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BACKGROUND. Susceptibility to human immunodeficiency virus type 1 (HIV-1) infection varies between individuals, but the biological
determinants of acquisition risk remain poorly defined.
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collected before HIV-1 acquisition with matched uninfected controls to identify immunological processes linked to infection risk.

RESULTS. Individuals who later acquired HIV-1 exhibited upregulation of immune processes that facilitate viral infection, including T cell
suppression, type Il interferon and Th2 immune responses. In contrast, processes associated with antiviral defence and tissue repair, such
as neutrophil and natural killer cell responses, type | interferon responses, wound healing, and angiogenesis, were downregulated.

CONCLUSION. These findings highlight dampened antiviral immunity prior to exposure as a correlate of increased risk for subsequent
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ABSTRACT

Background

Susceptibility to human immunodeficiency virus type 1 (HIV-1) infection
varies between individuals, but the biological determinants of acquisition
risk remain poorly defined.

Methods

We conducted a case-control study nested within a high-risk cohort in
Kenya. We compared the plasma extracellular RNA collected before
HIV-1 acquisition with matched uninfected controls to identify
immunological processes linked to infection risk.

Results

Individuals who later acquired HIV-1 exhibited upregulation of immune
processes that facilitate viral infection, including T cell suppression, type
Il interferon and Th2 immune responses. In contrast, processes
associated with antiviral defence and tissue repair, such as neutrophil
and natural killer cell responses, type | interferon responses, wound
healing, and angiogenesis, were downregulated.

Conclusion

These findings highlight dampened antiviral immunity prior to exposure

as a correlate of increased risk for subsequent HIV-1 acquisition.
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INTRODUCTION

Susceptibility to human immunodeficiency virus 1 (HIV-1) infection
varies significantly across populations and individuals (1-3). For
example, analysis from multiple studies showed that sub-Saharan Africa
has a higher risk of HIV-1 transmission per sexual contact compared to
higher-income regions (1). Although these differences may reflect low
access to antiretroviral drugs in sub-Saharan Africa at the time, intra-
population differences in susceptibility have been documented in a
longitudinal study of high-risk Kenyan adults, in which only 7% were
infected during follow-up despite likely widespread exposure (4). This
variability stems from a diverse range of factors, including behavioural
differences, viral load, characteristics of circulating viruses (including
HIV-1 subtype), and host-related factors such as genetic diversity and
environmental exposures such as sexually transmitted infections (STls)
that can modulate basal immune status (2, 5, 6). However, the specific
host biological factors and pre-existing pathogens associated with HIV-

1 acquisition are not fully known.

Identifying biological determinants of HIV-1 susceptibility is crucial for
developing diagnostic biomarkers and interventions (7, 8). High-

throughput omic techniques, including proteomics and transcriptomics,
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are increasingly employed to understand host mechanisms predisposing
to HIV-1 infections (4, 9). Transcriptomics offers a sensitive method to
detect subtle differences in gene expression, providing insights into the

host's immune response and immunodulatory pathogens (10).

All cells secrete a diverse population of RNA collectively called
extracellular RNAs (exRNAs) into biofluids such as plasma, saliva, and
urine (11, 12). The majority of these exRNAs are secreted within
membrane-bound vesicles called extracellular vesicles (EVs), which
protect them in the harsh extracellular space (11-18). Additionally, the
profiles of circulating exRNAs largely reflect the biological state of the
secreting cells, which provides a more holistic view of systemic biological
processes (19-21) and pathogen signals (22-26) relative to the cellular
RNA obtained from peripheral immune cells. Therefore, analyzing
plasma-derived exRNA from pre-infection samples may provide valuable

immune correlates of HIV-1 acquisition.

