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Introduction
A common phrase attributed to the ancient Greek physician Hip-
pocrates is, “all diseases begin in the gut.” While this gut-centric 
approach to medicine did not persist, recent research has impli-
cated interactions between the digestive system, the gut microbi-
ome, and other organ systems in wide-ranging pathophysiologies, 
including heart (1–3), lung (4), and chronic kidney diseases (5–7), 
cerebrovascular abnormalities (8), and cancer (9, 10). Due in part 
to a defined signaling pathway between the two organs via the 
vagus nerve (11), research on communication between the gas-
trointestinal tract and brain has given rise to the new field of  gut-
brain interactions.

Recognition of  bidirectional communication between the gut 
and the brain is not new, as numerous historical examples, includ-
ing William Beaumont’s 1833 finding that emotional arousal 
affects gastric function (12) and Ivan Pavlov’s Nobel Prize–win-
ning work on the cephalic phase of  digestion (13), suggested a 
physiologic connection between the two organs. However, only 
recently have the pathways and mechanisms underlying gut-brain 
interactions been described, and an array of  disease phenotypes in 
which altered gut-brain communication is directly implicated been 
discovered. Furthermore, with the increasing use of  incretin-based 
therapies (i.e., glucagon-like peptide 1 [GLP-1] receptor agonists) 
that leverage gut-brain mechanisms, gut-brain communication has 
become an important topic in both clinical and translational medi-
cine. Here, we describe the four main mechanisms of  communica-
tion between the gut and brain: hormonal, microbiome-mediated, 

immune-mediated, and direct signaling. We evaluate the role of  
disordered gut-brain interactions in the pathophysiology of  several 
diseases (Table 1) and explain how the GLP-1 receptor agonists 
(e.g., semaglutide) for obesity and guanylyl cyclase C agonists (e.g., 
linaclotide) for irritable bowel syndrome (IBS) work through a gut-
brain mechanism.

Mechanisms of gut-brain interaction
Interactions between the gut and the brain are bidirectional, 
involving multiple communicating systems including the gut and 
its contents, the microbiome, peripheral nerves, the enteric ner-
vous system (ENS), autonomic nervous system, and the brain (14). 
Innervation of  the gut is complex, with transcriptional profiles 
suggesting 21 neuronal and 3 glial cell subtypes in the ENS alone 
(15). The basic structure of  the ENS consists of  a submucosal 
plexus that controls mucosal processes and a myenteric plexus that 
controls movement, both of  which are supported by interneurons 
and glia that refine function (16). In addition, intrinsic primary 
afferent neurons that project from the myenteric plexus to the sub-
epithelial space receive sensory input from the gut epithelium via 
neurotransmitters (17). The colon is capable of  peristalsis ex vivo, 
illustrating that extrinsic innervation is not required for the ENS 
to function. However, in vivo, the ENS is tightly connected to the 
autonomic nervous system via viscerofugal neurons that project 
out of  the gut to connect to the sympathetic nervous system with 
direct feedback to the ENS to modulate motor activity (18). Sepa-
rate from sympathetic pathways, the ENS communicates with the 
central nervous system (CNS) via the vagus and pelvic nerves (19). 
These nerve fibers are heterogeneous (20, 21), receive input from 
distinct sensory cells (22) and other neurons, and interact with 
ascending pathways. Consequently, gut-to-brain and brain-to-gut 
pathways involve interconnected networks of  different sensory 
cells, neurons, interneurons, and glia.
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are transported into the brain via specific transporter proteins (37, 
38), but this is not a universal mechanism. In fact, serotonin, which 
exists as a neurotransmitter in the brain but is produced mostly in 
the gut (90% of  total body content), does not cross into the CNS 
(39). In some cases, hormones can bypass the blood-brain barri-
er by binding to hormone receptors on circumventricular organs 
such the area postrema and subfornical organ (40). Alternatively, 
peripheral hormones can modify CNS activity through release of  
cytokines and nitric oxide from the blood-brain barrier itself  (41).

Many of  these same hormones can also act through peripheral 
nerves that signal to the brain. Notably, signal transduction through 
nerves such as the vagus, as well as afferent fibers with cell bod-
ies in the dorsal root ganglia, represent a fundamental mechanism 
by which the CNS can receive information from the gut. In mice, 
the vagus nerve innervates the length of  the gastrointestinal tract 
and contains receptors for hormones, including GLP-1, PYY, sero-
tonin, and CCK (42). Vagal innervation is the greatest in the prox-
imal intestine and declines across the length of  the gastrointestinal 
tract, with possible differences in extent of  innervation between 
human and mouse (43).

