-
mone (CRH) have been proposed as a mechanism for DGBIs by
increasing intestinal permeability (77). Similarly, there is clinical
and preclinical evidence that estrogen affects DGBI pathogenesis
(78, 79), leading to the hypothesis that estrogen explains the higher
prevalence of DGBIs in women (78, 80, 81).

In a study of postprandial hormone levels in patients with IBS
and non-IBS controls, patients with IBS had increased postprandial
gastrin and insulin and decreased postprandial ghrelin compared
with non-IBS controls (82). This was associated with changes in
gut motility, which is a common feature across numerous DGBIs.
Other studies have identified changes in EEC abundance in IBS
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populations (83-85). However, the results of these studies are vari-
able, and it is difficult to discern whether these effects are secondary
to or causative of DGBI (86).

Pain is a central feature of many DGBIs and is felt to be sec-
ondary to underlying visceral hypersensitivity. In mice, chemo-
genetic activation and silencing of enterochromaffin cells with
designer receptors exclusively activated by designer drugs (DRE-
ADDs) revealed that a serotonergic subset of EECs is directly
involved in both the response to luminal irritants and the estab-
lishment of visceral hypersensitivity (87). Specifically, the effect of
luminal irritants or colonic distension was mitigated when these
cells were silenced, but activation of serotonergic enterochromaf-
fin cells led to sex-dependent effects on visceral hypersensitivity via
spinal afferents in the dorsal root ganglia (DRG). Interestingly, in
this study, both increases and decreases in serotonin signaling pro-
moted anxiety-like behavior. Other work has demonstrated simi-
lar phenomena, with a knockout of epithelial serotonin reuptake
(increased serotonin) having opposite effects to epithelial blockade
of serotonin synthesis (decreased serotonin), although these effects
were dependent on the vagus nerve and not the DRG (88).

Enteroendocrine circuits in the small intestine have also been
directly linked to visceral hypersensitivity in DGBIs, with selec-
tive knockout of the Gucy2c receptor on CCK-containing EECs
increasing visceromotor response to rectal balloon distension (89).
While CCK-containing EECs are present in more of the intestine
in rodents than in humans, they are not present in the rectum (90)
where the balloon was distended, suggesting the possibility of yet-
to-be-identified circuits that facilitate small intestinal communica-
tion with other areas of the intestine. Interestingly, while knockout
of the Gucy2c receptor in the intestinal epithelium affected p-ERK
staining in the dorsal horn of the spinal cord (89), it is unknown
whether the EECs containing the Gucy2c receptor also signal via
the vagus to modify visceral pain.

Changes in the microbiome have been linked to disease
subtypes across DGBIs (55, 91). Multiple studies demonstrate
distinct microbial and microbe-associated metabolomic pat-
terns in IBS (92-95). Interestingly, these features appear to
correlate with known therapies. The microbial signature of
IBS includes organisms that ferment carbohydrates (95); a
diet low in fermentable sugars (low FODMAP diet) is a main-
stay of IBS management, and adherence to a lowFODMAP
diet appears to shift the microbial profile of patients with IBS
toward that of non-IBS controls (94). Similarly, adherence to
a combined Mediterranean and low FODMAP diet not only
improved symptoms but reduced microbial byproducts: fecal
short- and branched-chain fatty acids (96). Interestingly, relat-
ed molecules (such as isovalerate; ref. 87) have been shown to
affect visceral hypersensitivity through EECs. Together, these
findings indicate that diet can promote specific microbial pro-
files that enhance/reduce production of microbial metabolites
that affect gut-brain circuitry to elicit symptoms of IBS. Similar
evidence for microbial changes exists in functional dyspepsia
(97, 98), with a potential role for microbiome-induced changes
in motility (98, 99) contributing to symptoms. Notably, micro-
bial changes are closely associated with direct actions on EECs
(99). Gut microbes may also promote EEC survival or prolifer-
ation, as fecal microbiota transplantation in IBS increases EEC

J Clin Invest. 2026;136(1):e196346 https://doi.org/10.1172/)C1196346

REVIEW

abundance (85). However, to date, no unique microbial species
has been proven causative in DGBI or been shown to modify
individual EEC subtypes.

