
TP53/TAU axis regulates microtubule bundling to control alveolar stem cell mediated regeneration

Satoshi Konishi, Khaliun Enkhbayar, Shuyu Liu, Naoya Miyashita, Yoshihiko Kobayashi, Vera Hutchison, Ashna Sai, Pankaj Agarwal, Jonathan Witonsky, Nathan D. Jackson, Max A. Seibold, Jichao Chen, Aleksandra Tata, Purushothama Rao Tata

J Clin Invest. 2026. <https://doi.org/10.1172/JCI194762>.

Research In-Press Preview Cell biology Pulmonology

Graphical abstract

Find the latest version:

<https://jci.me/194762/pdf>

1 **TP53/TAU axis regulates microtubule bundling to control alveolar stem cell mediated
2 regeneration**

4 Satoshi Konishi^{1#}, Khaliun Enkhbayar^{1,2#}, Shuyu Liu¹, Naoya Miyashita¹, Yoshihiko Kobayashi^{1,13},
5 Vera Hutchison³, Ashna Sai¹, Pankaj Agarwal¹, Jonathan Witonsky⁴, Nathan D. Jackson⁵, Max A.
6 Seibold^{5, 6, 7}, Jichao Chen^{3, 8}, Aleksandra Tata^{1, 2, 9,*}, Purushothama Rao Tata^{1, 9, 10, 11, 12, 14*}

8 ¹ Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA

9 ² Department of Surgery, Surgical Sciences, Duke University School of Medicine, Durham, NC,
10 27710, USA

11 ³ Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston,
12 Texas 77030, USA

13 ⁴ Department of Pediatrics, University of California, San Francisco, 550 16th Street, San
14 Francisco, CA 94158, USA

15 ⁵ Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA

16 ⁶ Department of Pediatrics, National Jewish Health, Denver, CO, USA

17 ⁷ Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of
18 Medicine; Aurora, CO, USA.

19 ⁸ Department of Pediatrics, Perinatal Institute Division of Pulmonary Biology, University of
20 Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.

21 ⁹ Duke Regeneration Center, Duke University, Durham, NC, 27710, USA

22 ¹⁰ Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke
23 University School of Medicine, Durham, NC, 27710, USA

24 ¹¹ Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27710, USA

25 ¹² Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA

26 ¹³ Present address: Medical Research Laboratory, Institute of Integrated Research, Institute of
27 Science Tokyo, Bunkyo-ku, Tokyo, 113-8510, Japan

28 ¹⁴ Lead contact

29 # denotes co-first authors

30 *Corresponding authors. Address correspondence to: Purushothama Rao Tata, 303 Research
31 Drive, Sands Building Room 451, Durham, NC, 27710, USA. Phone: 919-684-0624. Email:
32 purushothamarao.tata@duke.edu and Aleksandra Tata, 303 Research Drive, Sands Building
33 Room 448, Durham, NC, 27710, USA. Phone: 919-684-0624. Email: aleksandra.tata@duke.edu.

35 **Declaration of interests**

36 The authors have declared that no conflict of interest exists.

37

38 **Abstract**

39 Cells exhibit diverse sizes and shapes, tailored for functional needs of tissues. Lung alveoli are
40 lined by large, extremely thin epithelial alveolar type-1 cells (AT1s). Their characteristic
41 morphology is essential for lung function and must be restored after injury. The mechanisms
42 underlying small, cuboidal alveolar type-2 cells (AT2s) differentiation into thin AT1s remain
43 elusive. Here, we demonstrated that AT2s undergo a stepwise morphological transformation
44 characterized by the development of a unique thick microtubule (MT) bundle organization, critical
45 for AT1 morphology. Using AT2 cultures and *in vivo* genetic loss of function models, we found
46 that MT bundling process occurs in a transitional cell state during AT2 differentiation and was
47 regulated by the TP53/TAU signaling axis. Notably, TAU underwent a linear clustering process,
48 forming beads-on-a-string-like pattern that preceded thick MT-bundle formation. Genetic gain or
49 loss of function of TAU in mouse or human models, prevented the formation of thick MT-bundles,
50 highlighting the critical role of precise TAU levels in generating ultra-thin AT1s. This defect was
51 associated with increased tissue fibrosis following bleomycin-induced injury *in vivo*. GWAS
52 analysis revealed risk variants in MAPT locus in lung diseases. Moreover, TP53 controlled TAU
53 expression and its loss phenocopied TAU deficiency. This work revealed an unexpected role for
54 TAU in organizing MT-bundles during AT2 differentiation.

55

56 **Introduction**

57 Tissues must maintain proper cellular composition and morphological organization to carry out
58 their functions. Defects in either cellular composition or structure have been implicated in various
59 diseases such as cancers, organ fibrosis and tissue atrophy (1–4). Therefore, it is essential to
60 understand the mechanisms that allow cells to achieve their appropriate identity and often

61 complex cell morphology during development, homeostasis, and repair. In the lung, the gas-
62 exchanging alveoli have an extremely thin epithelial lining that both facilitates diffusion of gases
63 and serves as a barrier (5). About 95% of this lining is occupied by AT1s, one of the thinnest cell
64 types in the human body (6–9). The remaining area is occupied by the apical domains of small
65 cuboidal AT2s, which serve as facultative stem cells that can self-renew and differentiate into
66 AT1s both at homeostasis and after injury.

67

68 Multiple growth factor signaling and transcriptional regulators have been implicated in AT2-to-
69 AT1 differentiation during development and regeneration (10–25). Additionally, cells must
70 coordinate structural components such as actin, microtubules, and cytokeratin to provide a
71 cytoskeleton to build and support the cell body. Indeed, recent studies have implicated actin-
72 dependent biophysical forces mediated by breathing movements and CDC42 mechanical stretch
73 in the maintenance of AT1 identity or AT2-to-AT1 differentiation, respectively(18, 26). Additionally,
74 integrins and cytokeratins have been shown to play critical roles in AT2-to-AT1 differentiation via
75 regulation of immune cell-mediated alveolar epithelial repair processes(27, 28). Previous studies
76 have demonstrated that AT2-to-AT1 differentiation involves a transitional state (also known as
77 PATS, DATPs or KRT8hi-ADIs), which the abnormal induction or persistence of can induce
78 fibrotic responses in alveolar fibroblasts leading to pulmonary fibrosis (29–33). Nevertheless, the
79 relationship between programs that drive PATS and those that effect morphological changes
80 remain elusive. Specifically, little is known about the transcriptional programs that guide structural
81 components to shape the thin, expansive morphology of AT1s.

82 Here, we show that AT2-to-AT1 differentiation is associated with a MT bundling process that is
83 essential for them to acquire large and thin morphology. Specifically, using a newly optimized 2-
84 dimensional culture model, we have uncovered a dynamic process in which individual radial MTs
85 are remodeled to generate thick MT-bundles. This process is mediated by TAU (encoded by the
86 Microtubule-Associated Protein Tau (*MAPT*) gene), which is highly expressed in PATS and AT1s

87 and localized to thick MT-bundles. Genetic gain and loss of function of TAU leads to
88 disorganization of MTs, loss of thick MT-bundles, and disruption in AT1 generation both *ex vivo*
89 and *in vivo*. Furthermore, we show that loss of function of the transcription factor TP53 regulates
90 TAU and recapitulates phenotypes observed in TAU mutant cells.

91

92 **Results**

93 *Newly optimized conditions for AT2 maintenance and differentiation in 2-dimensional cultures*
94 To assess morphological dynamics during mouse AT2-to-AT1 differentiation, we sought to
95 optimize 2-dimensional cultures that enable efficient cell state transitions. Previous studies have
96 demonstrated that AT2s can be cultured in 50% matrigel (10, 34). To establish a 2D-culture
97 model, AT2s were first plated on 5% Matrigel coated wells. However, even at later times both
98 large and thin cells that express AGER (AT1 marker) and ABCA3 (AT2 marker) were observed,
99 suggesting incomplete differentiation (Supplemental Figure 1A). On Collagen-I coated plates
100 tightly packed colonies of cells expressing ABCA3 and SFTPC were present throughout the
101 culture duration (Supplemental Figure 1B). By contrast, culture on fibronectin coated plates
102 revealed the presence of CLDN4⁺ PATS and large and thin AGER⁺ AT1-like cells at early (day-5)
103 and later (day-9) times (Figure 1A and Supplemental Figure 1C). To visualize the morphological
104 dynamics during AT2-to-AT1 differentiation, we performed time-lapse live imaging of cells
105 cultured on fibronectin starting day-3 for 72 hours. Our data revealed gradual stretching of AT1-
106 like cells with the appearance of arborizing cytoskeletal components from day-6 that were
107 maintained throughout the culture duration (Supplemental Figure 1D and Video S1). We then
108 performed bulk RNA sequencing (RNA-seq) on cells collected from collagen-1 (AT2s) and
109 fibronectin coated plates harvested on day-5 (PATS) and day-9 (AT1s) (Figure 1A). As expected,
110 differential gene expression analysis revealed previously reported AT2 (*Sftpa1*, *Abca3*, *Sftpc*,
111 *Lamp3*), PATS (*Krt8*, *Sfn*, *Sox4*), and AT1 (*Hopx*, *Aqp5*, *Ager*, *Cav1*) markers in different culture

112 conditions (Supplemental Figure 1E). Together, we established a 2-dimensional culture system
113 to maintain AT2s and their differentiation to AT1s in defined conditions.

114

115 *Transcriptome profiling revealed dynamic expression pattern of structural and regulatory*
116 *components of microtubules during AT2-to-AT1 differentiation*

117 Our above live imaging data revealed the appearance of arborizing cytoskeletal structures. To
118 further evaluate these structures, we analyzed the above transcriptome data and found
119 expression of transcripts related to both structural (*Tuba1c*, *Tuba1b*, *Tuba1a*) and regulatory
120 (*Map6*, *Mapre3*, *Map1a*, *Map2*, *Kif1a*, *Camsap1*) components of MT assembly in specific cell
121 types. We found enrichment of multiple structural and regulatory components of MTs in PATS
122 and AT1s indicating that MTs undergo significant reorganization during AT2 differentiation to AT1
123 via PATS (Figure 1B). To assess whether such changes occur during AT2 differentiation *in vivo*,
124 we reevaluated previously generated scRNA-seq data from bleomycin-induced lung injury(30).
125 We found enrichment of *Tubb2b*, *Tubb5*, *Tubb6*, *Map1b*, *Map4*, and *Map7* in PATS, whereas
126 *Tuba1a*, *Tuba8*, *Tubb2a*, *Tubb4b*, *Map2*, and *Map6* were enriched in AT1s (Supplemental Figure
127 2A). Together, transcriptome data revealed dynamic expression of MT components during AT2
128 to AT1 differentiation both *in vivo* and *ex vivo*.

129

130 *MTs undergo dynamic reorganization and generate thick bundles during AT2-to-AT1*
131 *differentiation ex vivo and in vivo*

132 We next performed immunostaining to visualize expression and localization of MTs, actin and
133 cytokeratins during AT2 to AT1 differentiation. AT2s have a dense network of individual radial
134 MT-fibers distributed throughout the cell body. By contrast, AT1s have organized thick bundle-
135 like structures each composed of multiple individual MT-fibers (Figure 1C and Supplemental
136 Figure 2B). Interestingly, MT changes correlate with an increase in cell area and decrease in cell
137 thickness (Figure 1D). Immunostaining for TUBA1B revealed a dynamic change in its localization

138 as AT2s differentiate to AT1s via PATS. On day-5, we observed the emergence of individual thick
139 MT-bundles, whereas on day-9, cells had a highly branched network of thick bundles all around
140 the cell body as the cells mature to AT1s (Figure 1C). In most cell types, MTs are anchored to the
141 peri-nuclear Golgi via microtubule organizing centers (MTOCs) (35, 36). To assess Golgi
142 localization, we performed immunostaining for GM130 (37). Golgi apparatus is restricted to peri-
143 nuclear regions in PATS. Whereas it is co-localized with thick MT-bundles including at branch
144 points in AT1s, suggesting that the Golgi serves as an anchoring point for MTs, as in neuronal
145 axons (38, 39) (Figure 1E). Additionally, staining for PK-mito, LAMP1 and CANX, which marks
146 mitochondria, lysosomes and ER, respectively, revealed that these organelles co-localize with
147 thick MT-bundles (Supplemental Figure 2C). Furthermore, immunostaining for acetylated tubulin
148 (Ac-TUB), a marker of stabilized form of MTs, revealed that thick MT-bundles correlate with
149 mature forms of MTs (40) (Figure 1F). Of note, immunostaining for TUBA1A, TUBA1B, and MAP2
150 showed thick MT-bundles are composed of multiple tubulin classes and MT-associated proteins
151 (MAPs) (Figure 1F and Supplemental Figure 2D). Among the actin and intermediate filaments,
152 KRT8 localization overlapped with tubulins within the thick MT-bundles whereas actin (phalloidin)
153 is highly enriched in the cortex and the basal side of the cells (Figure 1C, G and Supplemental
154 Figure 2E).

