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Introduction
Rheumatoid arthritis (RA) is a chronic autoimmune disorder affect-
ing approximately 1% of  the global population and characterized 
by persistent synovial inflammation, progressive joint damage, and 
systemic manifestations (1). Studies focused on the etiologies of  
RA have identified a prolonged period of  asymptomatic autoimmu-
nity that precedes classifiable seropositive RA. Levels of  antibodies 
against citrullinated protein antigens (ACPAs) and inflammatory 
cytokines involved in RA pathogenesis, such as TNF and IL-6, 
increase as an individual transitions to clinical disease (2, 3). Patho-
genic autoantibodies, including ACPAs, precede clinically apparent 
disease by an average of  3–5 years (4, 5). Approximately 30%–50% 
of  ACPA+ individuals develop clinical RA within 3–5 years of  fol-
low-up (4, 5), allowing identification of  a critical “at-risk” period to 
study the transition from at-risk to clinical disease (6).

The mucosal origin hypothesis proposes that antibodies against 
ACPAs, and even RA itself, begin at one or more mucosal sites, 
potentially triggered by microbial exposure. Intestinal dysbiosis, 
IgA isotype ACPAs, expanded circulating IgA plasmablasts during 
the at-risk phase of  RA, and the presence of  mucosal ACPAs sup-
port a mucosal origin of  RA (7). Many have sought to identify 
microbial triggers, and several candidate bacteria have been identi-
fied through studies of  the microbiome.

The role of the microbiome in RA pathogenesis spans several criti-
cal aspects. Specific microbial taxa in the gut and oral cavity are increas-

ingly implicated in triggering autoimmune responses, particularly in 
genetically susceptible individuals. Furthermore, microbiome changes, 
often described as dysbiosis, are not only associated with disease onset 
but also appear to perpetuate inflammation during disease progression 
(8, 9). The influence of the microbiome extends to therapy, where its 
composition may affect the efficacy of treatments such as convention-
al disease-modifying antirheumatic drugs (cDMARDs) and biologic 
therapies (10). Understanding these interactions provides a foundation 
for novel predictive, diagnostic, and therapeutic approaches.

This Review aims to synthesize current knowledge on the micro-
biome’s role in RA, focusing on three key areas: the microbiome’s 
characteristics in at-risk and established RA, including changes 
induced by treatment and its impact on therapeutic efficacy; mecha-
nisms through which the microbiome can initiate and sustain auto-
immunity; and finally, insights for leveraging the microbiome in the 
management of  RA. By exploring these dimensions, this Review 
highlights the microbiome as a potential contributor to RA patho-
genesis and a promising target for innovative interventions.

Microbiome in individuals at risk for and with 
established RA
Emerging evidence suggests that changes in microbiota begin prior to 
clinical disease and further change with treatment of  RA. Although 
studies identify numerous microbial candidates at oral and intestinal 
sites, some patterns emerge (Figure 1). However, data to date focus 
primarily on bacteria, with little information regarding viruses and 
fungi; thus, we focus our Review on the bacterial microbiome in RA, 
with brief  mention of  data associating Candida species and viruses.

Bacterial dynamics in individuals at risk for RA. Most studies 
define “at risk for RA” as individuals who are serum ACPA+ but 
without typical clinical features of  RA such as synovitis on exam. 
In such individuals, Prevotella spp., particularly Segatella (former-
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learning approaches have demonstrated that fecal, dental, and oral 
microbiomes from individuals with RA can distinguish disease with 
high accuracy (AUCs of  0.93, 0.87, and 0.81, respectively) (18), 
although these findings require validation in independent cohorts.

Like individuals at risk for RA, Prevotella spp., particularly S. 
copri, is consistently detected in the stool from individuals with estab-
lished disease (12, 19, 20). Notably, it is also found in synovial tissue, 
but its role in pathophysiology at this site is unknown (20, 21). The 
pathogenic potential of  S. copri is associated with genomic adapta-
tions, particularly the acquisition of  conjugative transposons that 
enhance its ability to modulate host innate immune responses (22).