Although not fully established, multiple lines of evidence sug-
gest a role for altered gut immunity in DGBIs. DGBIs are associated
with increased intestinal permeability (77, 100) as well as low-level
inflammation (101), with mast cells implicated as a possible driv-
er of hypersensitivity in IBS (77, 102). Accordingly, stress-induced
changes in food sensitivity, which overlap with the clinical features
of IBS in many patients, induce pain in a mast cell-dependent mat-
ter (103). In experimental models, colonic inflammation stimulated
monocyte and neutrophil migration to the brain, leading to anxi-
ety-like behavior (104), a common clinical finding in IBS. Together,
these studies indicate that DGBIs may involve changes in gut per-
meability due to low-level inflammation that either directly influ-
ences CNS activity or modifies gut-to-brain pathways.

Inflammatory bowel disease. Inflammatory bowel disease (IBD)
is characterized by two disease phenotypes, Crohn’s disease and
ulcerative colitis, that produce chronic inflammation in the intes-
tine. As an autoimmune disease, the pathophysiology of IBD is not
directly linked to changes in gut-brain signaling. However, recent
studies have illustrated that gut-brain pathways play an important
role in gut inflammation.

There is growing evidence that psychological stress promotes
inflammation in the periphery (105). In turn, peripheral inflam-
mation, as seen in IBD, can expose the CNS to inflammatory sig-
nals via stress-related breakdown of the blood-brain barrier (106).
Clinically, perceived stress in IBD is associated with worse dis-
ease outcomes (107). To evaluate the role of stress-induced exac-
erbations in IBD, a recent study combined psychological stress
with dextran sodium sulfate—induced colitis in mice (108). As in
humans, psychological stress worsened colitis severity. This effect
was mediated by CRH-dependent glucocorticoid release that
prompted glial cells within the ENS to stimulate local monocyte
populations to produce TNF-a. TNF-a is closely linked to IBD,
and TNF-a inhibitors such as infliximab are a first-line biologic
therapy for the disease. Chronic stress may also reduce the ability
of the intestinal epithelium to regenerate, as chronic stress affects
signaling from the dorsal motor nucleus of the vagus to the ENS,
reducing stemness in intestinal crypts (109). Consequently, while
IBD is not caused by abnormal gut-brain signaling, increased
brain-to-gut activation of stress pathways exacerbates inflamma-
tion and reduces epithelial cell regeneration, leading to worsened
clinical outcomes.

In addition to brain-to-gut pathways, EECs are important con-
tributors to barrier function and gut immunity (110, 111). Therefore,
changes in these cell populations could affect gut inflammation in
IBD. Studies in both IBD patients (112) and mouse models of coli-
tis (113) have identified increased EEC abundance with distinct
hormonal changes in states of disease (114). For example, ghrelin
levels are higher in active IBD than either quiescent IBD or healthy
controls and have been proposed as part of a biomarker equation
to noninvasively evaluate disease flares (115). GLP-1, which is
increased in active IBD, normalizes upon disease quiescence (116).
Increased vagal signaling is associated with an antiinflammatory
response in the gut (117), and vagal tone is decreased in IBD (118).
However, the specific efferent pathways driving this reduction in
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inflammation have yet to be identified, and while vagal stimulation
has been proposed as an IBD therapy (119), clinical trials have not
moved beyond the proof-of-concept stage.