155

156 To assess whether the thick MT-bundles observed in 2D cultures are also present in AT1s *in vivo*,
157 we utilized the *Rtkn2-CreER;R26R-Kaleidoscope* (hereafter referred as *Rtkn2-Kaleidoscope*)
158 mouse line, which expresses TUBA1C fused to green fluorescent protein (EGFP) (41).
159 Administration of tamoxifen (*in vivo*) or adeno-cre virus (*ex vivo*) activates the expression of
160 TUBA1C-EGFP, thereby enabling the localization of tubulins specifically in AT1s (Figure 1H). To
161 assess TUBA1C-EGFP protein localization in cultured cells, we purified AT2s from *Rtkn2-*
162 *Kaleidoscope* mice and cultured them as described above (Figure 1H). As expected, we found
163 radial distribution of TUBA1C-EGFP throughout the cell body in AT2s from *Kaleidoscope* mice

164 whereas AT1s exhibited EGFP localization in a pattern similar to that of thick MT-bundles (Figure
165 1I and Supplemental Figure 2F). To assess the tubulin localization pattern *in vivo*, lungs were
166 collected from tamoxifen administered *Rtkn2-Kaleidoscope* mice followed by thick tissue
167 sectioning and imaging to visualize large, flat and thin AT1s in alveolar sacs. Confocal imaging
168 followed by maximum intensity projection revealed EGFP localization consistent with AT1s having
169 thick MT-bundles *in vivo* (Figure 1I).

170

171 MTs are polar structures with a fast growing plus end and a slow growing minus end that
172 collectively provide the directionality of MT growth (42). We utilized end-binding 1 (EB1)-EGFP
173 that allows tracking of MT plus ends to assess MT growth directionality and kinetics in real-time.
174 2D-cultured mouse AT2s were transduced with lentiviral *EB1-EGFP* followed by live imaging at
175 early (day-7) and late stages (day-14) of differentiation to capture these dynamics in PATS and
176 AT1s, respectively (Figure 1J and Video S2 and S3). Time-lapse imaging and comet tracking
177 revealed that cells at day-7 showed unidirectional movement from center to cortex, whereas cells
178 from day-14 showed bidirectional growth. This finding was further confirmed by kymograph-based
179 quantification analysis (Figure 1K and Video S2 and S3). These data suggest that alveolar
180 epithelial cells shift their MT growth from unidirectional to bidirectional as the AT2s differentiate
181 into large and thin AT1s. Moreover, an increase in EB1 comet velocity and angle fluctuation on
182 day-14, indicated enhanced MT dynamics and polymerization and switching directions within
183 bundled tracks (Figure 1L). Additionally, a decrease in directionality concentration, and track
184 straightness at day-14 compared to day-7 suggested that emergence of bidirectional movement
185 along bundled MTs during PATS-to-AT1 transition (Figure 1L). Together, AT2-PATS-AT1
186 differentiation processes can be recapitulated in our 2D *ex vivo* culture system revealing a unique
187 thick MT-bundle organization pattern in AT1s.

188

189 *Dynamic expression and localization of TAU during AT2 differentiation*

190 The above data revealed that MT components and associated genes are differentially expressed
191 during AT2 to AT1 differentiation. Among these, MAPs are known to directly bind MTs and
192 facilitate their nucleation in neurons and oligodendrocytes (43). To evaluate the expression of
193 MAPs, we plotted relative expression of relevant genes in a pseudotime trajectory encompassing
194 AT2, PATS, and AT1s using time-series scRNA-seq data that captured cellular dynamics at
195 different times following bleomycin-induced lung injury (30). Unexpectedly, we found that *Mapt*
196 (encoding TAU), a gene that has been extensively studied in Parkinson's and Alzheimer's
197 diseases, is dynamically expressed during AT2-to-AT1 differentiation (44, 45). Specifically, *Mapt*
198 expression is gradually increased as AT2s transition to PATS with highest expression in AT1s
199 (Figure 2A). Furthermore, this expression pattern correlated with that of MT components including
200 *Tuba1b*, suggesting that TAU plays a role in assembling MTs. To validate its expression in AT1s
201 *in vivo*, we performed co-immunostaining for TAU and AGER on thick tissue sections followed by
202 imaging and maximum intensity projection (Figure 2B). To further evaluate its expression and
203 localization dynamics, we carried out co-immunostaining for TAU and TUBA1B on cells collected
204 at different times during AT2-to-AT1 differentiation. In line with transcriptome data, we found a
205 gradual increase in TAU levels as AT2s differentiate into AT1s via PATS (Figure 2C and
206 Supplemental Figure 3A). Although it is expressed at low levels in AT2s, TAU shows a punctate
207 localization pattern throughout the cell body. Notably, the localization changed to an organized
208 fiber-like pattern as AT2s transition to PATS. Super resolution imaging revealed that multiple TAU
209 puncta are organized into beads-on-a-string like pattern in PATS and in mature AT1s
210 (Supplemental Figure 3B). Interestingly, the fiber-like pattern resembled that of thick MT-bundle
211 pattern even in the absence of clear bundles of TUBA1B, suggesting that TAU-fibers precede
212 MT-bundle formation. At later times, dense thick MT-bundles are formed in mature AT1s. These
213 data suggest a model in which TAU is organized into a string like pattern that precedes thick MT-
214 bundle formation during AT2-to-AT1 differentiation (Figure 2D).

215

216 *Loss or gain of TAU disrupts thick MT-bundle formation and AT1 cell thickness ex vivo*
217 To assess the role of TAU during AT2 differentiation, we performed CRISPR-based *Mapt*
218 knockout in purified AT2s in culture. First, we screened for efficient gRNAs selected from a
219 previously described mouse Brie genome-wide gRNA library (46). Of the four gRNAs screened,
220 two gave knockout efficiencies of 97% (gRNA 1) and 67% (gRNA 4) as assessed by ICE analysis
221 (47) (Supplemental Figure 4A and B). Then we generated adeno-associated viral 2/6 (AAV6)
222 particles expressing gRNAs and GFP followed by transduction into AT2s purified from *H11-Cas9*
223 mice and harvested cells for analysis on day-9 post infection (48). AAV6 co-expressing non-
224 targeting control (NTC) gRNA and GFP served as a control. Co-immunostaining for TAU and GFP
225 (infected cells) revealed efficient deletion of the gene in *Mapt* gRNA infected cells but not in
226 controls (Figure 3A and B; Supplemental Figure 4C and D). As expected, *Mapt* gRNA infected
227 GFP⁺ cells lacked thick MT-bundles compared to NTC gRNA infected cells. Immunostaining for
228 GFP and TUBA1B and Ac-TUB revealed disorganized MTs dispersed throughout the cell body in
229 *Mapt* gRNA1 infected cells, further validating the above observations (Figure 3C and D).
230 Quantification revealed a significant decrease in the number of cells with thick MT-bundles in
231 *Mapt* gRNA1 cells compared to NTC gRNA. Furthermore, we found a significant increase in the
232 apical-basal thickness of *Mapt* gRNA1 versus NTC gRNA infected cells (Figure 3E). We observed
233 similar phenotypes using *Mapt* gRNA4 (Supplemental Figure 4E).

234 Previous studies using *in vitro* reconstitution assays revealed that a fine balance in the
235 levels of TAU is essential for its proper assembly, localization and MT organization (49, 50) To
236 assess whether an increase in TAU levels affects MT-bundle formation during AT2-to-AT1
237 differentiation, we ectopically expressed TAU in AT2s. Full length *Mapt* coding sequence from
238 mouse fused with FLAG-tag was used to generate AAV6-mouse *Mapt-Flag* vectors. Similarly,
239 human full length *MAPT* was cloned into a plasmid expressing GFP and was used to generate
240 AAV6-human *MAPT-GFP* virus. AAV6-GFP served as a control (Figure 3F). Co-immunostaining
241 for GFP/FLAG, TAU, TUBA1B, Ac-TUB, and TUBA1A revealed disorganized MTs in both mouse

242 and human TAU gain of function conditions compared to controls (Figure 3G, H and Supplemental
243 Figure 5A). Quantification further revealed a significant loss of thick MT-bundles in MAPT gain of
244 function cells compared to controls. Additionally, *Mapt* gain of function cells showed a significant
245 decrease in cell area and increase in cell thickness, a phenotype similar to that seen in *Mapt* loss
246 of function (Figure 3A-I). In certain brain tauopathies, a mutation in TAU at amino acid position
247 301 with proline to lysine substitution is known to have gain of function activity and to disrupt MT
248 organization (51–53). Therefore, we ectopically expressed a pathological form of TAU (TAU^{P301L})
249 co-expressing GFP in mouse AT2s during their differentiation. Immunostaining for TUBA1B, TAU,
250 GFP, TUBA1A, and Ac-TUB revealed disorganization of tubulins and lack of thick MT-bundles in
251 GFP⁺ cells (Supplemental Figure 5B). Further, to assess whether MT-bundles are essential for
252 maintaining AT1 cell thickness, we deleted or ectopically expressed *Mapt* once MT-bundles were
253 established in cultured AT1s. To do so, we first generated AT1s followed by delivery of *Mapt*-
254 gRNA or *mMapt*-OE on day-9, at which point the AT1s established MT-bundles. Immunostaining
255 for Ac-TUB and quantification of MT-bundles on day-6 post gRNA delivery revealed that *Mapt*-
256 gRNA and *Mapt*-OE transduced cells lacked MT-bundles (Supplemental Figure 5C, D). Strikingly,
257 we found a significant increase in cell thickness in *Mapt*-gRNA and OE cells compared to controls
258 (Supplemental Figure 5E). Collectively, these data suggest that both loss and gain of TAU
259 function alters MT-bundle formation, and AT1 cellular organization.

260

261 *TAU is required for proper organization of cells during AT2-to-AT1 differentiation in vivo*
262 Next, we sought to study the role of TAU *in vivo* utilizing a previously described constitutive *Mapt*
263 deletion (*Mapt*-KO) mouse model (54) and assessing AT2-to-AT1 differentiation after bleomycin-
264 induced lung injury. To assess the morphology of cells derived from AT2s, we specifically labeled
265 AT2s with GFP using AAV5-GFP virus in control and *Mapt*-KO mice prior to bleomycin
266 administration (55). This approach also allowed us to identify regions undergoing repair in
267 response to bleomycin-induced injury (Supplemental Figure 6A). Co-immunostaining for GFP and

268 AGER on thick tissue sections revealed large, flat and thin AGER⁺ AT1s derived from GFP⁺ AT2s
269 in control lungs. As expected, confocal single stack shows that GFP labeled AT1s in control lungs
270 exhibit a thin cell morphology. In contrast, *Mapt*-KO lungs showed thick and balloon-shaped GFP⁺
271 cells that extrude into the alveolar lumina and lack AT1 markers (Supplemental Figure 6B).
272 Further assessment revealed a significant decrease in the number of thin cells (0-6 μ m) and an
273 increase in thick cells (13-40 μ m) in *Mapt*-KO compared to controls (Supplemental Figure 6C).

274

275 To exclude the possibility of non-cell autonomous effects in the above experiments, we performed
276 CRISPR based loss of *Mapt* function specifically in AT2s. For this, we generated AAV5 virus
277 carrying *Mapt* or NTC gRNAs and a green fluorescent protein (GFP marks infected cells) and
278 administered them intranasally into *H11-Cas9* mouse lungs prior to bleomycin-induced injury
279 (Figure 4A). As expected, co-immunostaining for GFP and AGER followed by imaging of thick
280 tissue sections revealed large, thin, and flat cells co-expressing these markers in NTC gRNA
281 lungs. However, *Mapt* gRNA transduced cells showed a thick and balloon-shaped morphology
282 and protruded into alveolar lumina (Figure 4B). Quantification further revealed a significant
283 decrease in the number of thin cells (0-6 μ m) and an increase in thick cells (13-40 μ m) in *Mapt*
284 gRNA administered lungs compared to controls (Figure 4C). Collectively, these data suggest that
285 loss of *Mapt* leads to defects in cell organization *in vivo*.

286

287 Previous studies revealed that defects in AT2-to-AT1 differentiation exacerbates alveolar fibrosis
288 after bleomycin-induced injury. Therefore, we sought to assess the consequences of loss of TAU
289 on alveolar repair and fibrosis (Figure 4A). Co-immunostaining for GFP with ACTA2 and TAGLN
290 revealed an increase in myofibroblasts in *Mapt* gRNA administered lungs compared to NTC lungs
291 (Figure 4D and 4E). Moreover, quantification revealed a significant increase in ACTA2-expressing
292 regions in areas that have GFP expression, suggesting that defective repair leads to an increase
293 in fibrosis in these lungs compared to controls (Figure 4F). Additionally, immunostaining and

294 quantification for SFN (early PATS) and LGALS3 (late PATS) on sections collected from
295 bleomycin injured control and *Mapt* gRNA administered lungs revealed a significant increase in
296 SFN⁺ and decrease in LGALS3⁺ PATS in *Mapt*-depleted cells (Figure 4G and 4H). These data
297 suggest an impairment in alveolar epithelial differentiation in *Mapt*-deleted cells. Furthermore,
298 trichome staining revealed an increase in collagen deposition in bleomycin injured *Mapt*-deleted
299 lungs compared to controls (Figure 4I). Analysis of bleomycin injured *Mapt*-KO mice further
300 confirmed these findings (Supplemental Figure 6D-H). Together, these data demonstrate that
301 TAU regulates MT dynamics during AT2 differentiation that is required to ensure AT1 regeneration
302 after injury.