Here, we highlight transcriptional immune correlates of HIV-1
susceptibility by retrospectively analysing plasma-derived exRNA
collected before HIV-1 infection in a case-control study nested within a
longitudinal cohort of HIV-negative high-risk individuals in coastal Kenya

(27).
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RESULTS

Plasma exRNA highlights immunological pathways associated with

HIV-1 acquisition risk

The primary objective of this study was to identify pre-infection
transcriptional correlates of HIV-1 acquisition in high-risk adults. To
achieve this, we took advantage of a long-term longitudinal cohort of
high-risk individuals on the Kenyan coast, for whom the dates of HIV
infection have previously been estimated (4, 27-29) as summarised in
Figure 1 and described in detail in the Methods. We compared plasma-
derived exRNA from individuals who later acquired HIV-1 (cases; n=32),
collected approximately 3+2 months prior to the estimated date of
infection, to that from matched negative controls (n=64) (Figure 1). This
analysis identified 767 genes with differentially increased abundance
and 774 genes with significantly decreased abundance in HIV-1 cases
at a false discovery rate (FDR) of less than 5% (Figure 2A). Next, we
performed principal component analysis (PCA) and supervised heatmap
clustering on the differentially enriched genes and found that the
transcriptional profiles of EVs distinguished controls from the HIV-1
cases (Figure 2B, C). The differentially increased genes included the

endothelial nitric oxide synthase (NOSS3), angiotensin-converting
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enzyme 2 (ACEZ2), interleukin 17 and 21 receptors (IL17RA, IL17RD,
IL21R), the viral-sensing Toll-like receptor 7 (TLR7), and the inhibitor of
IRF3- and NF-kB-dependent antiviral response gene (ILRUN) (30)
(Figure 2C). In contrast, the differentially decreased genes featured the
pro-angiogenic factor VEGFA, the interferon regulatory factors (/RF1,
IRF3, IRF4, and IRF5), and the p53 negative regulator MDM?2 (Figure

20C).

Cell enrichment analysis demonstrated that the genes upregulated in
HIV-1 cases 312 months prior to infection belonged to cells such as
eosinophils, plasma B cells, central memory CD8-T cells, plamacytoid
dendritic cells (pDCs), and Th2 cells (Figure 2D). In contrast, the
downregulated genes were enriched for signatures associated with
several cell types, including natural killer (NK) cells, B-memory cells, and
neutrophils (Figure 2D). Next, we performed pathway enrichment
analysis of the 767 genes increased in HIV-1 cases, revealing an
overrepresentation of genes linked to endothelial nitric oxide synthase
(eNOS), IL-17 and IL-10 signalling, suppressive T-cell response, and
apoptosis (Figure 2E). Conversely, the 774 genes decreased in HIV-1
cases belonged to a wide range of biological pathways, including

reparative processes (wound healing and p53-signalling pathway) and
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pathways related to type-l interferon (IFN), including NFKB activation by
protein kinase R (PKR) and IFN-beta signalling (Figure 2E). These
findings suggest that reduced type | interferon and pro-reparative
immune responses, alongside elevated eNOS, suppressive T cell
response, IL17 and IL10 signalling, are strongly linked to HIV-1

acquisition in high-risk adults.

Plasma exRNA clustering uncovers distinct immunological

endotypes in HIV-1 cases and controls.

There could be heterogeneity in the biological mechanisms that underlie
protection or susceptibility to HIV-1 infection, which is obscured when
comparing the average biological signals between cases and controls.
To reveal intragroup heterogeneity and biological signal, we constructed
a participant similarity network (PSN) using the exRNA dataset
generated from the samples collected 3+2 months prior to HIV-1
infection. Spectral clustering of the similarity network identified five
endotypes of study participants - named A, B, C, D, and E - of which
endotypes A, B, and C were enriched for controls, while D and E were
enriched for HIV-1 cases (Figures 3A-C). We subsequently performed
differential feature analysis and identified over 4000 genes whose

exRNA profiles differed significantly between the endotypes, surpassing
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the differential signal observed in the case-control analysis (Figure 3D,
Supplemental Table 1). Pathway enrichment analysis revealed that the
control endotypes were enriched for features associated with pro-
reparative processes (wound healing, TGF-beta/SMAD signalling,
VEGF overexpression and histamine metabolism), T cell function (T cell
CD3, T cytotoxic cell surface, co-stimulatory T cell activation, granzyme-
B pathway and CTLA4 signalling), mitochondrial function (protection
against ROS, Keap1-Nrf2, respiratory electron transport, citric acid
cycle), and type | IFN signalling (IFN Beta signalling pathway, cGAS-
STING-TBK1 pathway, TLR-TRIF pathway, NFKB activation by PKR)

(Figure 3E).