Proinflammatory microbial changes are well described in IBD
(120-122). The microbiome is closely linked to pro- and antiinflam-
matory states, which may be dependent on long-term dietary habits
(123). Consequently, current guidance from the American Gastro-
enterological Association suggests that patients with IBD follow
the Mediterranean diet (124), which is associated with microbial
changes that reduce inflammation (125). Specific microbial changes
in IBD have not been well established due to heterogeneity among
studies (126). Even in studies of the same patient population, dis-
ease flares are associated with temporal variability in the microbi-
ome signature (127), complicating global conclusions. Therefore,
there is a need to better define gut microbiome changes and their
upstream signaling changes, including the role of diet, to identify
more specific therapeutic approaches.

In animal models of colitis, gut inflammation is present in spe-
cific neuronal populations in the insula, with re-activation of these
neurons causing peripheral inflammation in the gastrointestinal
tract (67). The exact mechanisms of this process are unclear, but
studies suggest that colitis results in recruitment of immune cells to
the brain (104) with the potential to directly affect brain activity (60).

Gastrointestinal motility disorders. Changes in the ENS or
communication between the extrinsic nervous system and the
ENS can lead to disorders across gastrointestinal organs, rang-
ing from ineffective esophageal motility causing dysphagia, to
dumping syndrome causing an autonomic response to carbohy-
drate-rich foods, to chronic constipation limiting regular def-
ecation. Gastrointestinal hormones such as ghrelin and moti-
lin are essential for gastric emptying (128, 129). In the small
intestine, serotonin is critical to contraction and intermixing
of digested contents (130), whereas GLP-1 can block normal
peristalsis (131). In the colon, serotonin contributes to colonic
motility (132). While direct hormonal actions on the gut could
explain motility disorders independent of any communication
with the brain, numerous neurological diseases, ranging from
Parkinson’s disease (PD) to multiple sclerosis (MS), are associ-
ated with changes in gut motility (133). Accordingly, it is evi-
dent that CNS activity influences gut contractility and the abil-
ity to defecate. Experimentally in rats, stimulation of the locus
coeruleus in the brainstem led to colonic contraction via nor-
adrenergic and dopaminergic receptors in the lumbosacral def-
ecation center (134), which is also affected by serotonin within
the spinal cord (135). More recently, studies using DREADDs
demonstrated top-down control of this defecation center from
neurons in the brainstem that can modify both noxious stimuli
and stress-induced defecation (136). Taken together, these stud-
ies demonstrate a role for the CNS in control of gut motility
that may be involved in pathogenesis of motility disorders and
represents a future target for therapeutics.

A gut-brain mechanism for neurologic disease

PD. PD is a motor disorder characterized by rigidity, decreased move-
ment, and imbalance. The pathophysiology of PD is complex but
involves loss of dopaminergic neurons in the substantia nigra through
an interplay of neuroinflammation and o-synuclein accumulation. In
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addition to motor deficits, gastrointestinal symptoms are common
in PD (137). Patients with PD are at higher risk for dysphagia, gast-
roparesis, constipation, and intestinal pseudo-obstruction even when
compared to other neurological diseases such as Alzheimer’s disease
(138). While neurological dysfunction could disrupt known top-down
modulators of intestinal contraction that are known to play a role in
motility (134), there is increasing evidence that the gut and associ-
ated gut-brain signaling are directly involved in the pathogenesis of
PD. In support of this concept, epidemiological studies revealed that
complete truncal vagotomy, but not the more limited highly selective
vagotomy, was associated with reduced risk of PD (139).