Direct connections. In the past decade, evidence has emerged 
that the gut communicates with peripheral nerves in a way that is 
distinct from hormonal signaling (Figure 1B). While it has been 
known for some time that EECs are electrically excitable (44), the 
discovery of  neuropod cells, specialized EECs that contain podo-

Hormonal regulation of  the gut-brain axis. The gut is the largest 
endocrine organ and secretes more than 30 individual hormones 
(23). These hormones are central in coordinating digestion and are 
one of  four known processes that facilitate communication between 
the gut and the brain (Figure 1A). Hormonal signaling from gut to 
brain originates in enteroendocrine cells (EECs) that make up a 
small fraction of  the gut epithelium. EECs are functionally defined 
by their hormonal expression, which varies according to location in 
the intestine and distribution along the crypt-villus axis (24). While 
the current naming convention is largely alphabetical (i.e., L cells) 
and mostly unrelated to function, there have been calls to rename 
these cells according to hormone secreted and location (25). It is 
not uncommon for EECs to secrete multiple hormones (26), and 
recent studies using intersectional genetics highlight a heteroge-
neous assortment of  EEC types with differential effects on feeding 
behavior and gut motility (27, 28).

While EECs can secrete hormones to affect digestive function 
in nearby organs (29), receptors for several gut hormones also exist 
in the CNS, including those for serotonin (30), cholecystokinin 
(CCK) (31), secretin (32), ghrelin (33), peptide YY (PYY) (34), 
and GLP-1 (35). Strikingly, some hormones have a more profound 
effect on gastrointestinal function when injected directly into the 
brain than when acting in the periphery (36). However, for periph-
eral hormones to exert a direct effect on the brain, they must over-
come the blood-brain barrier. Hormones such as ghrelin and leptin 

Table 1. Defined changes in gut-brain communication in reviewed disease states

Disease Gut-brain mechanism
Irritable bowel syndrome Hormonal: Increased gastrin and insulin secretion (82), changes in the number of enteroendocrine cells (variable by study and region) (86)

Direct connection: Hyperexcitability of enterochromaffin cells (87)
Microbiome: Changes (92–95), increases in organisms that ferment sugar carbohydrates (95)
Immune: Increased intestinal permeability (77) and stress-induced hypersensitivity to foods (103)

Functional dyspepsia Microbiome: Changes (97, 98)

IBD Hormonal: Increased ghrelin (115) and GLP-1 (116), increases in the number of enteroendocrine cells (112, 113), CRH-dependent activation of 
enteric glial cells in states of stress (108)
Direct connection: Decreases in vagal tone (118)
Microbiome: Altered (120–122)
Immune: CNS representation of colitis (67), immune cell migration to the CNS (104), inflammation-dependent changes in brain activity (60), 
stress-associated increases in inflammation through the ENS (108)

Motility disorders Hormonal: Ghrelin (129) and motilin control of gastric emptying (128), serotonin activation (130) and GLP-1 inhibition (131) of small bowel 
peristalsis, serotonin-mediated effects on colonic motility (132)
Direct connection: Control of lumbosacral defecation center via brainstem neurons (136)

Parkinson’s disease Direct connection: Gut-to-brain transfer of α-synuclein (145, 146)
Microbiome: Proinflammatory and pro-α-synuclein changes (151)
Immune: Inflammation- (141) and infection-dependent (140) increases in α-synuclein

Multiple sclerosis Microbiome: Altered (153, 154)
Immune: Activation of gastrointestinal immune cells (156, 157) and production of gut-specific autoantibodies (152)

Depression Direct connection: Serotonin-mediated changes in vagal signaling (88)
Microbiome: Changes (159), potentially involving a proinflammatory state in the hippocampus (160)

Schizophrenia Microbiome: Changes related to increased inflammation (164) and metabolic pathways (165)

Obesity Hormonal: Resistance to ghrelin and leptin (171), reduced GLP-1 (172, 173)
Direct connection: Vagal activation of central reward pathways (176, 179) responsive to sugar (47, 177) and fat (178)
Microbiome: Changes (181, 182)
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eral insult (67). Taken together, these studies illustrate a role for 
immune cells in communicating signals from the gut to the brain 
and modifying CNS activity to respond to gut contents.

Gut-brain mechanisms of digestive disease
Disorders of  gut-brain interaction. Over 40% of  people worldwide 
are estimated to have a disorder of  gut-brain interaction (DGBI) 
(68), which includes IBS and functional dyspepsia and negative-
ly impacts quality of  life (69). Previously referred to as functional 
gastrointestinal disorders, DGBIs were renamed by the Rome IV 
criteria in May 2016 to recognize underlying gut-brain pathophysi-
ology (70). These conditions are unique in gastroenterology in that 
serology, imaging, and endoscopy in DGBIs are normal without 
any characteristic microscopic features on biopsy to establish a clin-
ical diagnosis. Therefore, diagnosis of  DGBI is based on symptom 
pattern with exclusion of  alternative processes.