The two endotypes composed mainly of HIV-1 cases (Figure 3A-C) were
also enriched for distinct pathways, with genes augmented in endotype
D featuring those linked to eNOS signalling, regulatory T cells, CXCR4
signalling, and FAS-mediated apoptosis (Figure 3E). Finally, endotype E
showed evidence of increased apoptosis, including HIV-1 mediated T
cell apoptosis, TRAIL and DR3 death receptor signalling. Signatures of
B-cell differentiation, IL-7 signalling, and suppressor of cytokine
signalling (SOCS) were also enriched in endotype E (Figure 3E). Our

endotyping analysis revealed more differentially expressed genes, and
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enrichment analysis compared to case-control analysis, which suggests
that different biological mechanisms could promote or impede HIV-1

infection.

The immunological processes observed at 3*2 months were

conserved at 62 months prior to HIV-1 infection.

To investigate whether the immune profile observed 1 to 5 months prior
to HIV-1 infection was also evident at earlier time points, we analysed
the transcriptional profiles from 9 individuals who later acquired HIV-1
and 29 matched controls who remained uninfected, using samples
collected 4 to 8 months before the cases became HIV-1 positive. We
found that 2688 genes were significantly increased in HIV-1 cases, while
4521 genes were significantly decreased (Figure 4A, Supplemental
Table 2). Cellular enrichment analysis of the altered genes showed
significant downregulation of genes belonging to natural killer cells (e.g.
NCAM1, FCGR3A), plasma B-cells (e.g. CD38), and pDCs (Figure 4A-
B). When we performed pathway over-representation analysis, we
observed that genes upregulated 612 months prior to HIV-1 infection
featured those belonging to type Il interferon signalling (e.g. CXCRS3,
IFNG, IL19, and CXCL9) (Figure 4C). On the other hand, genes

downregulated 6+2 months prior to HIV-1 infection were enriched for
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type | interferon signalling (e.g. IRF3, IRF9, JAK1, STAT2, STAT5A,
IL1B, TLR2, TLR4), and VEGFA-VEGFR?2 signalling, consistent with the
312 months prior to infection timepoint (Figure 4C). These observations
confirm that reduced type 1 interferon-driven innate immunity, together

with an elevated type Il interferon state, precedes HIV-1 infection.

The presence of human pegivirus type-1 (HPgV-1) is associated

with HIV-1 acquisition.

We next analyzed the exRNAseq data using a metatranscriptomic
approach to nominate potential pathogens associated with HIV-1
susceptibility. HPgV-1 RNA abundance was significantly higher in HIV-1
cases than controls three months before HIV infection (log.fold-
change>4, FDR<0.05) but not at six months (Figure 5A). Applying more
stringent criteria (>5 reads) to define HPgV1 positivity, rather than
considering any detectable HPgV1 RNA level as positive, we identified
20 HPgV1 positives. HPgV-1 positivity was non-significantly higher
among HIV-1 cases than controls at both three months (28% in cases
versus 17% in controls; OR = 1.89, 95% CI 0.69-5.16, p = 0.29) and at
six months (22% in cases versus 14% in controls; OR = 1.79, 95% CI
0.27-11.86, p = 0.61, indicating a modest enrichment of HPgV1 among