Similarly, products from Fusobacterium nucleatum and Eggerthel-
la lenta, enriched in the stool from patients with RA, have been 
identified in the synovial fluid of  patients with RA and associat-
ed with markers of  inflammation and measures of  disease severity 
(20, 23–25). However, whether and how the presence of  bacteria 
in the synovium and synovial fluid affect RA is unknown. Expan-
sions of  Collinsella (stool), Escherichia coli (stool), and Lactobacillus 
spp., particularly L. salivarius (stool, oral) also associate with RA and 
clinical factors such as autoantibodies and systemic inflammatory 
cytokines (18, 20, 26–28). Conversely, some Lactobacillus spp. like L. 
salivarius strain UCC118 and L. plantarum WCFS1 (stool), as well as 
Parabacteroides distasonis (stool), are reduced in abundance and may 
be protective in RA through associated antiinflammatory mecha-
nisms such as inducing IL-10 or suppressing Th17 cells (29, 30). 
The abundance of  periodontal and oral bacteria, like Porphyromonas 
gingivalis, varies across studies, with some reporting an increase (31), 
others a decrease (17, 18), and some showing no significant change 

ly Prevotella) copri, are consistently enriched in the stool (11, 12). 
Host genetics further influence gut microbiota composition in this 
context, as supported by the finding that a polygenic risk score for 
RA positively associated with the presence of  Prevotella spp., in the 
absence of  clinical symptoms (13). This finding suggests a bidirec-
tional relationship in which RA-related genetic variants may shape 
the gut microbiome, while microbial dysbiosis, in turn, may con-
tribute to immune activation and disease progression. Supporting 
this conclusion, a recent prospective analysis of  serum ACPA+ indi-
viduals with musculoskeletal symptoms who ultimately developed 
RA revealed significant fluctuations in the microbial community 
composition, especially Prevotella spp., that occurred approximately 
10 months before RA onset. This finding is in comparison with a 
control population of  individuals with serum ACPA+ and muscu-
loskeletal symptoms who did not develop RA during a 12-month 
follow-up period (12). This instability may signify a late microbial 
shift that contributes to RA progression.

Beyond gut microbiota, numerous studies have reported 
changes in the oral microbiomes of  individuals at risk for RA. An 
increased abundance of  Prevotella and Veillonella has been observed 
(14, 15). However, the presence of  oral P. gingivalis is inconsistent, 
with some studies reporting an increase (16) and others a decrease 
(15, 17) in prevalence, although these discrepancies may be influ-
enced by variations in study cohorts, collection methods, geogra-
phy, genetic predisposition, and other contributing factors.

Bacterial changes in individuals with established RA. Cross-section-
al studies evaluating the oral and gut microbiomes from individuals 
with RA have associated numerous bacteria with disease. Machine 

Figure 1. Microbial and immune changes across the stages of rheumatoid arthritis. Changes in the composition of gut and oral microbiota as well as sys-
temic responses observed in three stages of rheumatoid arthritis (RA): preclinical (Pre-RA), new-onset and early RA, and established RA. Pg, P. gingivalis; 
IPA, indole-3-propionic acid; IAA, indole-3-acetic acid; DMARD, disease-modifying antirheumatic drug. Black text indicates increased markers, blue text 
indicates decreased markers, and green text indicates markers that show both increases and decreases.
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ortholog of  a gene that associated with predicted response to 
MTX therapy in another study (52). Within individuals with 
established RA, crAss-like phages are significantly reduced com-
pared with controls (53), although when examined by treatment 
status, family Phycodnaviridae were significantly decreased in 
treated patients (54).

Proposed microbial mechanisms leading to RA
There are likely multiple mucosal sites, as indicated by the multi-
ple sites of  microbial dysbiosis described above, and pathways by 
which the microbiota can contribute to the development of  RA. 
Among the pathways are the generation of  neoantigens through 
citrullination, molecular mimicry, epithelial barrier permeabil-
ity, microbial translocation, and microbial education of  immune 
responses (Figure 2). These mechanisms, along with the mucosal 
sites where they occur, are not mutually exclusive. Multiple mech-
anisms and mucosal sites likely converge to lead to autoimmunity 
and ultimately clinical RA.

Generation of  citrullinated antigens. Given the central role of  
ACPAs in the diagnosis and pathophysiology of  RA (55), identify-
ing the source of  citrullinated antigens that drive ACPA production 
remains a key focus of  investigation. Citrullination of  arginine res-
idues in proteins occurs as a posttranslational modification, cata-
lyzed by the family of  peptidyl arginine deiminases (PADs). Micro-
bial factors, particularly bacterial PADs and microbe-induced host 
PAD activation, contribute to the generation of  citrullinated anti-
gens in mucosal sites. The only bacterium known to express PAD 
is the periodontal pathogen P. gingivalis, which can generate citrul-
linated fibrinogen and enolase, antigens often targeted by ACPAs 
(56, 57). Experimental models demonstrated that PAD-expressing 
strains of  P. gingivalis exacerbated arthritis, whereas PAD-deficient 
strains failed to do so (58, 59). Conversely, some periodontal bac-
teria and pathogens, such as Aggregatibacter actinomycetemcomitans, 
indirectly induce citrullination by triggering host PAD activation 
to subvert host immunity. The resulting hypercitrullination of  
host proteins closely resembles the citrullinated antigens found in 
RA joints (60, 61). Additional bacteria like Staphylococcus aureus 
and viruses like rhinovirus and cytomegalovirus similarly induce 
host hypercitrullination that may result in loss of  tolerance lead-
ing to RA (61). However, the importance of  bacterial species, the 
processes of  antigen citrullination, and the temporal relationship 
between microbial exposure and citrullination in the generation of  
ACPAs remain unresolved.