Clinically, the manifestations of  DGBI are varied and include 
multiple different organs (esophagus, stomach, colon, biliary sys-
tem), with symptoms ranging from dyspepsia to constipation and 
diarrhea. Multiple studies have shown frequent overlap between 
DGBI subtypes (i.e., IBS and functional dyspepsia) in the same 
patients and, when this occurs, the risk of  comorbid psychiatric 
symptoms is greater (69, 71, 72). In fact, psychiatric comorbidities 
of  DGBI are common (73), and psychiatric symptom scores are 
associated with a reduced likelihood to respond to any DGBI treat-
ment, including neuromodulators (74).

Given this frequent overlap between DGBI and psychiatric 
symptoms, changes in circulating hormones, which affect both 
the gut and CNS, have been proposed to explain disease patho-
physiology. For example, DGBIs are closely associated with psy-
chological stress (75) to the extent that both adult stress and early 
life stress mouse models are used to simulate IBS (76). Accord-
ingly, stress-dependent changes in corticotropin-releasing hor-
mone (CRH) have been proposed as a mechanism for DGBIs by 
increasing intestinal permeability (77). Similarly, there is clinical 
and preclinical evidence that estrogen affects DGBI pathogenesis 
(78, 79), leading to the hypothesis that estrogen explains the higher 
prevalence of  DGBIs in women (78, 80, 81).

In a study of  postprandial hormone levels in patients with IBS 
and non-IBS controls, patients with IBS had increased postprandial 
gastrin and insulin and decreased postprandial ghrelin compared 
with non-IBS controls (82). This was associated with changes in 
gut motility, which is a common feature across numerous DGBIs. 
Other studies have identified changes in EEC abundance in IBS 

cyte-like processes near afferent nerve terminals and contain all 
necessary machinery for neurotransmission (45), suggested that 
this electrical excitability could convey information via a synaptic 
mechanism. Enterochromaffin cells are a large subset of  EECs that 
are also electrically excitable, in close contact with nerve fibers, and 
can utilize neurotransmitters such as serotonin to directly modify 
signaling to communicate with the brain (46). Retrograde tracing 
techniques showed connections between neuropod cells and the 
brain in as little as a single synapse (47). However, recently it has 
been suggested that the distance between EECs and vagal and spi-
nal afferents is too large to be classified as a synapse (48, 49), or 
that only a small subset of  EECs form synaptic connections (50). 
Regardless, whether synaptic or paracrine, an EEC-neuronal con-
nection distinct from hormonal signaling is a key mechanism of  
gut-brain communication.

The microbiome. Within the gut, the microbiome can influence 
brain function (Figure 1C). Microbiome composition is linked to 
diet (51) and can affect health (52–54). Gut microbes influence the 
CNS through hormone release, cytokine signaling, neurotransmit-
ters, and release of  bacterial byproducts that can either act within 
the gut or enter the systemic circulation (55). The microbiota and 
their metabolites have been shown to directly affect EECs (46, 56, 
57), EEC-dependent activation of  the vagus nerve (58) or sympa-
thetic pathways (46), and hormone release (59). Thereby, the micro-
biome can modify gut-to-brain pathways to affect digestive func-
tion, CNS activity, and states of  disease.

The immune system. Inflammation in peripheral organs, includ-
ing the gastrointestinal tract, is linked to proinflammatory changes 
in the CNS (60, 61). Even in health, the gastrointestinal tract con-
tains abundant immune cells that surveil the intraluminal contents 
(Figure 1D) (62, 63). In disease, cytokines can alter the permeability 
of  the gastrointestinal epithelium, leading to exposure of  gastroin-
testinal immune cells to alimentary contents (64). This is colloqui-
ally referred to as a “leaky gut,” and while the clinical implications 
of  this are likely grossly overestimated (65), inflammation in the 
gastrointestinal tract can affect immune pathways and in turn gut-
brain immune mechanisms. For example, a population of  gut-de-
rived T cells that are transcriptionally and functionally distinct 
from meningeal T cells migrate from the gastrointestinal tract to 
the paraventricular subfornical organ to regulate CNS homeostasis 
(66). Peripheral inflammation within the gastrointestinal tract can 
also be encoded by the brain. One study showed re-activation of  
gut-inflammation-responsive neurons in the insula reproduced gas-
trointestinal inflammatory patterns similar to the original periph-