individuals who later acquired HIV-1 (Figure 5B). 14 participants were
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identified as HPgV-1 positive by conventional PCR, of which only 3 of
them were not detected using NGS. (Figure 5C). Poisson regression
analyses showed that HPgV-1 infection detected by next-generation
sequencing (NGS) and PCR at 3 £ 2 months prior to HIV-1 infection was
significantly associated with HIV-1 acquisition (NGS: RR = 1.99, 95% CI
1.11-3.55; PCR: RR = 2.32, 95% CIl 1.32-4.08) (Figure 5D). However,
after adjustment for other sexually transmitted infections, the association
was reduced (NGS: RR =1.51, 95% CIl 0.88-2.61; PCR: RR = 1.66, 95%
CI1 0.96-2.87), indicating that HPgV-1 was not an independent predictor
of HIV-1 acquisition. We next compared the endotypes by HPgV1 status,
revealing that individuals clustered in endotype D were more likely to be
HPgV1 positive compared to endotypes A or B (Figure 5E). To assess
the impact of HPgV-1 on transcriptional alterations between HIV-1 cases
and controls, we compared the transcriptional difference between HIV-1
cases and controls, before and after adjusting for HPgV-1 status. We
found a high correlation (R=0.97, P<0.0001) of the logz.fold changes
before and after adjusting for HPgV1 (Figure S1, Supplementary Table
3). Further, 120 and 201 of the upregulated and downregulated genes
between HIV-1 cases and controls, respectively, showed significant
differential abundance between HPgV-1 positive and negative

individuals (Figure S2, Supplementary Table 4). We also compared
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transcriptional changes between HPgV1-positive and -negative
individuals within both the HIV cases and the control groups and found
overlaps of 37 (3.7%) and 38 (4.8%) upregulated and downregulated
genes, respectively (Figure S3; Supplementary Table 5). Additionally, we
reanalysed previously published transcriptional data from PBMCs that
were either exposed or unexposed to HPgV1 in vitro. The reanalysis
revealed only 12 genes (6 upregulated and 6 downregulated) with
concordant expression between exRNA and PBMCs (Figure S4 and

Supplementary Table 6).

Finally, we assessed the genetic relatedness of the HPgV-1 genome
sequences from the 312 months prior to infection samples relative to
those from other parts of the world. We generated 11 partial HPgV-1
genomes, of which 4 were from the controls and 7 were from the HIV-1
cases. We next performed phylogenetic analysis and found that the
HPgV-1 genomes clustered by geographic origin, with our partial
genomes co-clustering with those from other African countries,

consistent with previous studies(31) (Figure 5F).
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DISCUSSION

In this study, we leveraged plasma-derived exRNA to determine pre-
infection immune correlates of HIV-1 acquisition among high-risk adults
in a longitudinal cohort study (27, 29). We highlight key findings, explore
their biological relevance to HIV-1 susceptibility, and offer potential
avenues for future research and intervention. Given that the profiles of
circulating exRNA often mirror molecular activities in the tissues most
affected by a specific condition (32), in this case, the mucosal sites that
serve as primary portals of HIV-1 entry, we also discuss our observations

within the context of mucosal immune regulation.

Our differential feature analysis showed that, three months prior to HIV-
1 infection, individuals who later got infected exhibited significant
alterations in exRNA profiles compared to the controls. Notably,
transcripts associated with [L-17 receptor signalling, apoptosis,
regulatory T-cells, and eNOS signalling were upregulated in HIV-1
cases. Higher sexual activity, particularly receptive anal intercourse (33-
35), together with STls, may promote mucosal damage, immune
activation and apoptosis, events that compromise barrier integrity and
facilitate viral entry. The elevated IL-17 receptor and eNOS signalling,

along with Treg responses, may represent compensatory mechanisms
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that restore mucosal homeostasis (36-43) but could also be induced by
STls and anal intercourse (33, 44). However, chronic activation of these
pathways could sustain inflammation and tissue damage. Moreover,
enhanced IL-17 receptor signalling may also drive chemokines that
enhance Th17 cell recruitment at mucosal sites (45), key HIV-1 target
cells (46-48). While Tregs help reduce immune activation, they are also
susceptible to HIV-1 infection (49, 50) and can weaken antiviral

response, collectively enhancing susceptibility to HIV-1 acquisition.