Molecular mimicry. For decades, researchers have sought to 
identify the elusive “arthritogenic” antigen, citrullinated or not. 
A leading hypothesis proposes that microbial antigens resemble 
host proteins that may provoke cross-reactive immune responses, 
ultimately breaking immune tolerance and promoting systemic 
autoimmunity (7). S. copri, Subdoligranulum didolesgii, and Strepto-
coccus spp. each have promising data supporting molecular mim-
icry that leads to RA.

Initial studies to identify potential microbes that could serve 
as molecular mimics of  self-antigens utilized HLA-DR peptidom-
ics. Peptides presented by HLA-DR on cells from the peripheral 
blood, synovial tissue, and synovial fluid from individuals with 
RA revealed sequence homology between the S. copri protein 
Pc-p27 and self-antigens, including N-acetylglucosamine-6-sulfa-

(32–34). The abundance of  P. gingivalis may be more strongly linked 
to periodontitis severity rather than being specific to RA (33).

The tonsillar microbiota in individuals with RA is enriched 
for pathogenic species such as S. pyogenes, S. dysgalactiae, and S. 
agalactiae, with experimental models demonstrating their role in 
exacerbating arthritis severity by promoting immune cell activation 
and inflammatory responses. Conversely, the depletion of  protec-
tive species such as S. salivarius in patients with RA contributes to 
microbial imbalance and immune dysregulation (35). The loss of  
S. salivarius is particularly significant, as this species produces sali-
varicins, which are lantibiotic peptides with immunomodulatory 
properties (36, 37) that inhibit T follicular helper (Tfh) cell differ-
entiation and IL-21 production, thereby reducing antibody produc-
tion and systemic autoimmunity (37). Notably, supplementation 
with S. salivarius or its salivaricins in murine models effectively 
attenuates arthritis progression (35, 37).

Bacterial changes in response to treatment. RA treatments also 
actively reshape the gut microbiome, leading to microbial shifts that 
may influence disease progression and treatment outcomes (10, 
38). Immunomodulatory therapies, including DMARDs and bio-
logics, have been shown to partially restore gut dysbiosis in patients 
with RA, with microbial shifts correlating with improved clinical 
outcomes and reduced disease activity. However, these effects are 
often incomplete, as patients with longstanding RA retain a distinct 
microbiota composition compared to healthy individuals despite 
prolonged treatment (18).

Among conventional DMARDs, methotrexate (MTX) treat-
ment did not significantly alter overall gut microbiota composition 
(39, 40) but induced significant shifts in gene family abundance, par-
ticularly in pathways related to pyrimidine synthesis, protein synthe-
sis, and ABC transporters (40). Hydroxychloroquine may similarly 
contribute to microbiota modulation by suppressing proinflammato-
ry bacterial overgrowth (41), although data on its role in RA micro-
biome effects are scarce. Biologic therapies, including TNF inhibi-
tors such as etanercept, also influence gut microbial composition. 
TNF inhibitor treatment in patients with RA partially restores gut 
microbiota composition by increasing beneficial bacterial taxa and 
reducing dysbiosis-associated changes, with notable modulation of  
Euryarchaeota, which correlates with disease severity (39).

Fungal and viral microbiomes in RA. The fungal and viral microbi-
omes in RA have been studied less extensively compared with bac-
teria. Fungi constitute only a minor fraction of  the intestinal micro-
biota — typically accounting for 0.1% to 1.0% (42, 43). Among gut 
fungi, Candida albicans is a predominant member of  the intestinal 
mycobiome, recognized both as a commensal organism and an 
opportunistic pathogen (42, 43). Relative abundances of  Candida 
species are increased in the fecal microbiota of  individuals with RA 
(44, 45), and colonization of  mice by C. albicans can worsen disease 
in murine arthritis (46, 47). Notably, β-glucan, a structural compo-
nent of  the C. albicans cell wall, acts as an immunological adjuvant 
capable of  promoting autoimmune arthritis in mice (48–50).