Figure 1. Mechanisms of signaling between the gut and the brain. Information can be transmitted from the gut lumen to the brain in a variety of ways, 
but recent research has highlighted four distinct categories of signaling. (A) In hormonal signaling, hormones from the gut epithelium are either released 
into the bloodstream (endocrine) or locally (paracrine), where they act via receptors to exert an effect. Hormones act on receptors in the ENS and CNS 
(particularly the hypothalamus) to receive these signals. 5-HT, 5-hydroxytryptamine (serotonin). (B) In neuropod-mediated signaling, EECs form close 
connections that rapidly transmit information from the gut lumen to the CNS. In more proximal regions of the gut (i.e., stomach, small intestine), signals 
are typically transmitted via the vagus nerve and convey nutritive information. Neuropod signaling in more distal regions (i.e., colon) conveys information 
related to visceral pain and stretch, which are received by the brain via the dorsal root ganglia. (C) Gut microbiota produce local effects in the gut lumen 
that affect epithelial permeability and allow transmission of the microbiota or associated metabolites into the bloodstream. Some of these changes 
induce an inflammatory response. Alternatively, microbes or metabolites (such as short-chain fatty acids) act locally on receptors to modify cell function. 
(D) The gastrointestinal immune system surveils the gut lumen with resident T cells and neutrophils that are activated by microbes and their metabolites 
and convey signals to the brain. Responses can be modified via inflammation within the gastrointestinal tract, leading to increased permeability and 
allowing further immune interactions. Concurrently, top-down mechanisms have been described, including glucocorticoid-dependent activation of ENS 
microglia leading to inflammation within the gut epithelium.
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abundance (85). However, to date, no unique microbial species 
has been proven causative in DGBI or been shown to modify 
individual EEC subtypes.

Although not fully established, multiple lines of  evidence sug-
gest a role for altered gut immunity in DGBIs. DGBIs are associated 
with increased intestinal permeability (77, 100) as well as low-level 
inflammation (101), with mast cells implicated as a possible driv-
er of  hypersensitivity in IBS (77, 102). Accordingly, stress-induced 
changes in food sensitivity, which overlap with the clinical features 
of  IBS in many patients, induce pain in a mast cell–dependent mat-
ter (103). In experimental models, colonic inflammation stimulated 
monocyte and neutrophil migration to the brain, leading to anxi-
ety-like behavior (104), a common clinical finding in IBS. Together, 
these studies indicate that DGBIs may involve changes in gut per-
meability due to low-level inflammation that either directly influ-
ences CNS activity or modifies gut-to-brain pathways.

Inflammatory bowel disease. Inflammatory bowel disease (IBD) 
is characterized by two disease phenotypes, Crohn’s disease and 
ulcerative colitis, that produce chronic inflammation in the intes-
tine. As an autoimmune disease, the pathophysiology of  IBD is not 
directly linked to changes in gut-brain signaling. However, recent 
studies have illustrated that gut-brain pathways play an important 
role in gut inflammation.

There is growing evidence that psychological stress promotes 
inflammation in the periphery (105). In turn, peripheral inflam-
mation, as seen in IBD, can expose the CNS to inflammatory sig-
nals via stress-related breakdown of  the blood-brain barrier (106). 
Clinically, perceived stress in IBD is associated with worse dis-
ease outcomes (107). To evaluate the role of  stress-induced exac-
erbations in IBD, a recent study combined psychological stress 
with dextran sodium sulfate–induced colitis in mice (108). As in 
humans, psychological stress worsened colitis severity. This effect 
was mediated by CRH-dependent glucocorticoid release that 
prompted glial cells within the ENS to stimulate local monocyte 
populations to produce TNF-α. TNF-α is closely linked to IBD, 
and TNF-α inhibitors such as infliximab are a first-line biologic 
therapy for the disease. Chronic stress may also reduce the ability 
of  the intestinal epithelium to regenerate, as chronic stress affects 
signaling from the dorsal motor nucleus of  the vagus to the ENS, 
reducing stemness in intestinal crypts (109). Consequently, while 
IBD is not caused by abnormal gut-brain signaling, increased 
brain-to-gut activation of  stress pathways exacerbates inflamma-
tion and reduces epithelial cell regeneration, leading to worsened 
clinical outcomes.

In addition to brain-to-gut pathways, EECs are important con-
tributors to barrier function and gut immunity (110, 111). Therefore, 
changes in these cell populations could affect gut inflammation in 
IBD. Studies in both IBD patients (112) and mouse models of  coli-
tis (113) have identified increased EEC abundance with distinct 
hormonal changes in states of  disease (114). For example, ghrelin 
levels are higher in active IBD than either quiescent IBD or healthy 
controls and have been proposed as part of  a biomarker equation 
to noninvasively evaluate disease flares (115). GLP-1, which is 
increased in active IBD, normalizes upon disease quiescence (116). 
Increased vagal signaling is associated with an antiinflammatory 
response in the gut (117), and vagal tone is decreased in IBD (118). 
However, the specific efferent pathways driving this reduction in 

populations (83–85). However, the results of  these studies are vari-
able, and it is difficult to discern whether these effects are secondary 
to or causative of  DGBI (86).