Akey observation from our study was the downregulation of genes linked
to type | interferon response, accompanied by an upregulation of type Il
interferon-associated transcripts in individuals who later acquired HIV-1.
This pattern suggests a reprogramming of the immune landscape toward
a less antiviral (30, 51-57) and more inflammatory state, which may
increase the expression of key HIV-1 entry receptors such as CCR5 (58-
60), thereby increasing susceptibility to HIV-1 infection. The
suppression of type | interferon response may be driven by elevated IL-
17 signalling, given that type | interferon and Th17 responses are known
to act antagonistically (61). Indeed, individuals with a gain-of-function
mutation in type 1 interferon signalling are predisposed to fungal

infection due to impaired Th17 responses (62, 63), while chronic
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hyperactivation of Th17 responses has been associated with increased

susceptibility to viral infections (45, 64, 65).

Our endotyping analysis identified five distinct endotypes, reflecting
significant heterogeneity in the biological mechanisms at play. Three
endotypes - A, B, and C -predominantly comprising controls, displayed
immune profiles consistent with effective antiviral immunity (66, 67) and
restrained immune activation, characterised by enhanced type |
interferon response, T-cell function, TGF-beta/SMAD signalling, and
oxidative phosphorylation. These features likely contribute to efficient
antiviral defence (57) and maintenance of mucosal health. For example,
increased TGF-beta could confer protection against HIV-1 infection
through maintaining an effective mucosal immune system impervious to
viral entry (68, 69) or inhibiting the pro-HIV type Il IFN immune response
(70). In contrast, the two susceptibility endotypes, D and E, were
enriched for regulatory T-cells and FAS-mediated signalling, TRAIL, and
SOC3 pathways, signatures that suppress antiviral immunity and
enhance mucosal disruption (71-73). Together, these findings suggest
that pre-infection immune heterogeneity, particularly involving interferon

balance and T-cell function interplay, critically shapes HIV-1 acquisition
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risk and may inform precision prevention strategies. However, a larger

study is necessary to identify the true heterogeneity of HIV-1 risk.

Our metatranscriptomic analysis identified HPgV-1 (also called human
pegivirus C type 1 or GB virus C [GBV-C] or Pegivirus hominis) as
significantly associated with HIV-1 acquisition, albeit less pronounced
when adjusting for other STIs. HPgV-1 is a flavivirus that infects
lymphocytes and NK cells and is transmitted by blood transfusion,
sexual exposure, and mother-to-fetal transmission (74). While our data
suggests that HPgV-1 is a correlate of HIV-1 acquisition, its predictive
value is influenced by the presence of other STls. This suggests that
HPgV-1 may not directly drive susceptibility but instead reflects a
permissive host immune environment conducive to sexually transmitted

viral infection, thus representing a biomarker for HIV-1 risk.

Interestingly, during established HIV-1 infection, HPgV-1 has been linked
to slower progression to acute immunodeficiency syndrome (AIDS) (75-
79). A plausible explanation, which is consistent with our data, is that
HPgV-1 exploits an immune milieu characterised by reduced type | and
elevated type Il interferon response (80), an immune balance that

favours viral acquisition but limits immunopathology (81-84). However,
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a direct role for HPgV-1 in modulating host immunity cannot be ruled out,

as suggested by other studies (26, 85-87).

The retrospective design of our study represents a key limitation.
Concurrent collection of mucosal samples alongside blood would have
allowed direct validation of the immunological signatures inferred from
exRNA analyses against local mucosal responses. Consequently, some
of our interpretations, although supported by existing literature, remain

speculative and require confirmation through prospective studies.