The intestinal virome in individuals at risk for developing 
RA compared with controls is enriched with Streptococcace-
ae, Bacteroidaceae, and Lachnospiraceae phages, which asso-
ciated with cyclic citrullinated peptide (CCP) positivity (51). 
Interestingly, a phage-encoded phosphonate phosphodiesterase 
that associated with CCP-positive at-risk individuals (51), is an 



The Journal of Clinical Investigation   R E V I E W

4 J Clin Invest. 2025;135(18):e195374  https://doi.org/10.1172/JCI195374

Figure 2. Potential mechanistic effects of the microbiome in RA pathogenesis. Bacterial dysbiosis in the gut and oral cavity promotes barrier disruption, 
bacterial translocation, and altered microbial metabolite production. Increased gut permeability facilitates dissemination of microbial components such as 
LPS and polysaccharide A (PSA), priming innate immune responses and promoting T cell polarization toward Th1, Th17, and Tfh subsets. Microbial metab-
olites, including short-chain fatty acids (SCFAs), tryptophan derivatives (e.g., indole, IPA, IAA), and bile acids (e.g., LCA, DCA), modulate local and systemic 
immune responses. Specific bacteria contribute to RA via molecular mimicry (S. didolesgii, P. copri, E. lenta) or by promoting antigen citrullination (P. 
gingivalis, A. actinomycetemcomitans, S. parasanguinis), leading to the generation of autoantibodies. Neutrophil activation and NETosis further expose 
citrullinated microbial and host antigens. The combined effects of microbial translocation, antigenic stimulation, molecular mimicry, and citrullination 
establish a link between mucosal microbiota and systemic autoimmunity in RA.
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Permeability is determined by the expression of  tight junction 
proteins (e.g., zonula occludens-1 [ZO-1], occludin, and claudins 
in the intestine), which act as selective gatekeepers regulating 
molecular exchange between the mucosa and its lumen (68). Tight 
junctions are dynamically influenced by both microbial signals 
(25, 69, 70) and host cytokines (71–75). Microbes regulate tight 
junction expression through toxins, pathogen-associated molec-
ular patterns, and metabolites (68). RA-associated gut bacteria, 
such as C. aerofaciens and E. lenta, reduce barrier permeability by 
downregulating key tight junction proteins, including ZO-1 and 
occludin (25, 69, 70). Although the precise signals are unknown, 
microbial products might engage pattern recognition receptors, 
including Toll-like receptors (TLRs) and nucleotide-binding oligo-
merization domain–containing (NOD) proteins. TLR2 signaling 
reduces barrier permeability by stabilizing ZO-1 (76), but TLR4 
signaling increases permeability by reducing claudin-1 and ZO-1 
expression via NF-κB activation (77). NOD1/2 signaling reduc-
es barrier permeability by enhancing E-cadherin expression (78). 
Additionally, proinflammatory cytokines, like IL-17, TNF, and 
IL-1β, can be induced by some bacteria and increase barrier per-
meability (74, 75, 79). In contrast, certain probiotics and micro-
bial metabolites reduce permeability. Bacteria such as B. pseudoca-
tenulatum (80), P. distasonis (30), and P. histicola (81) increase tight 
junction protein expression. Some microbial metabolites such 
as butyrate support epithelial cell function, reduce permeability, 
curb inflammatory cytokine production, and maintain immune 
homeostasis (82, 83).

The principal consequence of  increased intestinal permeabil-
ity is the activation of  immune cells. Increased intestinal perme-
ability allows microbial components such as lipopolysaccharides 
(84), peptidoglycans (85), and outer membrane vesicles (OMVs) 
(23) to cross the epithelial barrier, exposing local immune cells to 
activating ligands. As a result, immune cells are primed for subse-
quent activation (86–88). For example, mice deficient in junctional 
adhesion molecule A (JAM-A), a critical molecule that supports 
tight junctions, exhibit a tenfold increase in intestinal permeability. 
Although T and B cells infiltrate the lamina propria more exten-
sively in JAM-A–deficient mice, they do not spontaneously devel-
op colitis. Rather, JAM-A–deficient mice experience a more severe 
clinical course in the dextran sodium sulfate colitis model (87, 89). 
These data suggest that increased paracellular permeability primes 
immune cells for easier activation, indicating that while heightened 
permeability does not cause inflammation under steady-state con-
ditions, it predisposes the immune system to exacerbated responses 
during inflammation.