Pain is a central feature of  many DGBIs and is felt to be sec-
ondary to underlying visceral hypersensitivity. In mice, chemo-
genetic activation and silencing of  enterochromaffin cells with 
designer receptors exclusively activated by designer drugs (DRE-
ADDs) revealed that a serotonergic subset of  EECs is directly 
involved in both the response to luminal irritants and the estab-
lishment of  visceral hypersensitivity (87). Specifically, the effect of  
luminal irritants or colonic distension was mitigated when these 
cells were silenced, but activation of  serotonergic enterochromaf-
fin cells led to sex-dependent effects on visceral hypersensitivity via 
spinal afferents in the dorsal root ganglia (DRG). Interestingly, in 
this study, both increases and decreases in serotonin signaling pro-
moted anxiety-like behavior. Other work has demonstrated simi-
lar phenomena, with a knockout of  epithelial serotonin reuptake 
(increased serotonin) having opposite effects to epithelial blockade 
of  serotonin synthesis (decreased serotonin), although these effects 
were dependent on the vagus nerve and not the DRG (88).

Enteroendocrine circuits in the small intestine have also been 
directly linked to visceral hypersensitivity in DGBIs, with selec-
tive knockout of  the Gucy2c receptor on CCK-containing EECs 
increasing visceromotor response to rectal balloon distension (89). 
While CCK-containing EECs are present in more of  the intestine 
in rodents than in humans, they are not present in the rectum (90) 
where the balloon was distended, suggesting the possibility of  yet-
to-be-identified circuits that facilitate small intestinal communica-
tion with other areas of  the intestine. Interestingly, while knockout 
of  the Gucy2c receptor in the intestinal epithelium affected p-ERK 
staining in the dorsal horn of  the spinal cord (89), it is unknown 
whether the EECs containing the Gucy2c receptor also signal via 
the vagus to modify visceral pain.

Changes in the microbiome have been linked to disease 
subtypes across DGBIs (55, 91). Multiple studies demonstrate 
distinct microbial and microbe-associated metabolomic pat-
terns in IBS (92–95). Interestingly, these features appear to 
correlate with known therapies. The microbial signature of  
IBS includes organisms that ferment carbohydrates (95); a 
diet low in fermentable sugars (low FODMAP diet) is a main-
stay of  IBS management, and adherence to a lowFODMAP 
diet appears to shift the microbial profile of  patients with IBS 
toward that of  non-IBS controls (94). Similarly, adherence to 
a combined Mediterranean and low FODMAP diet not only 
improved symptoms but reduced microbial byproducts: fecal 
short- and branched-chain fatty acids (96). Interestingly, relat-
ed molecules (such as isovalerate; ref. 87) have been shown to 
affect visceral hypersensitivity through EECs. Together, these 
findings indicate that diet can promote specific microbial pro-
files that enhance/reduce production of  microbial metabolites 
that affect gut-brain circuitry to elicit symptoms of  IBS. Similar 
evidence for microbial changes exists in functional dyspepsia 
(97, 98), with a potential role for microbiome-induced changes 
in motility (98, 99) contributing to symptoms. Notably, micro-
bial changes are closely associated with direct actions on EECs 
(99). Gut microbes may also promote EEC survival or prolifer-
ation, as fecal microbiota transplantation in IBS increases EEC 
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inflammation have yet to be identified, and while vagal stimulation 
has been proposed as an IBD therapy (119), clinical trials have not 
moved beyond the proof-of-concept stage.

Proinflammatory microbial changes are well described in IBD 
(120–122). The microbiome is closely linked to pro- and antiinflam-
matory states, which may be dependent on long-term dietary habits 
(123). Consequently, current guidance from the American Gastro-
enterological Association suggests that patients with IBD follow 
the Mediterranean diet (124), which is associated with microbial 
changes that reduce inflammation (125). Specific microbial changes 
in IBD have not been well established due to heterogeneity among 
studies (126). Even in studies of  the same patient population, dis-
ease flares are associated with temporal variability in the microbi-
ome signature (127), complicating global conclusions. Therefore, 
there is a need to better define gut microbiome changes and their 
upstream signaling changes, including the role of  diet, to identify 
more specific therapeutic approaches.

In animal models of  colitis, gut inflammation is present in spe-
cific neuronal populations in the insula, with re-activation of  these 
neurons causing peripheral inflammation in the gastrointestinal 
tract (67). The exact mechanisms of  this process are unclear, but 
studies suggest that colitis results in recruitment of  immune cells to 
the brain (104) with the potential to directly affect brain activity (60).