In summary, we highlight the strength of plasma exRNAseq in
uncovering pre-infection biological correlates of HIV-1 acquisition.
Future research should focus on validating the predictive value of HPgV-
1 in larger cohorts and exploring its utility in predictive models and
targeted interventions. In conclusion, understanding the biological
drivers of HIV-1 susceptibility among high-risk populations could

enhance the development of prevention and treatment strategies.
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METHODS
Sex as a biological variable

Samples from cases and controls were obtained from both men and
women. In our study, sex was not considered a biological variable of

interest.
Study design and population

312 months prior to HIV-infection samples: A case-control study nested
in a historic HIV-1 high-risk cohort from Coastal Kenya was conducted.
HIV-1 negative high-risk volunteers, including men-who-have-sex-with-
men (MSM) and female sex workers (FSW) aged =18 years, were
recruited and followed from 2006 to 2011 for HIV-1 vaccine
preparedness studies. Volunteers were screened for incident HIV-1
infection during follow-up using RT-PCR, p24 antigen, and HIV-1-
specific antibody assays as previously described (4, 28). For any
volunteer testing HIV-1 positive, an estimated date of infection (EDI) was
calculated either to be: 10 days before a positive HIV-1 RNA test (if
antibody negative), 14 days before a p24 antigen positive test (if RNA
test was missing), or midway between the last negative and first positive
HIV-1 specific antibody test (if both RNA and p24 tests were missing).

Cases were defined as volunteers who tested HIV-1 positive, while
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controls were those who remained negative at the end of a similar follow-
up period (4). Plasma samples from cases were collected 3+2 months
prior to the EDI, with controls matched 2:1 to cases based on sex, age,

risk group, follow-up duration, and plasma sample availability.

612 months prior to HIV infection samples: Plasma samples collected
6+2 months before the EDI were retrieved. Controls were matched 2:1
to HIV cases based on age, sex, risk group, follow-up duration in the
study and the availability of plasma samples collected at around the

same calendar date as that of the index case +2 months.
Isolation of extracellular RNA

Nanofiltration and ultracentrifugation were used to isolate exRNA,
aiming to primarily enrich for those encapsulated in small EVs, as
described previously (19) In brief, 13.5 ml of prefiltered PBS was
combined with 300 uL of plasma in a 15 ml Falcon tube. The diluted
plasma was filtered through a 0.22 ym (Millipore) filter to exclude cell
debris and centrifuged at 150,000 x g for 2 hours at 4 °C without
breaks. The pellets were treated with RNAse A for 15 min and washed
at 150,000 x g for two hours at 4°C. The impact of the RNase treatment
was evaluated by comparing the exRNA profile before and after

treatment using bioanalyzer/Agilent TapeStation (Figure S5). The
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supernatant was discarded while the pellets were digested using 250 pl
of RNA lysis solution (Bioline) and stored at -80°C until needed. EXRNA
was extracted from the lysed pellets using the Isolate 1| RNA Mini Kit

(Bioline) as directed by the manufacturer.
Bead-assisted flow cytometry

Evaluation of small EV markers in our pellets was performed using bead-
assisted flow cytometry (Figure S5), as we previously described (88).
Briefly, 50 uL of EVs in PBS were incubated with 1 pL of aldehyde/sulfate
latex beads (Invitrogen) in a total volume of 1 mL PBS for 12 hours at
room temperature on a rotary mixer. Following incubation, 110 yL of 1 M
glycine was added to block unreacted sites, and the mixture was
incubated for an additional 30 minutes at room temperature. Beads were
pelleted by centrifugation at 2000 x g for 5 minutes and washed once
with 1 mL PBS. The pellet was resuspended in PBS supplemented with
0.5% fetal bovine serum (PBS + 0.5% FBS) and stained with 1x anti-
CD9-APC (Cat. No. 341648, BD Biosciences) and 1x anti-CD63-PE
(Cat. No. 55705, BD Biosciences). Negative controls included beads
incubated with (i) antibody cocktail without EVs, and (ii) isotype control
antibodies: PE mouse IgG1 (Cat. No. 556650, BD Biosciences) and APC

mouse IgG1 (Cat. No. 550854, BD Biosciences). Stained beads were
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washed twice with 500 yL PBS +0.5% FBS and pelleted by
centrifugation at 2000 x g for 10 minutes. Data acquisition was