a-Synuclein is produced in both the CNS and peripheral ner-
vous system, including the gut, and increases in response to enteric
infection (140) or inflammatory colitis (141). The Braak hypothesis
postulates that PD pathology spreads in a predictable and progres-
sive pattern (142), leading to the concept that a-synuclein spreads
in a prion-like fashion from the gut to the brain via the vagus nerve
(143, 144). In mice, injection of a-synuclein fibrils into the duode-
nal and pyloric muscularis induced a-synuclein pathology in the
dorsal motor nucleus of the vagus and later other regions of the
brain, including the substantial nigra (145). Vagotomy prevented
this gut-to-brain spread. EECs contain o-synuclein (146), and by
virtue of their connection with the vagus nerve, this established
gut-to-brain circuit represents a possible pathway for the origin
of PD. However alternative mechanisms of gut-to-brain transfer,
including via immune cells, have also been proposed (147). A link
between gut pathology and PD development in humans has also
been shown, as patients with upper endoscopic findings of muco-
sal tears are more likely to develop PD later in life (148). However,
it remains unclear whether this is causative or correlative, as it is
unknown whether these tears lead to accumulation of a-synuclein
or allow existing a-synuclein to transfer to the brain. Of note, the
gut-to-brain model of PD is not without controversy, as there are
also data to support brain-to-gut spread (120).

Within the gut, deposits of a-synuclein can have local conse-
quences. In mice, transfer of human HLA-DRB1*15:01 and subse-
quent exposure to a-synuclein—derived epitopes leads to intestinal
inflammation, a loss of enteric neurons, constipation, and weight
loss (149). These data, combined with evidence of gastrointestinal
inflammation leading to PD development (140, 141), support a
possible neuroimmune role of PD pathogenesis. Thus, the clinical
manifestations of PD in the gut, which can occur years before onset
of motor symptoms, could be due to an inflammatory response to
accumulating a-synuclein prior to CNS spread through the vagus.
The microbiome may also play a role in this process, as the microbi-
al profile of PD patients is distinct (150) and involves a preponder-
ance of proinflammatory organisms, including those that dysregu-
late neuronal signaling and promote a-synuclein production (151).

MS. Although not as robust as PD, there is increasing evidence
that changes in gut-brain signaling might also play a role in MS. MS
is characterized by neuronal demyelination, leading to progressive
neurologic dysfunction. MS is also associated with constipation. In
experimental models of MS, autoantibodies against ENS and glia
slowed intestinal transit (152).

The microbiome may also play a role in MS pathogenesis. In a
study of 576 MS patients and 1152 household controls, patients with
MS were found to have a distinct microbial and microbial metabo-
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lite profile that varied in response to disease-modifying treatments
(153). Some studies have argued that the altered microbiome in MS
causes disease (154), and others attempting to modify the microbi-
ome have shown some success on improved disease course (155).
The gut may also play a direct role in MS pathogenesis by initiating
inflammatory pathways. Viewed by intravital imaging, autoreactive
encephalitogenic T cell populations are activated in the lamina pro-
pria of the small intestine and subsequently adopt a Th17-like proin-
flammatory phenotype (156). This profile appeared to be dependent
on both the microbiome and MHC II, as germ-free mice or MHC II
antibodies greatly mitigated the inflammation. In support of a role
for gut inflammation in initiating disease, molecular MRI evalua-
tion of intestinal inflammation correlated with disease severity in
a mouse model of autoimmune encephalitis (157). Together, these
data suggest that MS may be dependent on gut inflammatory path-
ways, potentially in concert with the microbiome.

A gut-brain mechanism for psychiatric disease
Depression. The World Heath Organization estimates that 5.7% of
adults worldwide suffer from depression (158). Depression, as well
as depression-like symptoms, are closely comorbid with DGBIs
(73), and changes in gut signaling pathways can produce anxiety and
depression-like behavior (87, 88). Depression has also been linked
to the microbiome, and fecal microbiota transplant from patients
with depression to germ-free mice was sufficient to induce a depres-
sion-like phenotype (159) as well as an inflammatory hippocampal
gene expression pattern (160). While CRH release following stress
has been related to DGBI symptoms through increased intestinal
permeability (77), this same permeability has been linked to social
avoidance in a chronic social defeat stress model of depression
(161). Gut-brain therapies have been attempted for major depres-
sive disorder (MDD), including FDA-approved vagal stimulation
for resistant disease (162), with recent clinical trials demonstrat-
ing at least some benefit (162). Thus, MDD pathophysiology may
include top-down stress-responsive changes in intestinal permeabil-
ity that facilitate intraluminal metabolites and the microbiome to
affect CNS function, potentially involving the vagus nerve.
Schizophrenia. Like MDD, schizophrenia is associated with an
altered gut microbiome profile and proinflammatory signaling path-
ways. Genome-wide association studies have demonstrated that
schizophrenia and gastrointestinal diseases are closely related and
share common gene variants linked to immune system function (163).
Similarly, gut microbiome changes in patients with schizophrenia are
closely related to proinflammatory pathways (164), although some
multiomics analyses find less of an effect of the microbiome and
more amino acid and lipid metabolism pathways affected (165). The
mechanisms explaining these contributions are currently unknown.