Gastrointestinal motility disorders. Changes in the ENS or 
communication between the extrinsic nervous system and the 
ENS can lead to disorders across gastrointestinal organs, rang-
ing from ineffective esophageal motility causing dysphagia, to 
dumping syndrome causing an autonomic response to carbohy-
drate-rich foods, to chronic constipation limiting regular def-
ecation. Gastrointestinal hormones such as ghrelin and moti-
lin are essential for gastric emptying (128, 129). In the small 
intestine, serotonin is critical to contraction and intermixing 
of  digested contents (130), whereas GLP-1 can block normal 
peristalsis (131). In the colon, serotonin contributes to colonic 
motility (132). While direct hormonal actions on the gut could 
explain motility disorders independent of  any communication 
with the brain, numerous neurological diseases, ranging from 
Parkinson’s disease (PD) to multiple sclerosis (MS), are associ-
ated with changes in gut motility (133). Accordingly, it is evi-
dent that CNS activity influences gut contractility and the abil-
ity to defecate. Experimentally in rats, stimulation of  the locus 
coeruleus in the brainstem led to colonic contraction via nor-
adrenergic and dopaminergic receptors in the lumbosacral def-
ecation center (134), which is also affected by serotonin within 
the spinal cord (135). More recently, studies using DREADDs 
demonstrated top-down control of  this defecation center from 
neurons in the brainstem that can modify both noxious stimuli 
and stress-induced defecation (136). Taken together, these stud-
ies demonstrate a role for the CNS in control of  gut motility 
that may be involved in pathogenesis of  motility disorders and 
represents a future target for therapeutics.

A gut-brain mechanism for neurologic disease
PD. PD is a motor disorder characterized by rigidity, decreased move-
ment, and imbalance. The pathophysiology of PD is complex but 
involves loss of dopaminergic neurons in the substantia nigra through 
an interplay of neuroinflammation and α-synuclein accumulation. In 

addition to motor deficits, gastrointestinal symptoms are common 
in PD (137). Patients with PD are at higher risk for dysphagia, gast-
roparesis, constipation, and intestinal pseudo-obstruction even when 
compared to other neurological diseases such as Alzheimer’s disease 
(138). While neurological dysfunction could disrupt known top-down 
modulators of intestinal contraction that are known to play a role in 
motility (134), there is increasing evidence that the gut and associ-
ated gut-brain signaling are directly involved in the pathogenesis of  
PD. In support of this concept, epidemiological studies revealed that 
complete truncal vagotomy, but not the more limited highly selective 
vagotomy, was associated with reduced risk of PD (139).

α-Synuclein is produced in both the CNS and peripheral ner-
vous system, including the gut, and increases in response to enteric 
infection (140) or inflammatory colitis (141). The Braak hypothesis 
postulates that PD pathology spreads in a predictable and progres-
sive pattern (142), leading to the concept that α-synuclein spreads 
in a prion-like fashion from the gut to the brain via the vagus nerve 
(143, 144). In mice, injection of  α-synuclein fibrils into the duode-
nal and pyloric muscularis induced α-synuclein pathology in the 
dorsal motor nucleus of  the vagus and later other regions of  the 
brain, including the substantial nigra (145). Vagotomy prevented 
this gut-to-brain spread. EECs contain α-synuclein (146), and by 
virtue of  their connection with the vagus nerve, this established 
gut-to-brain circuit represents a possible pathway for the origin 
of  PD. However alternative mechanisms of  gut-to-brain transfer, 
including via immune cells, have also been proposed (147). A link 
between gut pathology and PD development in humans has also 
been shown, as patients with upper endoscopic findings of  muco-
sal tears are more likely to develop PD later in life (148). However, 
it remains unclear whether this is causative or correlative, as it is 
unknown whether these tears lead to accumulation of  α-synuclein 
or allow existing α-synuclein to transfer to the brain. Of  note, the 
gut-to-brain model of  PD is not without controversy, as there are 
also data to support brain-to-gut spread (120).

Within the gut, deposits of α-synuclein can have local conse-
quences. In mice, transfer of  human HLA-DRB1*15:01 and subse-
quent exposure to α-synuclein–derived epitopes leads to intestinal 
inflammation, a loss of  enteric neurons, constipation, and weight 
loss (149). These data, combined with evidence of  gastrointestinal 
inflammation leading to PD development (140, 141), support a 
possible neuroimmune role of  PD pathogenesis. Thus, the clinical 
manifestations of  PD in the gut, which can occur years before onset 
of  motor symptoms, could be due to an inflammatory response to 
accumulating α-synuclein prior to CNS spread through the vagus. 
The microbiome may also play a role in this process, as the microbi-
al profile of  PD patients is distinct (150) and involves a preponder-
ance of  proinflammatory organisms, including those that dysregu-
late neuronal signaling and promote α-synuclein production (151).

MS. Although not as robust as PD, there is increasing evidence 
that changes in gut-brain signaling might also play a role in MS. MS 
is characterized by neuronal demyelination, leading to progressive 
neurologic dysfunction. MS is also associated with constipation. In 
experimental models of  MS, autoantibodies against ENS and glia 
slowed intestinal transit (152).