performed using a BD Fortessa flow cytometer.
cDNA library preparation

We used our previous protocol(19, 88) to prepare the cDNA libraries for
sequencing. Briefly, Superscript lll (Invitrogen) was used to produce the
first strand from the total exRNA. Before synthesizing the second strand,
the first strand reaction was cleaned using RNAcleanXP beads. dTTP
was replaced with dUTP while synthesizing the second strand to
generate double-stranded cDNA. The cDNA was fragmented, end-
repaired and ligated to adapters. The cDNA was treated with USER
followed by 19 cycles of PCR amplification to add lllumina primers and
increase yield. Sequencing was performed using the NextSeq 550

genome analyzer.
Quantification of HPgV-1 using PCR

HPgV-1 RNA was converted to cDNA using Superscript Ill reverse
transcriptase (NEB). HPgV-1 positive samples were detected by
amplicon-targeted PCR amplification of the 5' untranslated region (UTR)
with the antisense primer 5' - ATG CCA CCC GCC CTC ACC CGAA -

3' (nucleotides [nt] 494-473 according to GenBank accession number



447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

AY196904) and the sense primer 5’ - AAA GGT GGT GGA TGG GTG
ATG - 3'(nt 67-87) using Q5® High-Fidelity DNA Polymerase (New
England Biolabs). Amplification conditions were 50°C for 59 minutes, 10
minutes at 94°C, then 35 cycles of 30 seconds at 94°C, 1 minute at 55°C,
and 1 minute at 72°C, followed by 20 minutes at 72°C. First-round
polymerase chain reaction (PCR) products were used in nested PCR
with the antisense primer 5 — CCC CAC TGG TCY TTG YCAACT C -
3' (nt 362-341) and sense primer 5' — AAT CCC GGT CAY AYT GGT
AGC CACT - 3'(nt 107-131). After 35 cycles of 30 seconds at 94°C, 30
seconds at 55°C, and 1 minute at 72°C, PCR products were visualized

by agarose gel electrophoresis for the presence of a 256 nt band.
Statistics

Gene body read coverage depicted in Figure S7 was calculated using
the RSEQC tool. Transcript quantities in the units of raw read counts and
transcripts per million (TPM) were estimated by aligning the data to the
human transcriptomes using salmon and tximport. Comparison between
cases and controls was performed using edgeR. Raw read counts were
normalized using the relative log expression (RLE) method, and the
likelihood ratio test was chosen. P-values were adjusted for multiple

testing using the Benjamini-Hochberg statistical procedure, and an FDR
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threshold of less than 5% was set as the cut-off for significance.
Endotyping was conducted using spectral clustering, while differences
in gene expression between the endotypes were determined in edgeR
as described above. Cellular overrepresentation was performed using
protein signatures derived from a previously published study(89) while
pathway genesets were obtained from Literature Lab(90) and
Wikipathway(91). Pathogen classification was performed using Kraken2,
while a comparison of pathogen abundance between cases and controls
was performed using edgeR. In parallel, the predictive value of HPgV-1,
as measured by both sequencing and PCR, was also assessed by
calculating risk ratios, with or without adjustment of other STls. HPgV-1
phylogenetic tree was generated by first performing multiple sequence
alignment using nextalign followed by tree reconstruction using iqtree.
Unless stated otherwise, all visualizations were carried out using ggplot2

and ComplexHeatmap R packages.
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STUDY APPROVAL

The samples used in this study were collected using the IAVI protocol B,
reviewed by the Kenya Medical Research Institute Ethical Review
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545  Figure 1: Schematic representation of our study design. Three and
546  six-month prior to HIV infection, samples were selected from a historic
547  high-risk cohort study conducted on the Kenyan coast between 2006
548 and 2011. Cases were defined as those who tested HIV positive during
549  follow-up using RT-PCR, p24 antigen, and HIV-1-specific antibody
550 assays. Controls were those who remained HIV-negative during follow-
551 up and were matched to the cases based on sex, age, risk group, follow-