Gut-brain mechanisms for obesity

Gut-brain signaling is essential to ingestive behavior. In 1950, a
spontaneous mutation at The Jackson Laboratory led to the pro-
duction of 0b/0b mice, which exhibited weight up to four times that
of a standard mouse (166). However, it was not until four decades
later that the responsible gene mutation and its hormonal product,
leptin, were identified (167). The discovery of ghrelin in rat stom-
ach (168) led to the idea that opposing hormones modulate ener-
gy balance, with leptin promoting satiety and ghrelin stimulating
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food intake. A logical extension of this reasoning was that obesi-
ty resulted from excess ghrelin and reduced leptin. However, the
relationship with BMI in patients is actually the opposite (positive
correlation of BMI with leptin and negative correlation of BMI
with ghrelin) (169). Furthermore, ghrelin, not leptin, increases with
weight loss (170). This understanding led to the concept that resis-
tance to these hormones exists in states of obesity (171). Another
gut hormone, GLP-1, is secreted at lower levels in obese individuals
(172, 173) and there is some evidence from human data favoring
increased postprandial GLP-1 following weight loss (174). In addi-
tion, postprandial GLP-1 levels might play an important role in the
success of bariatric surgery (175). Thus, hormonal signaling path-
ways appear to be related to obesity, but the exact contributions of
each hormone are still being determined.

Recently, there has been increased recognition of the role of
a direct gut-brain connection in guiding food intake. Diversity of
both EECs as well as the vagal sensory neurons has been linked
to specific components of feeding behavior (20, 28). Functional-
ly, cells of the right vagus nerve form circuits with dopaminergic
neurons in the substantia nigra that, when stimulated, facilitate
a conditioned place preference toward the stimulated side (176).
Consequently, activation of vagal afferents is rewarding, likely
through dopaminergic release in the brain. This aspect of reward
is essential to our understanding of obesity, as the high caloric
macronutrients sugar (47, 177) and fat (178) have been shown to
activate vagal pathways. While the vagal neurons involved in fat
and sugar sensation are distinct, the combined ingestion of fat and
sugar leads to more dopamine release in the nigrostriatum than
either fat or sugar alone (179). Thus, the Western diet, which is
high in both fats and sugars, might promote overeating and obesity
through an additive effect on gut-brain reward pathways. In addi-
tion, neuropod cells activate the vagus nerve in response to intralu-
minal sugars via the neurotransmitter glutamate (47). These same
cells respond to artificial sweeteners via a different neurotransmit-
ter (ATP), and guide preferences for sugar over artificial sweetener
following preconditioning (180). These findings suggest that direct
gut-brain connections play a role in food choice.

Unsurprisingly, changes in the microbiome have been asso-
ciated with obesity (181, 182). This is likely due at least in part
to underlying differences in diet, which help to shape the micro-
biome (51). However, there are likely both causal and reactive
components of the gut microbiome, so understanding the micro-
biome may assist in developing personalized interventions for
weight loss (183). Accordingly, there is evidence for the micro-
biome-modulating efficacy of specific dietary strategies (184).
Albeit with the same limitations of causation due to dietary
changes, changes in the microbiome have been described in oth-
er eating disorders such as anorexia nervosa, bulimia nervosa,
and binge eating disorder (185), with some evidence suggesting
that altered microbial proteins can induce autoantibodies that
affect neuroendocrine signaling (186).