303

304 *Loss of TP53 disrupts TAU expression, MT and AT1 organization during AT2-AT1 differentiation*
305 In neurons from Alzheimer's disease and in certain carcinomas, TP53 and TAU directly interact
306 to control cellular processes such as DNA damage repair and cellular stress pathways (56).
307 Previous studies have also implicated a role for TP53 in AT2 to AT1 differentiation after injury (17,
308 29, 30). To assess the role of TP53 in regulation of TAU and MT assembly, we purified AT2s from
309 *Sftpc-creER;R26-tdT;Trp53^{ff}* (here after referred as *Trp53*-KO) mice that had received tamoxifen.
310 AT2s from C57Bl6 mice served as controls (Figure 5A). Using our 2D cultures, we assessed the
311 ability of AT2s to differentiate into AT1s, as well as MT organization and TAU expression.
312 Immunostaining and western blot analysis revealed that TAU expression is decreased in *Trp53*-
313 KO cells compared to controls (Figure 5B and Figure 5C). Moreover, localization pattern of
314 TUBA1B and TUBA1A correlated with disorganization of MTs including the loss of thick MT-
315 bundles in *Trp53*-KO cells (Figure 5B). Additionally, immunostaining revealed a decrease in
316 expression of AGER in mutant cells compared to controls (Figure 5B). Of note, mutant cells
317 exhibited more than 2 nuclei, a finding consistent with previous reports that suggested a role for
318 TP53 in regulating gamma-tubulin and blocking cytokinesis (57, 58). Consistent with MT
319 disorganization, mutant cells showed an increase in cell thickness and a slight decrease in cell

320 area compared to controls (Figure 5B). To assess MT dynamics, we transduced a lentivirus
321 carrying EB1-GFP fusion protein into AT2s lacking TP53 (Figure 5D). Time-lapse imaging and
322 comet tracking analyses and velocity, directionality, and angle fluctuation quantification revealed
323 that cells at day-7 showed premature bidirectional movement of MTs from center to cortex, which
324 was maintained at day-14, suggesting that they undergo misdirected growth in mutant cells
325 (Figure 1K, 1L, 5E, 5F and Video S4 and S5).

326

327 To assess the consequences of TP53 deficiency on alveolar epithelial organization, we utilized
328 *Sftpc-tdT-Trp53-KO* mice. Upon tamoxifen administration, there is concomitant expression of
329 tdTomato and loss of *Trp53* specifically in AT2s. *Sftpc-creER;R26-tdT* (hereafter referred as
330 *Sftpc-tdT*) mice served as a control (Figure 5G). To assess the consequences of TP53 loss on
331 alveolar epithelial cell organization, we administered bleomycin to cause lung injury and collected
332 tissues on day-13 post injury (Figure 5G). Co-immunostaining for AGER and tdTomato on thick
333 tissue slices followed by confocal 3D reconstruction of alveoli revealed large and thin cells co-
334 expressing tdTomato and AGER in control lungs. In contrast, we observed large balloon-shaped
335 tdTomato expressing cells that lacked AGER in TP53 deficient cells, a phenotype similar to that
336 of TAU mutant cells (Figure 4B and 5H). Quantification further confirmed a significant increase in
337 cell thickness in TP53 deficient cells compared to controls (Figure 5I). To assess whether TP53
338 directly binds on *Mapt* genomic locus, we reanalyzed a previously described ChIP-seq data from
339 purified PATS (29). Integrative Genomics Viewer (IGV) tracks revealed enrichment of TP53 on
340 *Mapt* promoter (Figure 5J). Additionally, we found TP53 binding on multiple tubulin and MT-
341 associated gene loci (Figure 5K and Supplemental Figure 7A). To further test whether the
342 expression of tubulin and microtubule-associated genes is altered in TP53 deficient cells, we
343 utilized previously published scRNA-seq data (17). Pseudo-bulk RNA expression analysis of this
344 data revealed that the expression of *Map1b*, *Map2*, *Map4*, *Map6*, *Map7*, *Tuba1b*, *Tuba1c*,
345 *Tubb4b*, *Tubb5*, and *Tubb6* was decreased in *Trp53* knock-out cells (Figure Supplemental Figure

346 7B). Additionally, to assess whether TP53 similarly controls tubulin and MAP encoding genes in
347 human cells, we reanalyzed a publicly available scRNA-seq data from lung adenocarcinoma (59).
348 Although these datasets lack TP53 mutation annotation, the majority of tumor cells exhibit
349 decreased *TP53* transcript levels (consistent with loss-of-function or nonsense mutations). We
350 found that *MAP2*, *MAP4*, *MAP7*, *TUBA1A*, *TUBB4B*, *TUBB6*, and *TUBG2*, were downregulated
351 in TP53-low cells (Figure Supplemental Figure 7C). Together, these data point to a mechanism
352 whereby TP53 directly binds and controls tubulin and MAP encoding genes during AT2 to AT1
353 differentiation.

354

355 *TAU expression, localization, and requirement during human AT2 differentiation*

356 We then sought to assess TAU expression, localization and requirement during human AT2
357 differentiation. First, we purified human AT2s as previously described and cultured them in
358 serum-free, feeder free (SFFF) conditions for expansion or in alveolar differentiation medium
359 (ADM) for differentiation into AT1s on plates coated with either collagen or FN as described above
360 (Figure 1A, Supplemental Figure1A-C, and 6A). As expected, these culture conditions supported
361 either selective expansion of AT2s or their differentiation into large, thin, and flat AT1s *ex vivo* as
362 assessed by co-immunostaining for SFTPC and HTI-56, respectively, (Figure 6B). Furthermore,
363 immunostaining for TUBA1B revealed the presence of thick MT-bundles in the AT1s. We then
364 assessed the expression and localization dynamics of TAU at early and late stages in culture. Co-
365 immunostaining for TAU, TUBA1B, TUBA1A, and Ac-TUB revealed a gradual increase in TAU
366 expression as the AT2s differentiate to AT1s. Further, TAU localization changed from random
367 puncta to an organized fiber-like pattern that aligned along the thick MT-bundles similar to results
368 seen in mice (Figure 6C).

369

370 Second, to test the requirement of TAU for proper differentiation of AT2s into AT1s, we
371 screened and selected a gRNA that can efficiently target human *MAPT* gene (Supplemental

372 Figure 8A). As illustrated in Figure 6D, we generated lenti-viral particles expressing Cas9, *MAPT*
373 gRNA, and a fluorescent reporter, mCherry, and transduced them into human AT2s. NTC gRNA
374 served as a control. Transduced cells were then induced to differentiate into AT1s and collected
375 on day-9 post infection for analysis. Co-immunostaining for mCherry, TAU, and Ac-TUB revealed
376 loss of TAU and absence of thick MT-bundles in *MAPT* gRNA transduced cells compared to NTC
377 gRNA (Figure 6E). Further, we found disorganization of morphology from thin, large, and flat in
378 the case of NTC gRNA transduced cells to thick and elongated in *MAPT* gRNA transduced cells.
379 To assess the consequences of TAU gain of function, we transduced AAV6 expressing human
380 *MAPT* and GFP into AT2s. Of note, ectopic expression of TAU in AT2s was not sufficient to induce
381 AT2-AT1 differentiation (Supplemental Figure 8B). However, induction of differentiation by
382 administering ADM resulted in the disorganization of cell morphology specifically in ectopic TAU
383 expressed cells compared to controls as revealed by co-immunostaining for GFP, TAU, and Ac-
384 TUB (Figure 6F). Additionally, ectopic TAU expressing cells showed abnormal thick MT-bundles.
385 Together, both gain and loss of TAU disrupted MT organization and gave rise to thick cells during
386 human AT2 to AT1 differentiation, similar to what had been observed with mouse cells.
387

388 *Genetically regulated MAPT expression within the 17q21.31 haplotype influences pulmonary*
389 *disease risk*

390 Common genetic variation at the *MAPT*-containing 17q21.31 locus has been strongly associated
391 with IPF, COPD, and lung function traits (60–64). More specifically, this locus includes a 900kb
392 inversion, which contains genetic variation in strong linkage disequilibrium, resulting in the H1 and
393 H2 inversion-tagging haplotypes (65). Consequently, these pulmonary disease associations
394 reflect haplotype-level association, rather than a single SNP. Within, the disease-associated
395 haplotype, we found no *MAPT* nonsynonymous coding variants. Rather most haplotype variants
396 localized to the *MAPT* locus are non-coding, consistent with the idea that if disease risk is
397 conferred by this locus, it is through *MAPT*-expression regulation. To explore this, we examined

398 *MAPT* eQTL data from nasal airway epithelial brushings generated on a childhood asthma cohort
399 (*GALA*=681). *MAPT* was identified as a significant nasal eGene, with genetic variation tagging
400 the inversion haplotype associated with *MAPT*-expression (Supplemental Figure 8C). Examining
401 *MAPT*-expression by one of the eQTL variants, rs1981997, we found that the minor allele (A) was
402 associated with lower *MAPT*-expression (Supplemental Figure 8D). Notably, the A allele of
403 rs1981997 has been associated with decreased IPF risk (60). In contrast, based on data reported
404 by the GTEx consortium in lung tissue, the A allele for rs1981997 is associated with increased
405 *MAPT*-expression. GTEx also reports rs1981997 as a *MAPT* eQTL across 18 additional tissues,
406 with the direction of effect sometimes matching that of lung tissue and other times matching the
407 nasal pattern. Together, these results support a model whereby genetically regulated *MAPT*-
408 expression within the 17q21.31 haplotype influences pulmonary disease risk, with the direction of
409 effect depending on the tissue context.

410

411 **Discussion**

412 Efficient diffusion of gases across the alveolar epithelium into the blood capillaries and vice versa
413 requires that these tissues maintain appropriate cell numbers and organization (6, 66). Here, we
414 describe a unique MT organization, in which differentiating AT1s develop thick MT-bundles that
415 control cell thickness and area. We speculate that such thick MT-bundle organization promotes
416 the expansion of the cytoplasm and decrease in cell thickness that enhances gas diffusion as
417 compared to the radial and dispersed pattern observed in AT2s and other cell types. Furthermore,
418 thick MT-bundles likely provide structural support and stability for the thin and expansive AT1s
419 during cyclic breathing movements. Our work uncovered an unexpected role for TAU in alveolar
420 epithelial differentiation. Specifically, TAU seems to undergo condensation and is organized into
421 a beads-on-a-string like pattern in PATS and in AT1s. We also find that TAU localization precedes
422 thick MT-bundle formation suggesting that TAU initiates MT organization during AT2
423 differentiation. This aligns with prior studies using *in vitro* reconstitution assays that revealed TAU

424 droplet formation and localized condensation, which in turn facilitates MT assembly (50). Further,
425 it has been shown that TAU is critical for assembly of well-organized MTs and spacing between
426 bundles in neuronal axons and dendrites (67, 68). Previous studies have implicated that
427 endothelium derived TAU promotes neuronal tauopathy in *Pseudomonas aeruginosa* infected
428 mice (69, 70). However, to our knowledge, this is the first report implicating TAU in alveolar
429 epithelial stem cell mediated repair after injury.

430 Our data revealed that both gain and loss of TAU disrupted thick MT-bundle formation leading to
431 generation of aberrant differentiated cells with an increase in cell thickness and decrease in cell
432 area. These data suggest that a fine balance in the expression levels of TAU is essential to control
433 thick MT-bundle formation and cellular organization. In tauopathies, it has been well documented
434 that hyper-phosphorylation and different splice forms of TAU can differently influence MT
435 organization, organelle transport and mitochondrial function (71). Future studies need to evaluate
436 the role of these different isoforms in alveolar epithelial cells. Interestingly, AT1s share some
437 similarities with oligodendrocytes. For instance, oligodendrocytes generate elaborate myelin
438 sheaths that wrap around neuronal axons, facilitating rapid signal conduction. Both cell types
439 express *Mapt* and generate expansive membrane, which in turn is regulated by MTs and MAPs
440 (72–76). Additionally, both AT1s and oligodendrocytes express the transcription factor MYRF
441 (myelin regulatory factor). Based on this, we propose that both AT1s and oligodendrocytes use
442 similar programs to generate expansive membranes via TAU and organized MT structures.

443

444 Our study also revealed that expression of TAU is decreased upon loss of transcription factor
445 TP53 during AT2 differentiation. Aside from its well-known functions in genome stability, DNA
446 damage repair and cell death pathways, previous studies have also implicated a role for TP53 in
447 regulating cytoskeleton in alveolar epithelial cells (29). We now implicate a role for TP53 in
448 regulating TAU expression and thereby MT organization during differentiation of alveolar
449 epithelial cells. This is in line with previous studies that revealed a role for TP53 in directly

450 regulating the expression of MAPs in neurons and other cells (56). Indeed, we find that loss of
451 TP53 leads to altered MT-bundle formation, generation of aberrant alveolar epithelial cells with
452 an increase in cell thickness, a phenotype similar to TAU loss of function. These data suggest
453 that TP53/TAU axis controls thick MT-bundle formation to control cellular alveolar epithelial cell
454 organization.