In preclinical arthritis models, intestinal permeability is often 
increased, associated with arthritis severity. Microbial dysbio-
sis in collagen-induced arthritis (CIA) and K/BxN mice corre-
sponds with increased intestinal permeability, increased IL-17 in 
intestinal tissue (90), and arthritis severity (91). Transfer of  the 
dysbiotic microbiome from CIA mice to germ-free mice result-
ed in increased intestinal permeability (82). Interventions that 
reduced intestinal permeability, such as butyrate or the zonulin 
antagonist larazotide acetate, inhibited arthritis development in 
CIA and antigen-induced arthritis (AIA) models (82, 91). These 
findings suggest that reducing barrier permeability may prevent 
or mitigate disease.

tase (GNS) and filamin A (FLNA), both of  which are expressed 
in RA synovial tissues. Pc-p27 elicited robust T cell responses 
that cross-reacted with their human counterparts, producing a 
pronounced Th1 response in patients with RA, while IgA anti-
bodies targeting Pc-p27 associated with increased levels of  ACPA 
and Th17 cytokines (62–64). In arthritis-prone SKG mice, S. copri 
colonization promoted Th17 expansion, joint inflammation, and 
autoantibodies. Furthermore, S. copri–educated T cells from SKG 
mice could trigger arthritis when transferred to naive T cell–defi-
cient mice (65), supporting a causal role for cross-reactive immune 
responses in driving autoimmune arthritis.

In another approach to identify possible molecular mimics, 
autoreactive monoclonal antibodies (mAbs) derived from patients 
at risk for and with RA were used to identify possible cross-reac-
tive bacteria in a pool of  fecal samples. Through 16S sequencing 
of  bacteria bound to the mAbs, followed by culturing bacteria from 
the primary fecal samples, Subdoligranulum didolesgii emerged as a 
candidate molecular mimic. In addition to being targeted by the 
autoreactive mAbs, S. didolesgii specifically activated T cells with a 
Th17 phenotype in a MHC class II–dependent manner from indi-
viduals with RA and not controls. To demonstrate causality, coloni-
zation of  germ-free mice with S. didolesgii induced joint inflamma-
tion, Th17 activation, and pathogenic autoantibody production as 
evidenced by the ability of  serum from S. didolesgii colonized mice 
to transfer arthritis (66). Although the specific T and B cell antigens 
are yet to be identified, these findings highly suggest that S. didoles-
gii may be another trigger for molecular mimicry in RA.

As a third approach to identify molecular mimics, paired bac-
terial and human transcriptomics of  blood from individuals with 
concomitant periodontitis and RA demonstrated systemic translo-
cation of  citrullinated oral Streptococcus spp. from the oral muco-
sa preceding an RA flare. Inflammatory ISG15+HLA-DRhi and 
S100A12+ monocytes and antibody effector response transcripts 
also associated with RA flare, suggesting that the citrullinated 
Streptococcus could trigger autoantibody responses. Indeed, ACPA 
mAbs derived from human RA plasmablasts cross-reacted with 
citrullinated bacteria including Streptococcus, but not uncitrullinated 
bacteria (67), implicating citrullinated Streptococcus spp. as another 
potential molecular mimic.

These findings support molecular mimicry as one possible 
mechanism in RA, yet critical gaps remain. Although microbial 
peptides that mimic self-antigens have been suggested, their precise 
role in breaking immune tolerance and driving disease progression 
is not fully elucidated. Microbial antigens may act as initial triggers 
or exacerbate preexisting autoreactivity, and these antigens may 
act individually, sequentially, or in concert. Finally, the diversity 
of  microbial epitopes capable of  eliciting cross-reactive immune 
responses complicates efforts to define causative agents in RA.

Barrier permeability. Translocation of  small microbial mole-
cules is controlled by epithelial permeability, a tightly regulated 
process allowing local mucosal immune cells to respond appro-
priately to their environment. The molecular exchange is size-re-
stricted and prevents passage of  whole microbial cells. Thus, the 
colloquial term “leaky gut” should be more accurately referred 
to as increased intestinal permeability, a condition that permits 
increased translocation of  microbial molecules, and not whole 
organisms, across the intestinal barrier.
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Several studies report possible increased intestinal permeability 
in at-risk and established RA individuals through use of  indirect 
measures, including increased circulation of  the tight junction sta-
bilizing protein zonulin, LPS, lipopolysaccharide-binding protein 
(LBP), and soluble CD14 (sCD14), alongside decreased colonic 
expression of  the tight junction protein ZO-1 (82, 92–94). How-
ever, these measures of  permeability have limitations. Assays that 
measure zonulin have cross-reactivity with haptoglobin (95), and 
factors like LPS and sCD14 can be acute-phase reactants (96). 
Although these indirect measures of  intestinal permeability are 
associated with RA, the mechanistic consequences are unknown. 
Thus, it remains unclear whether increased epithelial permeability 
has a pathophysiologic role.