Pharmacological targeting of gut-brain
pathways

The extent of current pharmacologic agents that act on gut-brain
pathways is unknown. However, two widely prescribed medica-
tions have been shown to be at least partially dependent on gut-
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Figure 2. Example of gut-brain directed pharmacotherapy. Guanylyl
cyclase C agonists (e.g., linaclotide) bind to the GUCY2C receptor on neuro-
pod cells to inhibit sensory neurons of the dorsal root ganglion and reduce
visceral pain in IBS (89).

brain mechanisms. Guanylyl cyclase C agonists have emerged as a
target for visceral pain, with the finding that FDA-approved ago-
nists such as linaclotide reduce pain in IBS. In an analysis of four
separate randomized control trials, over 50% of patients with IBS
with constipation treated with linaclotide reported at least a 30%
reduction in abdominal pain (187). An explanation may lie in the
discovery that GUCY2C neuropod hyperexcitability was reduced
by linaclotide in vitro and correlated with reduction in visceral
pain in vivo (Figure 2) (89). These data strongly suggest that direct-
ly targeting gut-brain signaling pathways via neuropod cells could
help mitigate symptoms of visceral pain in DGBIs.

Since receiving FDA approval for treatment of obesity in
2014, GLP-1 receptor agonists have become a mainstay of obesi-
ty therapy. Recent evidence suggests these medications also may
be effective in other brain-based disorders, including Alzheimer
(188) and alcohol use disorder (189). In obesity, these drugs are
highly effective, with some formulations achieving mean weight
loss of over 20% in 72 months of follow-up (190). As GLP-1is a
gut hormone with receptors on the vagus (42), in the brain (35),
and circumventricular organs (40), these medications directly
mimic endogenous gut-brain incretin hormone pathways. GLP-1
has long been known to promote satiety and reduce food intake
(191), although there is increasing evidence for accelerated met-
abolic activity (192). The exact mechanisms driving efficacy of
GLP-1 receptor agonists in obesity are unknown, as the effects
are widespread and include delayed gastric emptying and chang-
es in blood glucose (193). Endogenous GLP-1 release within the
brainstem reduces eating (194). While the vagus nerve contains
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neurons with receptors for GLP-1 as well as neurons that act on
the brainstem to facilitate endogenous GLP-1 release, these two
processes do not appear to overlap. Indeed, the vagal neurons that
facilitate endogenous release of GLP-1 in the brainstem contain
receptors for oxytocin but not GLP-1 (195). This suggests that
there are parallel peripheral and central GLP-1 pathways that
independently suppress appetite that could be simultaneously
coopted for additive weight loss effects in humans. Accordingly,
small studies using medications to target the brainstem preproglu-
cagon neuronal pathway in concert with GLP-1 receptor agonists
that do not target this pathway show promising effects (196).

Conclusion

Connections between the gastrointestinal tract and nervous
system relay information about food, metabolites, and irritants
within the gut lumen. While essential for homeostatic function,
these pathways are altered in disease, with varying clinical pre-
sentations ranging from abdominal pain in IBS, to psychological
distress in MDD, to constipation in PD. New technologies have
enabled better understanding of gut-brain interactions, as well as
how these pathways are implicated in disease and disease-modi-
fying therapies. However, critical challenges lie ahead, including
facilitating reproducibility, especially as it pertains to microbi-
ome studies, translating studies to humans, and better clarifying
the differing roles of rapid neuropod-based, paracrine, and hor-
monal EEC-based activities.

Nonetheless, our understanding of gut-to-brain signaling and
its role in inflammation, stress, and metabolism has greatly expand-
ed over the past decade. It is expected that future advances will lead
to additional understanding of disease states and novel gut-brain—
targeted therapeutics.
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