The microbiome may also play a role in MS pathogenesis. In a 
study of  576 MS patients and 1152 household controls, patients with 
MS were found to have a distinct microbial and microbial metabo-
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lite profile that varied in response to disease-modifying treatments 
(153). Some studies have argued that the altered microbiome in MS 
causes disease (154), and others attempting to modify the microbi-
ome have shown some success on improved disease course (155). 
The gut may also play a direct role in MS pathogenesis by initiating 
inflammatory pathways. Viewed by intravital imaging, autoreactive 
encephalitogenic T cell populations are activated in the lamina pro-
pria of  the small intestine and subsequently adopt a Th17-like proin-
flammatory phenotype (156). This profile appeared to be dependent 
on both the microbiome and MHC II, as germ-free mice or MHC II 
antibodies greatly mitigated the inflammation. In support of  a role 
for gut inflammation in initiating disease, molecular MRI evalua-
tion of  intestinal inflammation correlated with disease severity in 
a mouse model of  autoimmune encephalitis (157). Together, these 
data suggest that MS may be dependent on gut inflammatory path-
ways, potentially in concert with the microbiome.

A gut-brain mechanism for psychiatric disease
Depression. The World Heath Organization estimates that 5.7% of  
adults worldwide suffer from depression (158). Depression, as well 
as depression-like symptoms, are closely comorbid with DGBIs 
(73), and changes in gut signaling pathways can produce anxiety and 
depression-like behavior (87, 88). Depression has also been linked 
to the microbiome, and fecal microbiota transplant from patients 
with depression to germ-free mice was sufficient to induce a depres-
sion-like phenotype (159) as well as an inflammatory hippocampal 
gene expression pattern (160). While CRH release following stress 
has been related to DGBI symptoms through increased intestinal 
permeability (77), this same permeability has been linked to social 
avoidance in a chronic social defeat stress model of  depression 
(161). Gut-brain therapies have been attempted for major depres-
sive disorder (MDD), including FDA-approved vagal stimulation 
for resistant disease (162), with recent clinical trials demonstrat-
ing at least some benefit (162). Thus, MDD pathophysiology may 
include top-down stress-responsive changes in intestinal permeabil-
ity that facilitate intraluminal metabolites and the microbiome to 
affect CNS function, potentially involving the vagus nerve.

Schizophrenia. Like MDD, schizophrenia is associated with an 
altered gut microbiome profile and proinflammatory signaling path-
ways. Genome-wide association studies have demonstrated that 
schizophrenia and gastrointestinal diseases are closely related and 
share common gene variants linked to immune system function (163). 
Similarly, gut microbiome changes in patients with schizophrenia are 
closely related to proinflammatory pathways (164), although some 
multiomics analyses find less of  an effect of  the microbiome and 
more amino acid and lipid metabolism pathways affected (165). The 
mechanisms explaining these contributions are currently unknown.

Gut-brain mechanisms for obesity
Gut-brain signaling is essential to ingestive behavior. In 1950, a 
spontaneous mutation at The Jackson Laboratory led to the pro-
duction of  ob/ob mice, which exhibited weight up to four times that 
of  a standard mouse (166). However, it was not until four decades 
later that the responsible gene mutation and its hormonal product, 
leptin, were identified (167). The discovery of  ghrelin in rat stom-
ach (168) led to the idea that opposing hormones modulate ener-
gy balance, with leptin promoting satiety and ghrelin stimulating 

food intake. A logical extension of  this reasoning was that obesi-
ty resulted from excess ghrelin and reduced leptin. However, the 
relationship with BMI in patients is actually the opposite (positive 
correlation of  BMI with leptin and negative correlation of  BMI 
with ghrelin) (169). Furthermore, ghrelin, not leptin, increases with 
weight loss (170). This understanding led to the concept that resis-
tance to these hormones exists in states of  obesity (171). Another 
gut hormone, GLP-1, is secreted at lower levels in obese individuals 
(172, 173) and there is some evidence from human data favoring 
increased postprandial GLP-1 following weight loss (174). In addi-
tion, postprandial GLP-1 levels might play an important role in the 
success of  bariatric surgery (175). Thus, hormonal signaling path-
ways appear to be related to obesity, but the exact contributions of  
each hormone are still being determined.

Recently, there has been increased recognition of  the role of  
a direct gut-brain connection in guiding food intake. Diversity of  
both EECs as well as the vagal sensory neurons has been linked 
to specific components of  feeding behavior (20, 28). Functional-
ly, cells of  the right vagus nerve form circuits with dopaminergic 
neurons in the substantia nigra that, when stimulated, facilitate 
a conditioned place preference toward the stimulated side (176). 
Consequently, activation of  vagal afferents is rewarding, likely 
through dopaminergic release in the brain. This aspect of  reward 
is essential to our understanding of  obesity, as the high caloric 
macronutrients sugar (47, 177) and fat (178) have been shown to 
activate vagal pathways. While the vagal neurons involved in fat 
and sugar sensation are distinct, the combined ingestion of  fat and 
sugar leads to more dopamine release in the nigrostriatum than 
either fat or sugar alone (179). Thus, the Western diet, which is 
high in both fats and sugars, might promote overeating and obesity 
through an additive effect on gut-brain reward pathways. In addi-
tion, neuropod cells activate the vagus nerve in response to intralu-
minal sugars via the neurotransmitter glutamate (47). These same 
cells respond to artificial sweeteners via a different neurotransmit-
ter (ATP), and guide preferences for sugar over artificial sweetener 
following preconditioning (180). These findings suggest that direct 
gut-brain connections play a role in food choice.