455

456 Recent genome-wide association studies have identified potential risk variants in the *MAPT* locus
457 in COPD and pulmonary fibrosis patients (60, 61). In addition to *MAPT*, this 17q21 locus also
458 harbors other genes including *KANSL1*, which has been identified as a risk allele in eQTL studies
459 that utilized scRNA-seq and GWAS data to compute risk allele association (77). Our analyses
460 further provide support that variants in *MAPT* locus are associated with IPF disease risk.
461 Together, these data indicate the need to further investigate the TAU association in IPF and
462 COPD.

463

464 **Material and Methods**

465

466 **Sex as a biological variable**

467 Our study examined male and female animals, and similar findings are reported for both sexes.

468

469 **Mouse strains, bleomycin injury and viral delivery**

470 Both male and female mice aged between 8–16 weeks were used for experiments. All the mice
471 were C57BL/6 unless otherwise indicated. The following mice were used for experiments: wild
472 type, *Sftpc*^{tm1(cre/ERT2)Blh} (*Sftpc-CreER*) (78), *B6.Cg-Gt(ROSA)26Sor*^{tm14(CAG-tdTomato)Hze}/J (*R26R-*
473 *tdTomato*) (79), *H11-Cas9* (48), *Rtkn2-CreER;R26R-Kaleidoscope* (41), *B6.129X1-Maptm1Hnd*/J
474 (54) and *Trp53*^{fl/fl} (80) (mixed background). For lineage tracing mice received 3–5 doses of 2mg
475 tamoxifen (Sigma-Aldrich) per 20g of body weight via intraperitoneal injection. For bleomycin-

476 induced lung injury, 2.5 U kg⁻¹ bleomycin was administered intranasally 2 weeks after tamoxifen
477 injection and the mice were monitored daily. Mice that were administered PBS served as controls.
478 The mice were sacrificed at different times after bleomycin injury. For intranasal AAV viral
479 infection, mice were anesthetized with 3% isoflurane in an induction chamber followed by 2.5e10
480 viral particles administration resuspended in 60µL of physiological saline (Henry Schein, 002477).

481

482 **Mouse lung tissue dissociation and AT2 cell isolation**

483 Lung dissociation was performed as described previously(34, 81). Briefly, lungs were inflated with
484 an enzymatic dissociation solution (450U/mL *Collagenase I* (Worthington, LS004197), 5U/mL
485 *Dispase* (Corning, 354235), and 0.33U/mL *DNase I* (Roche, 10104159001). Lung lobes were
486 minced and incubated in enzyme solution at 37°C for 25–35min. Dissociation was quenched with
487 10% FBS/DMEM and strained. Cell pellet was resuspended in red blood cell lysis buffer (100µM
488 EDTA, 10mM KHCO₃, 155mM NH₄Cl) for 2min, followed by quenching with 10% FBS/DMEM
489 and filtration. For FACS sorting, the cell pellet was resuspended in a sorting buffer (0.5% BSA
490 (Genclone, 25-529F), 2mM EDTA). Cells were stained with EpCAM/CD326-Brilliant-Violet-711
491 (Biolegend, 118233, 1:200), Lysotracker-Green DND-26 (Invitrogen, L7526, 1:10000), CD140a-
492 PE (Biolegend, 135905, 1:200), CD31-eFluor-450 (Invitrogen, 48-0311-82, 1:200) and CD45-
493 eFluor-450 (Invitrogen, 48-0451-82, 1:200). EpCAM⁺Lysotracker^{high} cells were collected in 2%
494 FBS/DMEM/F12. Sorting was performed using either a SONY SH800S or MA900.

495

496 **Collagen I, fibronectin and 5% Matrigel coating**

497 To maintain AT2s collagen was used. Briefly, 100µl of Cellmatrix Type I-A (Wako Chemicals,
498 637-00653) was mixed with 100µl of DMEM-F12/Ham media and 20µl of reconstitution buffer
499 (2.2g NaHCO₃ in 100 ml of 0.05 N NaOH and 200 mM HEPES) was added. Ice-cold collagen
500 solution was added to well, spread and polymerized at 37°C for 30min. AT2s were plated on
501 collagen-coated wells. To induce mouse AT1 differentiation, AT2s were seeded on fibronectin. At

502 first, fibronectin (Millipore-sigma, F4759) was diluted with PBS to a concentration of 50 μ g/ml,
503 added to wells at 37°C for 30min-6h. Fibronectin was removed, and wells were washed once with
504 PBS followed by mouse AT2 seeding diluted in culture medium. For 2D-cultures on Matrigel, AT2s
505 were plated on wells collated with 5% Matrigel (Corning, 354230). Briefly, Matrigel was serially
506 diluted in DMEM/F12 to concentration of 5%, followed by well-coating at 37°C for 30min. Next,
507 Matrigel was removed and AT2s were seeded. AT2s were cultured in SFFF medium. The medium
508 was changed every two days.

509

510 **Mouse AT2 cell expansion**

511 Mouse AT2 organoids were cultured in SFFF conditions as described previously (34, 81). Briefly,
512 3000-5000 FACS-sorted AT2s were resuspended in SFFF media and mixed with Matrigel in
513 droplet format. After Matrigel solidification at 37°C for 15-20min, the mouse SFFF medium was
514 added. AT2 organoids were passaged to single cells using TrypLE select (Gibco, 12563029)
515 every 10-12 days.

516

517 **Human lung dissociation and AT2s purification**

518 Human lung dissociation was performed as described previously (34, 81). Briefly, 2-3g of tissue
519 was washed with PBS/1% Antibiotic-Antimycotic followed by pleura, small airway and vasculature
520 removal. Remaining tissue was cut into small pieces followed by digestion (Collagenase type-I:
521 1.68mg/ml, Dispase: 5U/ml, DNase: 10U/ml) at 37°C for 1-1.5h. Cells were filtered and rinsed
522 with 10% FBS/DMEM. Cell suspension was spun down at 450g for 10min and pellet was
523 resuspended in red blood cell lysis buffer (Thermo Fisher Scientific, A1049201) for 5min, washed
524 with 10% FBS/DMEM, filtered and pelleted. Approximately 2-10 million cells were resuspended
525 in MACS (magnetic activated cell-sorting) buffer (PBS, 1% BSA, 2mM EDTA) as per
526 manufacturer's instructions and incubated with TruStain-FcX (Biolegend, 422032) for 15min at
527 4°C followed by mouse HTII-280 (1:60 dilution) antibody for 1h at 4°C. Cells were washed twice

528 with MACS buffer and incubated with anti-mouse IgM microbeads for 15min at 4°C, loaded into
529 the LS-column (Miltenyi Biotec, 130-042-401) and collected magnetically.

530

531 **Human AT2 cell culture and cell differentiation**

532 Human AT2 cultures were performed as previously described (34, 81). Human AT2 organoids
533 were cultured in SFFF conditions in 50% Matrigel. For differentiation, AT2s were dissociated and
534 plated in 5% Matrigel and cultured in SFFF media for 3-5 days followed by 7-8 days of ADM media
535 replacement containing 10% human serum.

536

537 **EB1-EGFP lentivirus transduction**

538 Lentivirus production was performed as described previously with modification (82). Briefly, 70-
539 80% confluent HEK293T were prepared in 10% FBS/DMEM/1% penicillin-streptomycin. Two
540 hours before transfection, the medium was changed to 5% FBS/DMEM without penicillin-
541 streptomycin followed by transfection with 10µg of pLenti-EB1-EGFP (Addgene, plasmid 118084),
542 7µg psPAX2 (Addgene, plasmid 12260), and 5µg pCMV-VSV-G (Addgene, plasmid 8454)
543 plasmids using PEI Max (1:4) (Polysciences, 24765). After overnight incubation, the medium was
544 changed to 10% FBS/DMEM/1% penicillin–streptomycin. Viral supernatant was collected 48, 72,
545 and 96h after transfection followed by virus concentration using Lenti-X Concentrator (Takara,
546 631231). The viral pellet was dissolved in DMEM/F12 and titrated using a qPCR lentivirus titter
547 kit (Applied Biological Materials, LV900). Single cell suspensions of mouse AT2s were
548 resuspended in SFFF containing lentivirus at 1:100 and seeded on fibronectin-coated glass
549 bottom dish (Matsunami Glass, D35-14-1-U). Cells were incubated with lentivirus overnight
550 followed by SFFF replacement.

551

552 **Live cell imaging of EB1-EGFP signal in mouse AT2s and kymograph analysis**

553 Virus infected mouse AT2s were recorded on days 7 and 14 at 1.5-second intervals. For
554 kymograph analysis, the time series stack data was applied to the Fiji plugin software: *tubeness*
555 to remove background signals followed by *KymoResliceWide* analysis according to the
556 distributor's guide. Analysis including velocity, directionality concentration, angle fluctuation and
557 track straightness were performed. Briefly, images were converted to 8-bit. A region of interest
558 (ROI) was manually defined within the cell boundary. To enhance linear comet signals, the
559 *tubeness* filter was applied. Tracking of EB1-comets was performed using the TrackMate plugin
560 (Simple LAP tracker). All quantitative analyses were performed in R (packages: tidyverse, readr,
561 ggplot2, circular). For each EB1-comet track, the XY displacement and duration were used to
562 calculate velocity ($\mu\text{m}/\text{min}$) and movement angle (degrees). Directionality concentration (DC) was
563 calculated using circular statistics to quantify the uniformity of comet movement angles, with
564 higher DC values indicating more coherent orientation. Angle fluctuation was calculated as the
565 standard deviation of frame-to-frame directional changes, reflecting local instability. Track
566 straightness, defined as the ratio of net displacement to total path length, was quantified to
567 evaluate the linearity of EB1-comet trajectories. All measurements were calibrated using the
568 imaging scale ($\mu\text{m}/\text{pixel}$) and frame interval (s/frame).

569

570 **Vector cloning of AAV-CRISPR KO plasmids**

571 Candidate gRNA sequences were picked up from Brie library(46) or designed using
572 CHOPCHOP(83). Two oligos containing sgRNA sequences (Oligo1:ACC+5'gRNA(20-mer)3',
573 Oligo 2: AAC+5'Reverse complement of gRNA(20-mer)3') were obtained and annealed using
574 T4PNK (NEB M0201S) according to the manufacturing protocol. Backbone plasmid: pAAV-U6-
575 sgRNA-CMV-GFP (addgene:85451) was cut with restriction enzyme Sap1 (NEB, R0569S), and
576 a larger size of cut-plasmid was extracted from gel. Finally, annealed oligo was ligated to
577 backbone plasmid using Quick ligase (NEB, M2200S).

578

579 **AAV production and transduction**

580 AAV production and transduction was performed as previously described(55). Briefly, 70-80%
581 confluent HEK293T cells were prepared in 10% FBS/DMEM/1% penicillin-streptomycin. Two
582 hours before transfection, medium was changed to 5% FBS/DMEM without penicillin-
583 streptomycin and cells were transfected using PEI Max (1:4) with 50 μ g of transgene plasmid,
584 100 μ g of adenovirus helper plasmid (XX680), and 50 μ g of AAV serotype plasmid. Following
585 overnight incubation, the medium was replaced to 5% FBS/DMEM/1% penicillin–streptomycin.
586 Viral supernatant was collected 4-days after transfection and purified by iodixanol gradient using
587 Opti-prep Density Gradient Medium (Sigma, D1556) and ultracentrifuge. Titters of virus were
588 measured by qPCR with primers amplifying the AAV2 ITR regions
589 (fw:5'AACATGCTACGCAGAGAGGGAGTGG-3'; rev:5'-
590 CATGAGACAAGGAACCCCTAGTGATGGAG-3'). For AAV transgene transduction to *ex vivo*
591 culture, AAV supernatant was diluted with SFFF medium at a ratio of 1:4 to 1:5 without
592 concentration and administered to cells.

593

594 **RNA preparation and bulk RNA-seq**

595 For total RNA extraction, cells were resuspended in TRIzol (Thermo Fisher Scientific, 15596026)
596 and total RNA was extracted using Direct-zol RNA Microprep kit (Zymo, R2061) according to the
597 manufacturer's protocol. Bulk RNAseq was conducted on samples with RIN values greater than
598 8.0 using a bioanalyzer. Ribosomal RNA from total RNA samples (100 μ g) was performed using
599 NEBNext rRNA Depletion Kitv2 (NEB, E7400L). Libraries were prepared using NEBNext Ultra II
600 Directional RNA Library Prep Kit for Illumina (NEB, 7760S).

601

602 **Reanalysis of scRNA-seq data**

603 Line plots of relative gene expression were performed by re-analyzing the available data (GSE
604 141259)(30). We extracted gene expression trajectory data from the converging trajectories using
605 the interactive web tool (<https://theislab.github.io/LungInjuryRegeneration/>).

606

607 **Bulk RNA sequencing and differential gene expression analysis**

608 Purified RNA (1 μ g) from each sample was enriched for Poly-A RNA using NEBNext Poly(A)
609 mRNA Magnetic Isolation Module (NEB, #E7490). Libraries were prepared using NEBNext Ultra
610 II RNA Library Prep Kit for Illumina (NEB, #E7770). Paired-end sequencing (150bp for each read)
611 was performed using HiSeq X with at least 15 million reads per sample. Quality of sequenced
612 reads were assessed using FastQC (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>).
613 PolyA/T tails were trimmed using Cutadapt(84). Adaptor sequences were trimmed and reads
614 shorter than 24bp were trimmed using Trimmomatic(85). Normalization and extraction of
615 differentially expressed genes (DEGs) between samples were performed using an R package,
616 DESeq2(86).