Microbial translocation. Mechanisms of  bacterial translocation 
often occur as transcellular passage through the epithelium, and 
not through tight junctions or mechanisms of  epithelial permeabil-
ity (97–100). Oral citrullinated Streptococcus spp. translocate across 
the periodontium into the circulation of  patients with RA (67), 
and bacterial products have been detected in both synovial tissue 
and fluid of  patients with RA, including DNA from S. copri and 
E. lenta (25, 69, 70), which are enriched in the gut microbiota of  
patients with RA (12, 19, 20, 24). For the bacterium Fusobacteri-
um nucleatum, which is enriched in patients with RA, murine mod-
els demonstrate translocation to the joint of  OMVs carrying the 
FadA protein, which activates synovial macrophages and promotes 
joint inflammation (23). Prevotella intestinalis and S. copri similarly 
make OMVs that are able to enhance CIA (101), although the site 
to which the OMVs translocate was not evaluated. Nevertheless, 
bacterial products may not need to circulate or migrate to the joint. 
In the case of  S. didolesgii, bacterial DNA is found in the intestinal 
epithelium of  monocolonized mice, where it triggers local IgA and 
Th17 immune responses (66).

Microbial metabolites. Microbial metabolism generates an array 
of  immunomodulatory molecules that can influence host immune 
functions through multiple pathways (102–104). Metabolites such 
as short-chain fatty acids (SCFAs) (105), tryptophan catabolites 
(106, 107), and bile acids (108, 109) have been associated with RA. 
In addition to maintaining intestinal barrier homeostasis (80, 82, 
110, 111), these microbially derived metabolites shape immune 
responses relevant to RA.

SCFAs, primarily acetate, propionate, and butyrate, are fermen-
tation products of  dietary fibers and are well recognized for their 
immunomodulatory effects (105, 112). They act through free fatty 
acid receptor and G protein–coupled receptors, and influence gene 
expression by inhibiting histone deacetylases and activating histone 
acetyltransferases (112). These pathways collectively promote regu-
latory T cell (Treg) differentiation while suppressing proinflamma-
tory Th17 and Tfh cells (112).

Among SCFAs, butyrate is significantly depleted in patients 
with RA (105, 112–114), corresponding to a microbial imbal-
ance characterized by reduced butyrate-producing bacteria 
and increased butyrate-consuming species (115–117). Further-
more, individuals at risk for RA who have higher serum levels 
of  SCFAs exhibit a lower likelihood of  progressing to clinical 
RA (115). In arthritis-induced experimental models, includ-
ing CIA, SKG, and AIA, butyrate supplementation has been 
shown to alleviate disease severity, reduce bone erosion, and 

modulate immune cell populations (82, 115, 117–120). These 
effects are largely attributed to the promotion of  Treg, T follicu-
lar regulatory (Tfr), and regulatory B (Breg) cell differentiation, 
alongside suppression of  Tfh and Th17 cells (115, 116, 118, 
119). However, in collagen antibody–induced arthritis and K/
BxN serum-transfer models, models of  the effector phase rath-
er than induction phase of  arthritis, butyrate does not confer 
therapeutic benefit (118, 120, 121). These observations suggest 
stage-dependent effects of  butyrate in RA; increasing butyrate 
in preclinical disease may be therapeutic, whereas in later stages 
when autoimmunity or disease is established, butyrate does not 
have such benefits.

Tryptophan metabolism represents another key microbi-
al pathway influencing RA. Commensal and probiotic species, 
including Lactobacillus and Bifidobacterium, generate tryptophan 
catabolites in two primary pathways: indole and kynurenine. The 
indole pathway is largely microbiome derived, producing metab-
olites such as indole, indole propionic acid (IPA), and indole ace-
tic acid (IAA) (106, 107). In patients with RA, altered tryptophan 
catabolism results in reduced levels of  antiinflammatory indoles 
like IPA and IAA, alongside increased levels of  the proinflamma-
tory quinolinic acid (122). Indole-containing compounds signal 
through the aryl hydrocarbon receptor (AhR) on host immune 
cells, mediating immune responses (123). IPA and IAA alleviate 
arthritis in the CIA model through increased Treg differentiation 
and suppression of  inflammatory cytokines (124). However, cer-
tain bacteria enriched in RA, such as Lachnospiraceae and S. didoles-
gii, exacerbate RA by overproducing primary indole and stimulat-
ing IL-6, IL-1β, and IL-17 signaling (124), underscoring a dual role 
of  tryptophan metabolism that depends on the specific microbial 
and host context.