552  up duration, and availability of samples.
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(A) Volcano plot showing differentially altered genes between 32 cases
and 64 controls, three months prior to cases being HIV positive. Red
dots represent genes upregulated in cases, blue represents
downregulated genes, and grey represents unaltered genes. (B) The
differentially altered genes can distinguish HIV-1 cases from those who
remained negative. (C) Supervised heatmap clustering showing
differences in gene expression between cases and controls. (D) Gene
enrichment analysis showing transcriptional alteration at the cellular
level. Genes belonging to neutrophils were downregulated, while those
belonging to eosinophils and memory Tregs (mTregs) were upregulated.
(E) Pathway gene enrichment analysis shows that immunosuppressive
biological processes, such as IL10 signalling and regulatory T cells, were
upregulated in the cases, while inflammatory and reparative processes

were downregulated.
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Figure 3: Cases and controls cluster into distinct immunological

endotypes three months prior to HIV-1 infection
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(A) Patient similarity matrix showing that EVs-RNAseq data, three
months prior to HIV-1 infection, splits controls and cases into three and
two endotypes, respectively. (B and C) Patient similarity network colored
by (B) endotype and (C) sample type. Each node represents a study
participant, and each edge links two similar samples. (D) Heatmap
clustering shows that the identified endotypes have distinct
transcriptional profiles. (E) Heatmap showing the top pathways enriched

in each endotype.



581

582

583

584

585

586

587

588

589

A B

NK.brighto *** [
B.plasma-| *
pDCH *|
B.naive I
B.memory- *|
mDCH
MO.nonclassical- [
AFa MO.classicalq [
T8.EMRAA
STAT5A MO.intermediate
—_ mTregs-|
2] Basophil
GCJ Thrombocyte-|
© N NK.dim-| |
> GXCL14 T4 EMA =
[ Thi7-
M~ Neutrophil [ ]
i) ErythrocgteA ]
< STAT2 T8.CMq u
c < opss  sample_type nTregs |
2 {isc20 [ control Enral -
] TRAF6 T4.EMRA 1
° TIGIT M case ET4_.na|¥<_ef =
G1s osinophil4
2 Gsapt  abundance T8.naive-| |
Th2- |
E%GREA 2 Thi |
IGHG4 1 X I |
0 4 3 2 1 0
R -1 net enrichment score
IL20RA 2
C
IL10RA
= G controls cases
% Bl " CXCR4 2538 VEGFA VEGFR2 Signaling
= L6
ql:_) 4.00 1.36 IL1 Signaling
(=)}
8 --TNFAIpha Signaling
g - 1.29 Oxidative Damage Response
E < %)éﬁ?:i -- Interferon Type | Signaling
= -- IL19 Signaling

1.09 4.78  Type Il Interferon Signaling

enrichment score

[ _ ]
0246
Figure 4: The immunosuppressive transcriptional profile is also

evident six months prior to HIV-1 infection.

(A) Heatmap showing differential gene expression between 9 cases and
29 controls six months prior to HIV-1 infection. (B) Genes belonging to
NK cells and plasma B-cell subsets are severely downregulated in HIV-
1 cases relative to controls six months prior to infection. (C) Type Il
interferon response is upregulated in HIV-1 cases six months prior to

infection, while type | interferon response pathways are upregulated.
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591  Figure 5: HPgV-1 infection predicts HIV-1 acquisition.

592  (A) HPgV-1 RNA is more abundant in cases compared to controls at six

593 months prior to HIV-1 infection, but not at six months. (B) Barplots
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showing the proportion of HPgV1 positive in HIV1 cases and controls.
(C) Venndiagram showing overlap of HPgV-1 detection using next-
generation sequencing (NGS) and conventional PCR. (D) The presence
of HPgV-1 three months prior to infection is a non-independent predictor
of HIV-1 infection. (E) Forest plots comparing HPgV1 status between the
endotypes described in Figure 2. (F) HPgV-1 genomes exhibit regional

clustering.
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