617

618 **ChIP-seq Signal Filtering and Visualization**

619 To visualize TP53 binding enrichment across microtubule-related genes, published ChIP-seq
620 data for TP53 (GSE141635; CTGF⁺tdTomato⁺ PATS) and its corresponding Input control were
621 processed using R (v4.3.2). Signal tracks in bedGraph format were imported via the rtracklayer
622 package and converted into BigWig files after filtering by signal intensity and genomic coordinates
623 for each gene were obtained from TxDb.Mmusculus.UCSC.mm10.knownGene and
624 org.Mm.eg.db. ChIP and Input signals overlapping each gene region were extracted using subset
625 ByOverlaps. Peaks with signal intensity greater than 5.29 were selected corresponding to the
626 95th percentile of the Input signal distribution. Only peaks exceeding this percentile were
627 considered TP53-enriched relative to the Input control. The resulting BigWig files were loaded

628 into the Integrative Genomics Viewer (IGV) (v2.17.0) to visualize TP53 ChIP enrichment relative
629 to Input across the analyzed microtubule-related genes.

630

631 **Re-analysis of human and mouse scRNA-seq datasets to assess TP53-dependent**
632 **regulation of AT1-associated microtubule gene programs**

633 Re-analysis of publicly available scRNA-seq datasets (human lung adenocarcinoma
634 (GSE131907)(59) and a Kras-driven mouse lung cancer model (GSE231681) (17) were
635 conducted in Seurat v5.0.1. Briefly, for the human dataset, raw UMI matrices and cell annotations
636 were filtered. Data were normalized, highly variable genes were selected, and PCA was
637 performed. Cell-type annotations from the original study were incorporated as metadata, and
638 AT1s were extracted. Malignant epithelial cells were stratified based on TP53 expression, and
639 those with TP53 expression below the median were defined as TP53-low malignant. For the
640 mouse dataset, raw HDF5 matrices were imported and filtered. Samples representing KT (*Trp53*
641 WT), KPT (*Trp53* loss), and KFT (*Trp53* hyperactive) were merged and normalized, and the top
642 2,000 variable genes were identified. Scaled data were subjected to PCA, and principal
643 components 1–30 were used for UMAP embedding and clustering. Cluster identities were
644 assigned using canonical markers. AGER-positive AT1-like cells were extracted for analyses.
645 KFT samples were excluded from KT–KPT comparisons. MAP and tubulin isoform genes were
646 analyzed, and violin plots were generated.

647

648 **GWAS data analyses**

649 *MAPT* eQTL data based on nasal brushings were obtained from a published genome-wide GALA
650 nasal eQTL analysis(87). The *MAPT* LocusZoom plot was constructed using the locuszoomr R
651 package (88), where LD patterns were generated relative to the lead variant using LDlinkR based
652 on the 1000 Genomes Project European population(89). Publicly available eQTL data were
653 examined using the GTEx version 10 portal (gtexportal.org).

654

655 **Lung tissue fixation and sectioning**

656 Mouse lungs were inflated and fixed in 4% Paraformaldehyde (PFA) at 4°C for 4-6 hours. Lung
657 lobes were separated and washed in PBS followed by incubation in 30% sucrose overnight at
658 4°C. Lobes were incubated in 1:1 30% sucrose:OCT for 1h followed by embedding in OCT blocks
659 and cryosectioning at 8-10µm thickness.

660

661 **Immunostaining on lung sections**

662 OCT sections were washed with PBS. Antigen retrieval was performed using 10mM sodium
663 citrate buffer at 90-95°C for 15min. Sections were washed with PBS, permeabilized in PBST
664 (0.1% Triton X-100 in PBS), and incubated with 1% BSA in PBST for 30min at RT followed by
665 primary antibodies at 4°C overnight. Sections were then washed 3x in PBST, incubated with
666 secondary antibodies in blocking buffer for 1h at RT, washed with PBST 3x, and mounted using
667 Fluor G with DAPI.

668

669 **Immunostaining of cultured cells**

670 Cultured cells were fixed with 4% PFA at RT for 15min or with methanol at -20°C for 10min.
671 Samples were washed with PBS, permeabilized in 0.2% Triton X-100 in PBS, and incubated with
672 1% BSA in PBS for 30min at RT, followed by primary antibodies at 4°C overnight. Samples were
673 then washed 3x in PBST, incubated with secondary antibodies for 1h at RT, washed with PBST
674 3x, and mounted.

675

676 **Precision cut lung slices (PCLS) and immunostaining of PCLS**

677 Mouse lungs were inflated with 2% low-melting agarose dissolved in PBS as previously
678 described(90). PCLS (300µm) were obtained using compresstome (PRECISIONARY, VF510-Z).
679 For immunostaining, PCLS were fixed in 4% PFA at 4°C for 1h. Sections were washed with PBS,

680 permeabilized in 0.3% Triton X-100 in PBS, and incubated with blocking buffer (1% BSA, 0.3%
681 Triton X-100 in PBS) for 1h at RT followed by primary antibodies at 4°C overnight. Sections were
682 then washed 3x in wash buffer (0.5% Tween-20, 0.5% Triton X-100 in PBS), incubated with
683 secondary antibodies in blocking buffer at 4°C overnight, washed 3x in wash buffer and twice in
684 PBS before imaging on glass bottom dish. Three-dimensional rendering of acquired stack images
685 was performed using Imaris (Oxford instruments) or Icy software.

686

687 **Protein extraction and western blot analysis**

688 Cultured cells were washed with ice-cold PBS and collected in cell lysis buffer (50mM Tris-HCl,
689 pH 7.5, 150mM NaCl, 1% Triton X-100, 2mM EDTA and 2mM DTT and protease inhibitor
690 cocktail). Following a 15-minute incubation on ice, the lysates were spun down at 13,000g for
691 15min and the supernatant was collected for a Bradford analyses. Samples were prepared in
692 Laemmli buffer, boiled for 10min at 95°C and loaded on 12% SDS-PAGE gels followed by
693 transfer, blocking in 5% milk for 1h at RT, incubation with primary antibodies overnight at 4°C,
694 washes with TBST and incubation with secondary antibodies. The following primary and
695 secondary antibodies were used: anti-Tau (10274-1-AP, Proteintech, 1:1000), anti-GAPDH
696 (GT239, GeneTex, 1:10000), anti-Rabbit IgG-HRP (4030-05, Southern Biotech, 1:10000), anti-
697 Mouse IgG-HRP (1030-05, Southern Biotech, 1:10000). Signals were detected using a Pierce
698 ECL-2. Band intensities were quantified using ImageJ.

699

700 **Imaging of mitochondria and tubulin in mouse AT1s**

701 Cultured AT1s were incubated for 30min at 37°C in SFFF media containing Tubulin Tracker Green
702 (T34075, Invitrogen, 1:4000) and PKmito Orange Dye (CY-SC053, Cytoskeleton-Inc., 1:5000)
703 followed by a 5min wash in SFFF containing 1µg/mL Hoechst-33342 stain. Cells were rinsed 3x
704 in SFFF media and imaged.

705

706 **Masson-Trichrome staining**

707 Trichrome staining was performed using a Masson Trichrome Staining Kit (HT15-1KT, Sigma-
708 Aldrich) and a Weigert's Iron Hematoxylin Set (HT1079-1SET, Sigma-Aldrich) according to
709 manufacturer protocols on OCT-frozen sections. Images were recorded using a 20X objective of
710 Axio imager (Zeiss).

711

712 **Antibodies**

713 The following antibodies and dyes were applied to samples for immunostaining: anti-
714 RAGE/AGER (MAB1179, R&D systems, 1:500), anti-proSP-C (AB3786, MilliporeSigma, 1:500),
715 anti-ABCA3 (3C9) (sc58220, Santacruz, 1:300), anti-Claudin4 (36-4800, Invitrogen, 1:200), anti-
716 Actin, alpha-Smooth Muscle Cy3-conjugated (C6198, MilliporeSigma, 1:500), anti-HT1-56 (TB-
717 29AHT1-56, Terrace Biotech, 1:300), anti-HTII-280 (TB-27AHT2-280, Terrace Biotech, 1:50),
718 anti-GFP (NB100-1770, Novus Biologicals, 1:500), anti-tdTomato (AB8181-200, Origene,
719 1:1000), anti-TUBA1A antibody (PA5-22060, Invitrogen, 1:100), anti-TUBA1B (66031-1-Ig,
720 Proteintech, 1:500), anti-acetylated Tubulin (66200-1-Ig, Proteintech, 1:500), anti-Tau (10274-1-
721 AP, Proteintech, 1:200), anti-Tau-1 (PC1C6) (MAB3420, MilliporeSigma, 1:100), anti-Tau (Tau-5)
722 (AHB0042, Invitrogen, 1:50), anti-MAP2 (17490-1-AP, Proteintech, 1:500), anti-Keratin8
723 (TROMA-I, DSHB, 1:50), anti-GM130 (610822, BD, 1:50), Alexa Fluor-555 Phalloidin (A34055,
724 Invitrogen, 1:400), Alexa Fluor-647 Phalloidin (A22287, Invitrogen, 1:400), LEL-DyLight®-649
725 (DL-1178, Vector Laboratories, 1:1500), anti-FLAG-M2 (F1804, Sigma-Aldrich, 1:1000), anti-
726 Calnexin (AB22595, Abcam, 1:500), anti-CD107a/LAMP-1 (121601, BioLegend, 1:500), anti-SFN
727 (PA5-95056, Invitrogen, 1:250), anti-LGALS3-Alexa647 (125408, BioLegend, 1:500), anti-
728 TAGLN/Transgelin (ab14106, Abcam, 1:250).

729

730 **Image acquisition, processing and quantification**

731 Images were captured using an Olympus FV3000 confocal microscope with a 20X, 30X, 40X,
732 60X objectives. For long term live-imaging Olympus VivaView FL Incubator Microscope was used
733 with 20x objective. Images were processed using the Olympus CellSens application or ImageJ
734 and Figures were prepared using Affinity Designer. Measurements and quantifications were
735 performed using Image J-Fiji using a sample of biological replicates (n=3).

736

737 **Statistical analysis**

738 Statistical methods relevant to each Figure are outlined in the Figure legend. Sample size was
739 not predetermined. Data are presented as means with standard error (SEM). Statistical analysis
740 was performed in Excel, Prism and R. A two-tailed Student's t-test was used for the comparison
741 between two experimental conditions. We used Shapiro-Wilk analyses to test whether data are
742 normally distributed and used Mann-Whitney statistical test for the comparison between two
743 conditions that showed non-normal distributions.

744

745 **Study approval**

746 The animal experiments were approved by the Duke University Institutional Animal Care and Use
747 Committee in accordance with US National Institutes of Health guidelines. Healthy human lungs
748 were obtained in accordance with Institutional Review Board oversight (Duke University
749 Pro00114526– exempt research as described in 45 CFR 46.102(f), 21 CFR 56.102(e) and 21
750 CFR 812.3(p) which satisfies the Privacy Rule as described in 45CFR164.514).

751

752 **Data Availability Statement**

753 All quantification values represented in the graphs are provided in the Supporting Data Values
754 file. Requests for further information and resources should be directed to and will be fulfilled by
755 Purushothama Rao Tata (purushothamarao.tata@duke.edu). Bulk RNA-seq data of cultured cells
756 have been deposited at GEO (GSE287523) and are publicly available as of the date of publication.

757

758 **Acknowledgements**

759 We thank Brigid Hogan and Tata lab members for fruitful discussions, Lauren Macadlo and Viet
760 Dung Nguyen for technical support and the Duke Compute Cluster for server space and data
761 storage. We acknowledge and thank the BioRepository and Precision Pathology Center (BRPC)
762 and Research Support (SSCRS)-Duke Surgery for providing human tissues under Institutional
763 Review Board oversight and Substrate Services Core. The authors thank the participants and
764 their families for their contribution, and the health care professionals and clinics for their support
765 and participation in the Genes-Environments and Admixture in Latino Americans Study. Flow
766 Cytometry was performed in the Duke Cancer Institute Flow Cytometry Facility at Duke University.

767

768 **Funding support**

769 This work is the result of NIH funding, in whole or in part, and is subject to the NIH Public Access
770 Policy. Through acceptance of this federal funding, the NIH has been given a right to make the
771 work publicly available in PubMed Central. Flow Cytometry is supported by the NCI Cancer
772 Center Support Grant (P30CA014236). S.K and Y.K. were supported by the Japan Society for
773 the Promotion of Science Overseas Research Fellowships. This work was supported by research
774 award from NHLBI/NIH (R01HL146557, R01HL160939, R01HL153375 to P.R.T and
775 R01HL174525 to A.T).

776

777 **Author contributions**

778 S.K. and K.E. were designated co-first authors as S.K. led the initial study design, experiments,
779 and manuscript draft, K.E. led the major revision, including key experimental design, execution,
780 and analysis. S.L performed experiments and analyzed data. N.M., Y.K., and P.A. performed
781 transcriptome data analysis. A.S. assisted in immunostaining experiments. V.H and J.C. provided
782 lungs from *Rtkn2-CreER;R26R-Kaleidoscope* mice. M.A.S, J.W., and N.D.J. performed GWAS

783 analyses. A.T. co-designed and supervised the work, performed image acquisition, co-wrote the
784 manuscript, and prepared Figures. P.R.T. conceived, co-designed, and supervised the work and
785 co-wrote the manuscript. All authors reviewed and edited the manuscript.