Bile acids are another class of  microbially modified metabo-
lites that may also influence RA. Secondary bile acids, including 
deoxycholic acid (DCA) and lithocholic acid (LCA), are produced 
by intestinal bacteria from hepatically derived primary bile acids. 
These metabolites regulate metabolism, barrier permeability, 
immune responses, and gut microbiota composition (110, 111). 
Antiinflammatory secondary bile acids such as DCA and LCA pri-
marily act through Takeda G protein–coupled receptor 5 (TGR5) 
signaling (80), suppressing Th17 differentiation and promoting M2 
macrophage polarization to reduce systemic inflammation and CIA 
severity (30, 80). Finally, in a short, 14-day open-label Mediterra-
nean diet–inspired “anti-inflammatory foods” dietary intervention, 
individuals with RA who achieved a 50% reduction in pain exhib-
ited significantly higher serum bile acid levels compared with those 
without pain improvement (125). These data strongly suggest that 
secondary bile acids may be protective in the development and/or 
perpetuation of  RA.

Despite promising preclinical evidence, translating microbial 
metabolite research into RA therapies remains challenging due 
to the complexity of  host-microbiota interactions, individual vari-
ability, and context-dependent effects. Although SCFAs, bile acids, 
and tryptophan catabolites influence key immune processes, such 
as Treg differentiation and cytokine production, their dual roles in 
inflammation underscore the need for caution. Realizing their ther-
apeutic promise will require deeper mechanistic insights, personal-
ized strategies, and robust clinical validation.



The Journal of Clinical Investigation      R E V I E W

7J Clin Invest. 2025;135(18):e195374  https://doi.org/10.1172/JCI195374

Treatment opportunities
Advancing our understanding of  the microbiome’s role in RA has 
unveiled several therapeutic opportunities, ranging from microbi-
al manipulation and dietary interventions to precision medicine 
based on microbial signatures. These strategies offer novel avenues 
to modulate disease activity, improve patient outcomes, and poten-
tially predict treatment responses.

Microbial manipulation. Efforts to reshape the gut microbiota 
using prebiotics, probiotics, and fecal microbiota transplantation 
(FMT) have shown varying degrees of  promise in RA. Prebiotics, 
typically high-fiber compounds intended to promote the growth of  
beneficial microbes, may make patients feel better but do not improve 
disease activity. In one double-blind, placebo-controlled trial involv-
ing 69 patients, no significant improvements in disease activity scores 
(DAS) were observed (126). In contrast, short-term and long-term 
interventions using probiotics have demonstrated reductions in 
inflammatory markers and joint symptoms in small double-blind 
placebo-controlled trials. An 8-week trial with Lactobacillus casei and 
a 12-month trial with Lactobacillus rhamnosus both reported decreases 
in swollen joints and inflammatory activity (127, 128). Similarly, a 
multistrain 8-week study combining L. casei, L. acidophilus, and Bifido-
bacterium bifidum led to lower levels of  C-reactive protein (CRP), a 
circulating marker of  inflammation, though paradoxically, disease 
activity scores increased (129). Although these findings may indicate 
potential for prebiotics and probiotics in helping patients with RA 
feel better, they emphasize the need for larger, better-conducted stud-
ies to clarify efficacy and strain-specific effects.

FMT represents a more direct approach to microbial manip-
ulation, but has not been formally studied in RA. A case report 
described a 20-year-old woman with refractory seropositive RA 
who underwent FMT from a healthy pediatric donor. She achieved 
minimal disease activity within one week of  FMT, maintained 
through a 78-day follow-up period (130); however, the conclusions 
are limited by the concomitant use of  corticosteroids with the FMT 
and through the follow-up period. More formal testing of  FMT has 
been conducted in a clinical trial for psoriatic arthritis (PsA), where 
31 patients were randomized to receive either FMT or sham treat-
ment after washout of  immunosuppressive therapies. Sixty percent 
of  the FMT group required rescue therapy within 32 days com-
pared with 19% in the sham group, suggesting limited efficacy in 
this setting (131). These outcomes emphasize caution around the 
safety and efficacy of  FMT in RA.