Unsurprisingly, changes in the microbiome have been asso-
ciated with obesity (181, 182). This is likely due at least in part 
to underlying differences in diet, which help to shape the micro-
biome (51). However, there are likely both causal and reactive 
components of  the gut microbiome, so understanding the micro-
biome may assist in developing personalized interventions for 
weight loss (183). Accordingly, there is evidence for the micro-
biome-modulating efficacy of  specific dietary strategies (184). 
Albeit with the same limitations of  causation due to dietary 
changes, changes in the microbiome have been described in oth-
er eating disorders such as anorexia nervosa, bulimia nervosa, 
and binge eating disorder (185), with some evidence suggesting 
that altered microbial proteins can induce autoantibodies that 
affect neuroendocrine signaling (186).

Pharmacological targeting of gut-brain 
pathways
The extent of  current pharmacologic agents that act on gut-brain 
pathways is unknown. However, two widely prescribed medica-
tions have been shown to be at least partially dependent on gut-
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neurons with receptors for GLP-1 as well as neurons that act on 
the brainstem to facilitate endogenous GLP-1 release, these two 
processes do not appear to overlap. Indeed, the vagal neurons that 
facilitate endogenous release of  GLP-1 in the brainstem contain 
receptors for oxytocin but not GLP-1 (195). This suggests that 
there are parallel peripheral and central GLP-1 pathways that 
independently suppress appetite that could be simultaneously 
coopted for additive weight loss effects in humans. Accordingly, 
small studies using medications to target the brainstem preproglu-
cagon neuronal pathway in concert with GLP-1 receptor agonists 
that do not target this pathway show promising effects (196).

Conclusion
Connections between the gastrointestinal tract and nervous 
system relay information about food, metabolites, and irritants 
within the gut lumen. While essential for homeostatic function, 
these pathways are altered in disease, with varying clinical pre-
sentations ranging from abdominal pain in IBS, to psychological 
distress in MDD, to constipation in PD. New technologies have 
enabled better understanding of  gut-brain interactions, as well as 
how these pathways are implicated in disease and disease-modi-
fying therapies. However, critical challenges lie ahead, including 
facilitating reproducibility, especially as it pertains to microbi-
ome studies, translating studies to humans, and better clarifying 
the differing roles of  rapid neuropod-based, paracrine, and hor-
monal EEC-based activities.

Nonetheless, our understanding of  gut-to-brain signaling and 
its role in inflammation, stress, and metabolism has greatly expand-
ed over the past decade. It is expected that future advances will lead 
to additional understanding of  disease states and novel gut-brain–
targeted therapeutics.
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brain mechanisms. Guanylyl cyclase C agonists have emerged as a 
target for visceral pain, with the finding that FDA-approved ago-
nists such as linaclotide reduce pain in IBS. In an analysis of  four 
separate randomized control trials, over 50% of  patients with IBS 
with constipation treated with linaclotide reported at least a 30% 
reduction in abdominal pain (187). An explanation may lie in the 
discovery that GUCY2C neuropod hyperexcitability was reduced 
by linaclotide in vitro and correlated with reduction in visceral 
pain in vivo (Figure 2) (89). These data strongly suggest that direct-
ly targeting gut-brain signaling pathways via neuropod cells could 
help mitigate symptoms of  visceral pain in DGBIs.

Since receiving FDA approval for treatment of  obesity in 
2014, GLP-1 receptor agonists have become a mainstay of  obesi-
ty therapy. Recent evidence suggests these medications also may 
be effective in other brain-based disorders, including Alzheimer 
(188) and alcohol use disorder (189). In obesity, these drugs are 
highly effective, with some formulations achieving mean weight 
loss of  over 20% in 72 months of  follow-up (190). As GLP-1 is a 
gut hormone with receptors on the vagus (42), in the brain (35), 
and circumventricular organs (40), these medications directly 
mimic endogenous gut-brain incretin hormone pathways. GLP-1 
has long been known to promote satiety and reduce food intake 
(191), although there is increasing evidence for accelerated met-
abolic activity (192). The exact mechanisms driving efficacy of  
GLP-1 receptor agonists in obesity are unknown, as the effects 
are widespread and include delayed gastric emptying and chang-
es in blood glucose (193). Endogenous GLP-1 release within the 
brainstem reduces eating (194). While the vagus nerve contains 

Figure 2. Example of gut-brain directed pharmacotherapy. Guanylyl 
cyclase C agonists (e.g., linaclotide) bind to the GUCY2C receptor on neuro-
pod cells to inhibit sensory neurons of the dorsal root ganglion and reduce 
visceral pain in IBS (89).
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