786

787

788 **References:**

789 1. Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. *Nature*.
790 2020;587(7835):555–566.

791 2. Watt FM, Jordan PW, O'Neill CH. Cell shape controls terminal differentiation of human
792 epidermal keratinocytes. *Proc Natl Acad Sci U S A*. 1988;85(15):5576–5580.

793 3. Miroshnikova YA, et al. Adhesion forces and cortical tension couple cell proliferation and
794 differentiation to drive epidermal stratification. *Nat Cell Biol*. 2018;20(1):69–80.

795 4. Luxenburg C, Zaidel-Bar R. From cell shape to cell fate via the cytoskeleton - Insights from the
796 epidermis. *Exp Cell Res*. 2019;378(2):232–237.

797 5. Weibel ER. Morphological basis of alveolar-capillary gas exchange. *Physiological Reviews*.
798 1973;53(2):419–495.

799 6. Crapo JD, et al. Cell number and cell characteristics of the normal human lung. *Am Rev Respir
800 Dis*. 1982;125(6):740–745.

801 7. Hogan BLM, et al. Repair and regeneration of the respiratory system: complexity, plasticity,
802 and mechanisms of lung stem cell function. *Cell Stem Cell*. 2014;15(2):123–138.

803 8. Basil MC, et al. The Cellular and Physiological Basis for Lung Repair and Regeneration: Past,
804 Present, and Future. *Cell Stem Cell*. 2020;26(4):482–502.

805 9. Konkimalla A, Tata A, Tata PR. Lung Regeneration: Cells, Models, and Mechanisms. *Cold
806 Spring Harb Perspect Biol*. 2021;a040873.

807 10. Barkauskas CE, et al. Type 2 alveolar cells are stem cells in adult lung. *J Clin Invest*.
808 2013;123(7):3025–3036.

809 11. Gokey JJ. YAP regulates alveolar epithelial cell differentiation and AGER via
810 NFIB/KLF5/NKX2-1. *OPEN ACCESS*;23.

811 12. Little DR, et al. Differential chromatin binding of the lung lineage transcription factor NKX2-
812 1 resolves opposing murine alveolar cell fates in vivo. *Nat Commun*. 2021;12(1):2509.

813 13. Penkala IJ, et al. Age-dependent alveolar epithelial plasticity orchestrates lung homeostasis
814 and regeneration. *Cell Stem Cell*. 2021;S1934590921001843.

815 14. Zepp JA, Morrisey EE. Cellular crosstalk in the development and regeneration of the
816 respiratory system. *Nat Rev Mol Cell Biol*. 2019;20(9):551–566.

817 15. Brownfield DG, et al. Alveolar cell fate selection and lifelong maintenance of AT2 cells by
818 FGF signaling. *Nat Commun*. 2022;13(1):7137.

819 16. Liberti DC. Klf5 defines alveolar epithelial type 1 cell lineage commitment during lung
820 development and regeneration.

821 17. Kaiser AM, et al. p53 governs an AT1 differentiation programme in lung cancer suppression.

822 *Nature*. 2023;619(7971):851–859.

823 18. Shiraishi K, et al. Biophysical forces mediated by respiration maintain lung alveolar epithelial

824 cell fate. *Cell*. 2023;186(7):1478-1492.e15.

825 19. Burgess CL, et al. Generation of human alveolar epithelial type I cells from pluripotent stem

826 cells. *Cell Stem Cell*. 2024;S1934590924000985.

827 20. Ohnishi Y, et al. Screening of factors inducing alveolar type 1 epithelial cells using human

828 pluripotent stem cells. *Stem Cell Reports*. 2024;19(4):529–544.

829 21. Pan X, et al. TR β activation confers AT2-to-AT1 cell differentiation and anti-fibrosis during

830 lung repair via KLF2 and CEBPA. *Nat Commun*. 2024;15(1):8672.

831 22. Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung

832 development, renewal and cancer. *Nature*. 2014;507(7491):190–194.

833 23. Li J, et al. The Strength of Mechanical Forces Determines the Differentiation of Alveolar

834 Epithelial Cells. *Developmental Cell*. 2018;44(3):297-312.e5.

835 24. Warren R, et al. Cell competition drives bronchiolization and pulmonary fibrosis. *Nat*

836 *Commun*. 2024;15(1):10624.

837 25. Finn J, et al. Dlk1-Mediated Temporal Regulation of Notch Signaling Is Required for

838 Differentiation of Alveolar Type II to Type I Cells during Repair. *Cell Rep*. 2019;26(11):2942-

839 2954.e5.

840 26. Liu Z, et al. MAPK-Mediated YAP Activation Controls Mechanical-Tension-Induced
841 Pulmonary Alveolar Regeneration. *Cell Reports*. 2016;16(7):1810–1819.

842 27. Jiang P, et al. Ineffectual Type 2-to-Type 1 Alveolar Epithelial Cell Differentiation in
843 Idiopathic Pulmonary Fibrosis: Persistence of the KRT8^{hi} Transitional State. *Am J Respir Crit
844 Care Med*. 2020;201(11):1443–1447.

845 28. Zhou B, et al. Claudin-18-mediated YAP activity regulates lung stem and progenitor cell
846 homeostasis and tumorigenesis. *J Clin Invest*. 2018;128(3):970–984.

847 29. Kobayashi Y. Persistence of a regeneration-associated, transitional alveolar epithelial cell
848 state in pulmonary fibrosis. *Nature Cell Biology*. 2020;35.

849 30. Strunz M, et al. Alveolar regeneration through a Krt8+ transitional stem cell state that
850 persists in human lung fibrosis. *Nat Commun*. 2020;11(1):3559.

851 31. Konkimalla A, et al. Transitional cell states sculpt tissue topology during lung regeneration.
852 *Cell Stem Cell*. 2023;30(11):1486-1502.e9.

853 32. Choi J, et al. Inflammatory Signals Induce AT2 Cell-Derived Damage-Associated Transient
854 Progenitors that Mediate Alveolar Regeneration. *Cell Stem Cell*. 2020;27(3):366-382.e7.

855 33. Ke X, et al. Morphogenesis and regeneration share a conserved core transition cell state
856 program that controls lung epithelial cell fate. *Developmental Cell*. 2024;S1534580724006993.

857 34. Katsura H, et al. Human Lung Stem Cell-Based Alveolospheres Provide Insights into SARS-
858 CoV-2-Mediated Interferon Responses and Pneumocyte Dysfunction. *Cell Stem Cell*.
859 2020;27(6):890-904.e8.

860 35. Rogalski AA, Singer SJ. Associations of elements of the Golgi apparatus with microtubules.
861 *The Journal of cell biology*. 1984;99(3):1092–1100.

862 36. Chabin-Brion K, et al. The Golgi Complex Is a Microtubule-organizing Organelle. *MBoC*.
863 2001;12(7):2047–2060.

864 37. Nakamura N, et al. Characterization of a cis-Gol Matrix Protein, GM130.

865 38. Fu M, et al. The Golgi Outpost Protein TPPP Nucleates Microtubules and Is Critical for
866 Myelination. *Cell*. 2019;179(1):132-146.e14.

867 39. Ori-McKenney KM, Jan LY, Jan Y-N. Golgi Outposts Shape Dendrite Morphology by
868 Functioning as Sites of Acentrosomal Microtubule Nucleation in Neurons. *Neuron*.
869 2012;76(5):921–930.

870 40. Piperno G, LeDizet M, Chang X. Microtubules Containing Acetylated α -Tubulin in
871 Mammalian Cells in Culture. *The Journal of Cell Biology*. 1987;104.

872 41. Hutchison V, et al. Inducible tricolor reporter mouse for parallel imaging of lysosomes,
873 mitochondria, and microtubules. *Journal of Cell Biology*. 2024;223(1):e202305086.

874 42. Mitchison T, Kirschner M. Dynamic instability of microtubule growth. *Nature*.
875 1984;312(5991):237–242.

876 43. Bauer NG, Richter-Landsberg C, Ffrench-Constant C. Role of the oligodendroglial
877 cytoskeleton in differentiation and myelination. *Glia*. 2009;57(16):1691–1705.

878 44. Grundke-Iqbali I, et al. Abnormal phosphorylation of the microtubule-associated protein tau
879 (tau) in Alzheimer cytoskeletal pathology. *Proc Natl Acad Sci USA*. 1986;83(13):4913–4917.

880 45. Wang Y, Mandelkow E. Tau in physiology and pathology. *Nat Rev Neurosci*. 2016;17(1):22–
881 35.

882 46. Doench JG, et al. Optimized sgRNA design to maximize activity and minimize off-target
883 effects of CRISPR-Cas9. *Nat Biotechnol*. 2016;34(2):184–191.

884 47. Hsiao T, et al. *Inference of CRISPR Edits from Sanger Trace Data*. Bioinformatics; 2018.

885 48. Chiou S-H, et al. Pancreatic cancer modeling using retrograde viral vector delivery and in
886 vivo CRISPR/Cas9-mediated somatic genome editing. *Genes Dev*. 2015;29(14):1576–1585.

887 49. Wegmann S, et al. Tau protein liquid-liquid phase separation can initiate tau aggregation.
888 *EMBO J*. 2018;37(7):e98049.

889 50. Hernández-Vega A, et al. Local Nucleation of Microtubule Bundles through Tubulin
890 Concentration into a Condensed Tau Phase. *Cell Reports*. 2017;20(10):2304–2312.

891 51. Lewis J, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in
892 mice expressing mutant (P301L) tau protein. *Nat Genet*. 2000;25(4):402–405.

893 52. Spillantini MG, et al. Tau Pathology in Two Dutch Families with Mutations in the
894 Microtubule-Binding Region of Tau. *The American Journal of Pathology*. 1998;153(5):1359–
895 1363.

896 53. Wegmann S, et al. Experimental evidence for the age dependence of tau protein spread in
897 the brain. *Sci Adv*. 2019;5(6):eaaw6404.

898 54. Dawson HN. Delayed axonogenesis in tau deficient neurons. 2001;9.

899 55. Konkimalla A, et al. Efficient AAV Mediated Transgenesis in Alveolar Stem Cells and
900 Associated Niches. *Am J Respir Cell Mol Biol*. 2023;rcmb.2022-0424MA.

901 56. Farmer KM, et al. P53 aggregation, interactions with tau, and impaired DNA damage
902 response in Alzheimer's disease. *acta neuropathol commun*. 2020;8(1):132.

903 57. Cross SM, et al. A p53-Dependent Mouse Spindle Checkpoint. *Science*.
904 1995;267(5202):1353–1356.

905 58. Giannakakou P, et al. p53 is associated with cellular microtubules and is transported to the
906 nucleus by dynein. *Nat Cell Biol*. 2000;2(10):709–717.

907 59. Kim N, et al. Single-cell RNA sequencing demonstrates the molecular and cellular
908 reprogramming of metastatic lung adenocarcinoma. *Nat Commun*. 2020;11(1):2285.

909 60. Fingerlin TE, et al. Genome-wide association study identifies multiple susceptibility loci for
910 pulmonary fibrosis-supplement data file. *Nat Genet*. 2013;45(6):613–620.

911 61. Allen RJ, et al. Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary
912 Fibrosis. *Am J Respir Crit Care Med.* 2020;201(5):564–574.

913 62. Allen RJ, et al. Genetic variants associated with susceptibility to idiopathic pulmonary
914 fibrosis in people of European ancestry: a genome-wide association study. *Lancet Respir Med.*
915 2017;5(11):869–880.

916 63. Hobbs BD, et al. Genetic loci associated with chronic obstructive pulmonary disease overlap
917 with loci for lung function and pulmonary fibrosis. *Nat Genet.* 2017;49(3):426–432.

918 64. Wain LV, et al. Genome-wide association analyses for lung function and chronic obstructive
919 pulmonary disease identify new loci and potential druggable targets. *Nat Genet.*
920 2017;49(3):416–425.

921 65. Stefansson H, et al. A common inversion under selection in Europeans. *Nat Genet.*
922 2005;37(2):129–137.

923 66. Weibel ER. On the Tricks Alveolar Epithelial Cells Play to Make a Good Lung. *Am J Respir Crit
924 Care Med.* 2015;191(5):504–513.

925 67. Chen J, et al. Projection domains of MAP2 and tau determine spacings between
926 microtubules in dendrites and axons. *Nature.* 1992;360(6405):674–677.

927 68. Lewis SA, Cowan N. Microtubule bundling. *Nature.* 1990;345(6277):674.

928 69. Choi C-S, et al. Cytotoxic tau released from lung microvascular endothelial cells upon
929 infection with *Pseudomonas aeruginosa* promotes neuronal tauopathy. *Journal of Biological*
930 *Chemistry*. 2022;298(1):101482.

931 70. Balczon R, et al. Pneumonia initiates a tauopathy. *FASEB J*. 2021;35(9):e21807.

932 71. Strang KH, Golde TE, Giasson BI. MAPT mutations, tauopathy, and mechanisms of
933 neurodegeneration. *Laboratory Investigation*. 2019;99(7):912–928.