Emerging areas of  microbial manipulation include transplan-
tation of  defined bacterial consortia and engineered microbes, 
approaches that are under study for inflammatory bowel diseases. 
VE202 composed of  beneficial Clostridia strains, SER-301 with 
18 Firmicutes members, and MH002 comprised of  a six-member 
defined consortia are each being tested for the treatment of  ulcer-
ative colitis (132). Engineering microbes to manage inflamma-
tion may be another strategy for therapeutically manipulating the 
microbiome. Gene editing of  Saccharomyces cerevisiae to sense and 
degrade extracellular adenosine triphosphate, which contributes 
to intestinal inflammation, was effective in treating mouse models 
of  inflammatory bowel disease (133). Finally, the use of  bacterio-
phages to target and eliminate specific microbes that contribute 
to inflammatory bowel disease is being explored (134). Similar 
approaches may be considered as potential therapeutics for RA.

Dietary modulation. Numerous studies have evaluated the role 
of  diet for modulating disease activity in RA (135). Initial stud-
ies suggested that fasting (reduction of  daily caloric intake) may 
reduce disease activity, including morning stiffness, tender and 
swollen joints, and CRP, which reversed when normal dietary hab-
its resumed (136, 137). Adoption of  a Mediterranean diet, versus 
a Western diet, also reduced disease activity for patients with RA 
(138). However, these studies did not consider how dietary mod-
ulations could manipulate the microbiome’s potential to mediate 
inflammation.

Newer dietary strategies aim to reshape the microbiome and 
metabolome in RA. Fiber-rich diets significantly elevate serum 
SCFAs, which are associated with reductions in proinflammatory 
cytokines (MCP-1, IL-18, IL-33), an increase in Tregs, and clinical 
improvement measured by the Health Assessment Questionnaire 
(HAQ) (139). Furthermore, as described above, an “anti-inflamma-
tory” foods–altered Mediterranean diet may contribute to symp-
tom improvement through increased secondary bile acids (125). 
Another study in which microbiome and metabolome-guided 
dietary intervention is underway, focusing on the Mediterranean 
diet with enrichment of  n-3 polyunsaturated fatty acids, phenols, 
and fermented foods containing probiotics. Outcomes will include 
disease activity assessments as well as microbiome and metabo-
lome profiling (140).

In addition to changes in dietary intake, altering dietary timing 
may be another approach. During periods of  food consumption, 
select gut microbes, particularly Parabacteroides distasonis, increase in 
abundance. In the CIA model, P. distasonis exerted antiinflammato-
ry effects by producing glycitein, a product of  flavonoids, which in 
turn attenuates SIRT5-mediated inflammatory pathways. Fecal P. 
distasonis and serum glycitein, which are low at night and increase 
during the daytime in patients with RA, negatively correlated with 
IL-6, TNF, and other disease activity measures (141). Thus, manip-
ulating the diurnal fluctuations of  the microbiome may serve to 
reduce disease activity in RA.

Predicting treatment response. Beyond therapeutic interventions, 
the microbiome holds potential for guiding treatment selection. 
The intestinal microbiome influences drug metabolism, thera-
peutic efficacy, and long-term disease outcomes (10, 38, 40, 142–
145). One of  the most well-characterized examples of  microbial 
involvement in drug metabolism is sulfasalazine. Sulfasalazine is 
an azo-bonded prodrug that requires cleavage by colonic bacteri-
al azoreductases to release its active metabolite, 5-aminosalicylic 
acid (146), and sulfapyridine. The efficacy of  sulfasalazine is thus 
contingent upon the presence and enzymatic activity of  these gut 
bacteria, including species such as E. coli, Enterococcus faecalis, and 
Bacillus subtilis (147). Although not examined in RA, patients with 
inflammatory bowel disease associated spondyloarthritis who have 
Faecalibacterium prausnitzii  enriched in their gut microbiome were 
more likely to respond to sulfasalazine treatment, likely through 
sulfapyridine-promoted butyrate production by F. prausnitzii (145).

Similarly, microbe-driven drug metabolism is observed with 
MTX (148, 149). Studies in germ-free and antibiotic-treated mice 
demonstrated that the absence of  a gut microbiota results in 
reduced intestinal absorption and metabolism of  MTX (150). MTX 
directly alters bacterial physiology by inhibiting bacterial dihydrate 
folate reductase, resulting in reduced purine and pyrimidine syn-
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