934 72. LoPresti P, et al. Functional implications for the microtubule-associated protein tau:
935 localization in oligodendrocytes. *Proc Natl Acad Sci USA*. 1995;92(22):10369–10373.

936 73. McKenna ED, et al. The Tubulin Code, from Molecules to Health and Disease. *Annu Rev Cell*
937 *Dev Biol*. 2023;39(1):331–361.

938 74. Roll-Mecak A. The Tubulin Code in Microtubule Dynamics and Information Encoding.
939 *Developmental Cell*. 2020;54(1):7–20.

940 75. Janke C, Magiera MM. The tubulin code and its role in controlling microtubule properties
941 and functions. *Nat Rev Mol Cell Biol*. 2020;21(6):307–326.

942 76. Jijumon AS, et al. Lysate-based pipeline to characterize microtubule-associated proteins
943 uncovers unique microtubule behaviours. *Nat Cell Biol*. 2022;24(2):253–267.

944 77. Natri HM, et al. *Cell type-specific and disease-associated eQTL in the human lung*. Genomics;
945 2023.

946 78. Rock JR, et al. Multiple stromal populations contribute to pulmonary fibrosis without
947 evidence for epithelial to mesenchymal transition. *Proceedings of the National Academy of*
948 *Sciences*. 2011;108(52):E1475–E1483.

949 79. Madisen L, et al. A robust and high-throughput Cre reporting and characterization system
950 for the whole mouse brain. *Nat Neurosci*. 2010;13(1):133–140.

951 80. Marino S, et al. Induction of medulloblastomas in *p53* -null mutant mice by somatic
952 inactivation of *Rb* in the external granular layer cells of the cerebellum. *Genes Dev*.
953 2000;14(8):994–1004.

954 81. Konishi S, Tata A, Tata PR. Defined conditions for long-term expansion of murine and human
955 alveolar epithelial stem cells in three-dimensional cultures. *STAR Protocols*. 2022;3(2):101447.

956 82. Kadur Lakshminarasimha Murthy P, et al. Human distal lung maps and lineage hierarchies
957 reveal a bipotent progenitor. *Nature*. 2022;604(7904):111–119.

958 83. Labun K, et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing.
959 *Nucleic Acids Research*. 2019;47(W1):W171–W174.

960 84. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
961 *EMBnet.journal*. 2011;17(1):10–12.

962 85. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
963 *Bioinformatics*. 2014;30(15):2114–2120.

964 86. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-
965 seq data with DESeq2. *Genome Biology*. 2014;15(12):550.

966 87. Sajuthi SP, et al. Nasal airway transcriptome-wide association study of asthma reveals
967 genetically driven mucus pathobiology. *Nat Commun*. 2022;13(1):1632.

968 88. Lewis MJ, Wang S. locuszoomr: an R package for visualizing publication-ready regional gene
969 locus plots. *Bioinform Adv*. 2025;5(1):vbaf006.

970 89. Myers TA, Chanock SJ, Machiela MJ. LDlinkR: An R Package for Rapidly Calculating Linkage
971 Disequilibrium Statistics in Diverse Populations. *Front Genet*. 2020;11:157.

972 90. Konkimalla A, et al. Multi-apical polarity of alveolar stem cells and their dynamics during
973 lung development and regeneration. *iScience*. 2022;105114.

974

975

976

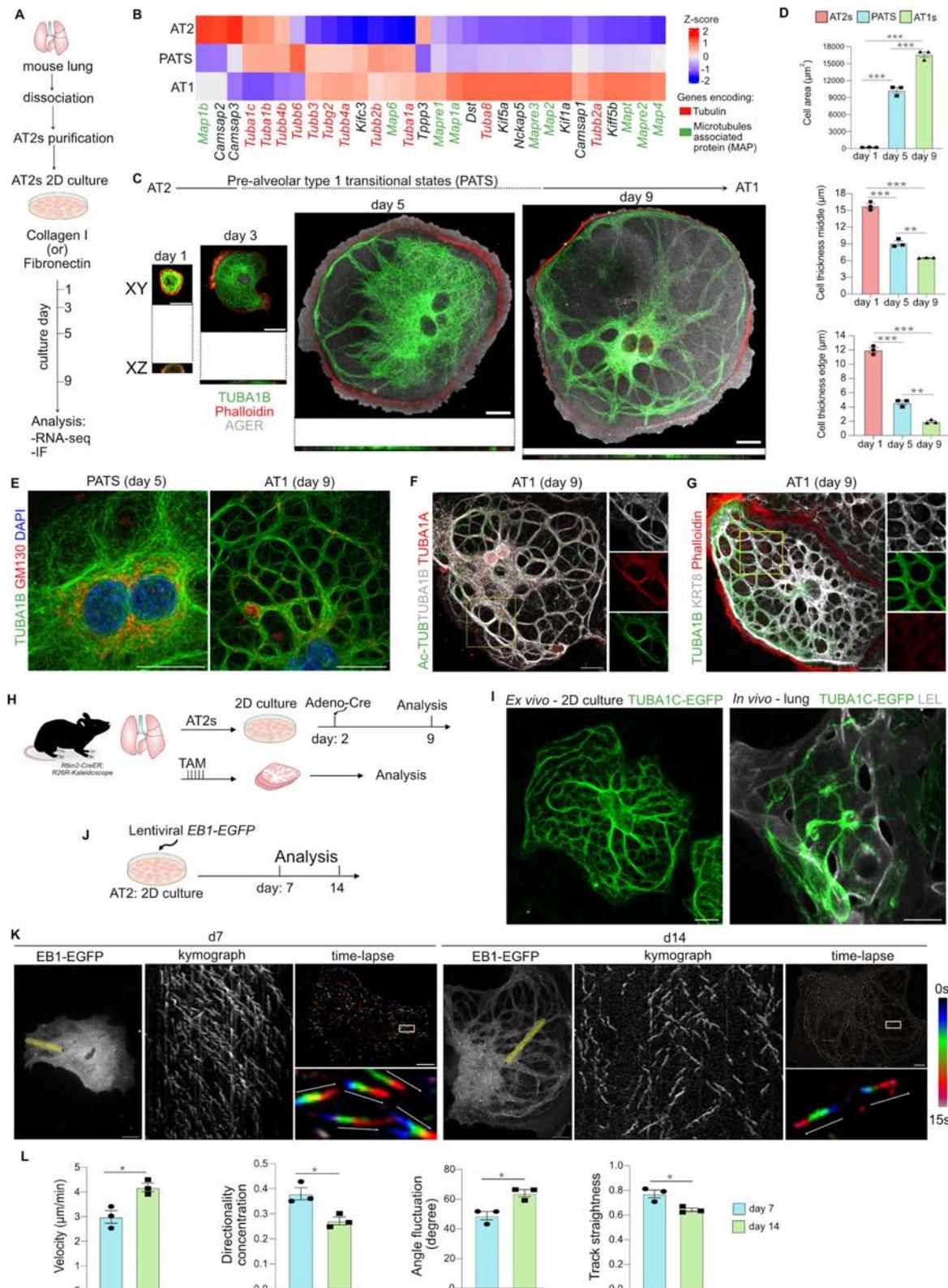
977

978

979

980

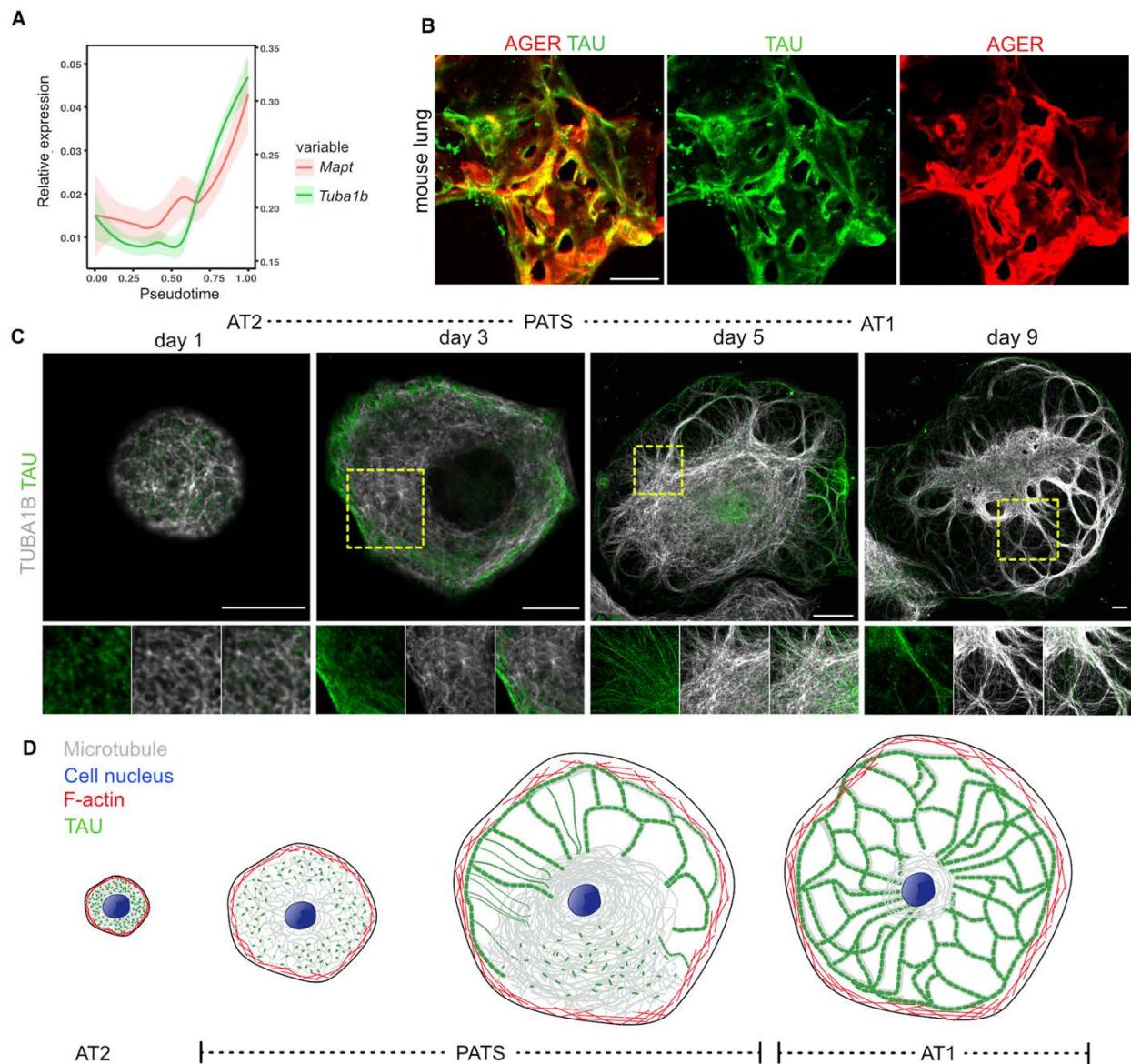
981


982

983

984

985 **Figures**


Figure 1

987
988 **Figure 1: Alveolar stem cell microtubules undergo dynamic changes to form thick MT**
989 **bundles during differentiation.** (A) Experimental design for mouse AT2 isolation, culture and
990 sample collection. (B) Heatmap shows expression of tubulin-encoding and MAP encoding genes
991 in cultured AT2s, PATS and AT1s. (C) Staining for TUBA1B (green) phalloidin (red) and AGER
992 (grey) on cells cultured on fibronectin showing AT2-PATS-AT1 cell fate and cell morphology
993 transition. Scale bar: 20 μ m. (D) Quantification of area and thickness (in the middle and edge) of
994 alveolar epithelial cells on day-1, 5 and 9 of culture. ** $p\leq 0.005$, *** $p<0.001$, one-way ANOVA. n=3
995 biological replicates. (E) Staining for TUBA1B (green) and GM130 (red) at indicated times. Scale
996 bar: 20 μ m. (F) Staining for tubulin proteins in AT2s cultured on fibronectin for 9-days. Scale bar:
997 20 μ m. (G) Staining for TUBA1B (green), KRT8 (grey) and phalloidin (red) in AT1s. Scale bar:
998 20 μ m. (H) Experimental design for *ex vivo* and *in vivo* AT1-specific tubulin lineage tracing in
999 *Rtkn2-CreER;R26R-Kaleidoscope* mice. (I) Images showing TUBA1C-EGFP in cultured AT1s
1000 and *in vivo* lungs. Scale bars: 20 μ m. (J) Experimental workflow for AT2 infection with *EB1-EGFP*
1001 lentivirus followed by live imaging on day-7 and day-14. (K) Kymograph and time-lapse images
1002 illustrating tubulin dynamics and orientation in cells on day-7 and day-14. Scale bars: 20 μ m. (L)
1003 Quantification of EB1-EGFP comet velocity (μ m/min), directionality concentration, angle
1004 fluctuation (degree) and track straightness in cells cultured for 7 and 14 days. * $p<0.05$, unpaired
1005 t-test. Data in D and L are presented as mean \pm s.e.m. n=3 biological replicates.

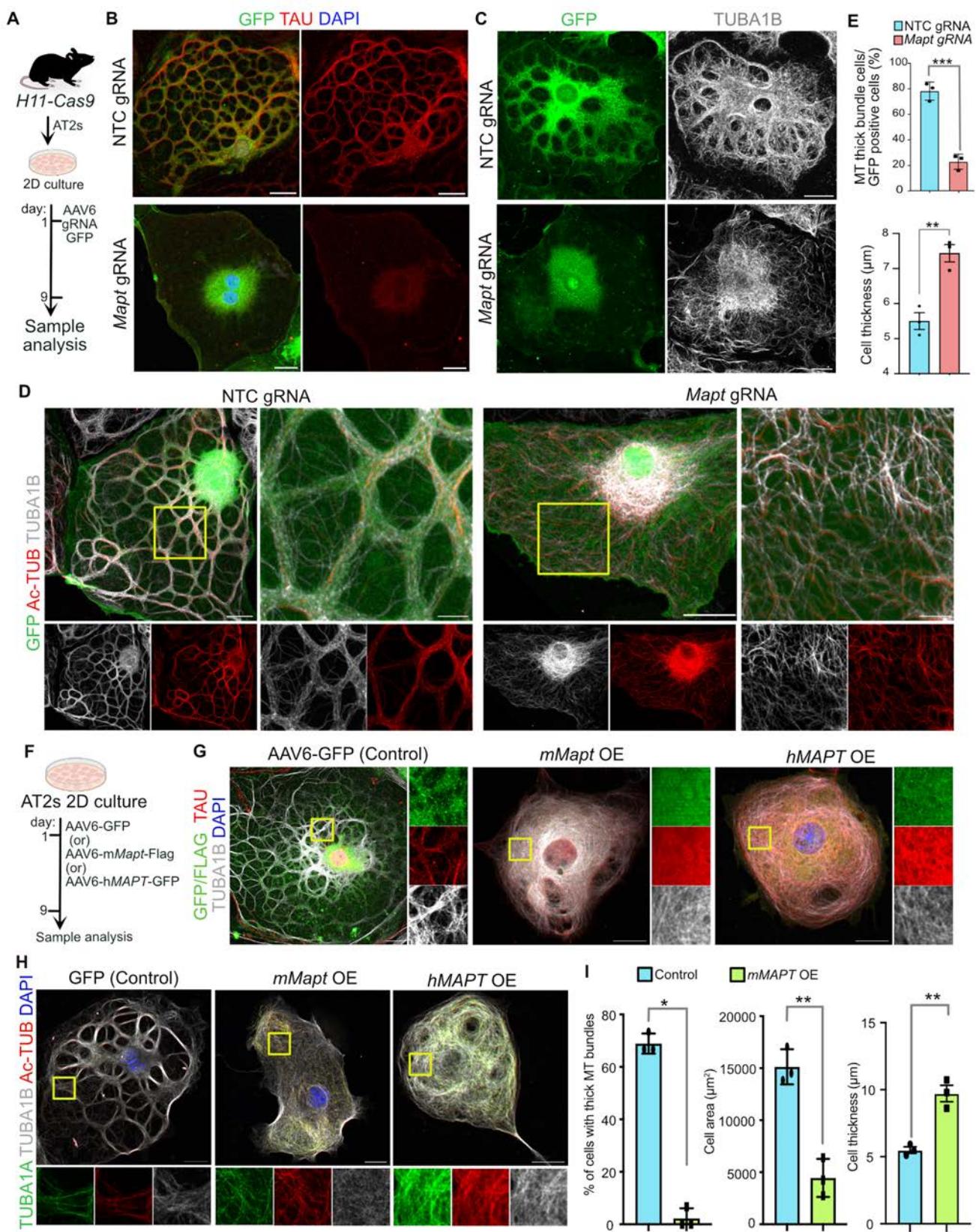

1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

Figure 2

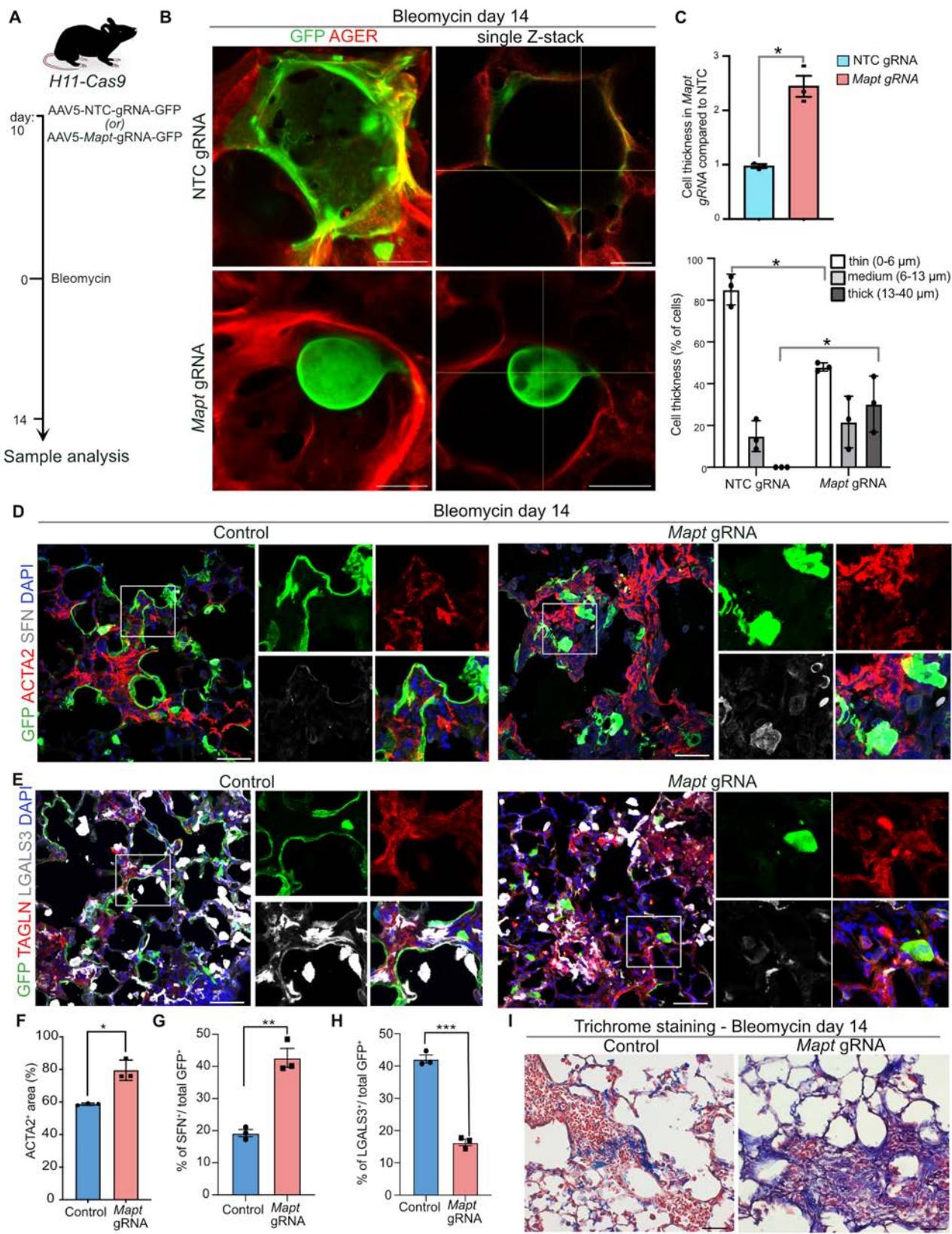

1016
1017 **Figure 2. Dynamic expression and localization of TAU precede thick MT-bundles formation**
1018 **during AT2 differentiation.** (A) Pseudo time analysis visualizing gene expression dynamics of
1019 *Mapt* and *Tuba1b* during AT2-AT1 differentiation. (B) Immunostaining for AGER (red) and TAU
1020 (green) in the alveolar region of a thick tissue section showing TAU localization in AT1s. Scale
1021 bar: 20 μ m. (C) Staining for TUBA1B (grey) and TAU (green) at indicated times of culture. Scale
1022 bars: 20 μ m. Yellow box indicates region of single-channel images. (D) Schematic showing the
1023 expression and organization of TAU, microtubules, and F-actin during AT2-AT1 differentiation.

Figure 3

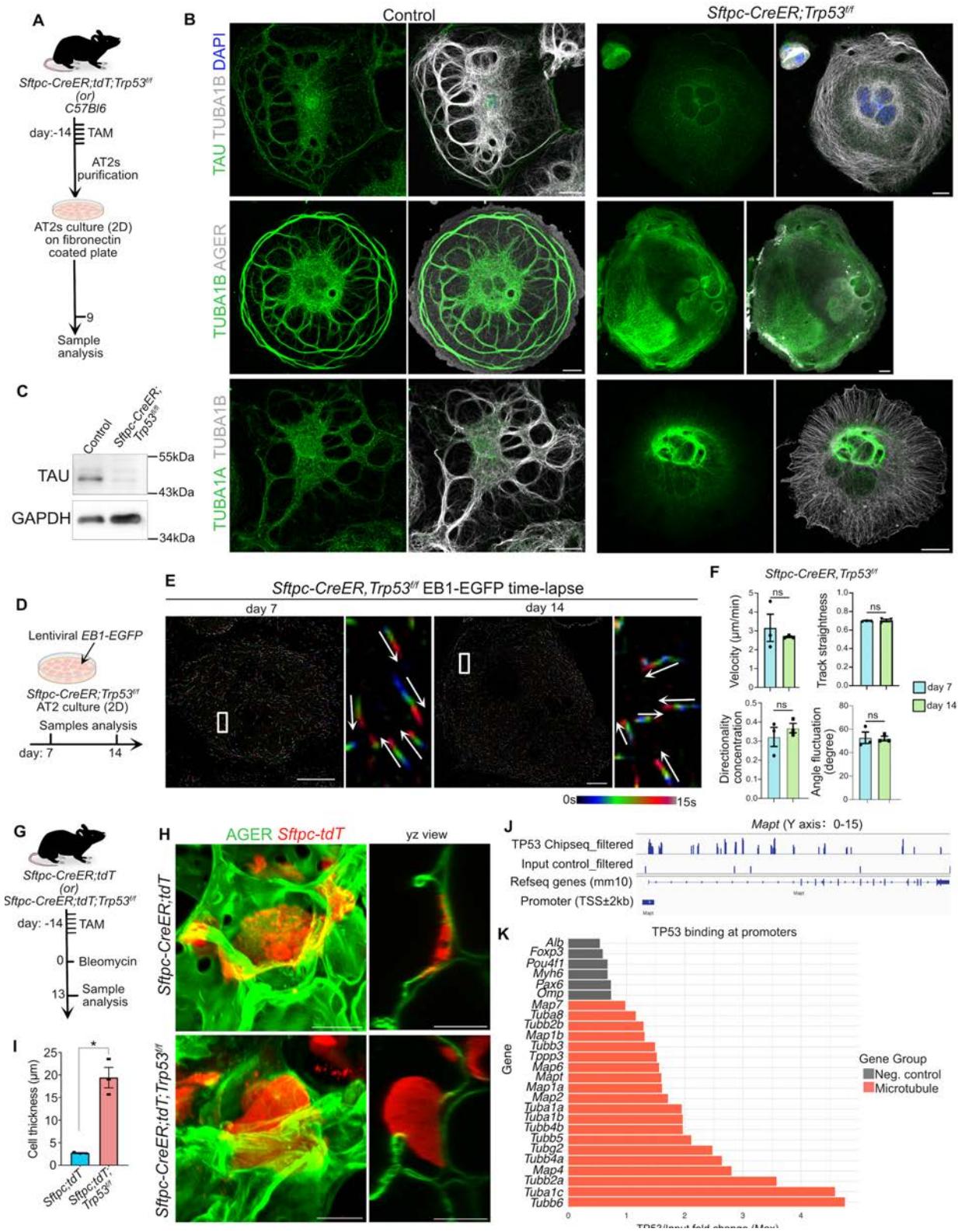

1025 **Figure 3. TAU regulates the formation of thick MT-bundles.** (A) Experimental design for AT2
1026 isolation from *H11-Cas9* mice followed by AT2 culture and AAV6-*gRNA-GFP* infection to knockout
1027 (*KO*) *Mapt* *ex vivo*. (B) Staining for GFP (green, infected cells) and TAU (red) in NTC (non-
1028 targeting control) and *Mapt*-*KO* cells. Scale bars: 20 μ m. (C) Staining for GFP (green) and
1029 TUBA1B (grey) in control and *Mapt*-*KO* cells. Scale bars: 20 μ m. (D) Staining for TUBA1B (grey)
1030 and Ac-TUB (red) in infected GFP⁺ (green) control and *Mapt*-deleted cells. Scale bars: 20 μ m (low
1031 magnification); 5 μ m (high magnification). Yellow box indicates region of single-channel images.
1032 (E) Quantification of cells exhibiting thick MT-bundles and cell thickness in control and *Mapt*-
1033 deleted cells. ** p =0.0049, *** p =0.0005 unpaired t-test, n=3 biological replicates. (F) Schematic of
1034 *ex vivo* cultured AT2s infected with mouse *Mapt* or human *MAPT* and analyses at indicated time
1035 point. (G) Staining for TAU (red) and TUBA1B (grey) in control and TAU-overexpressed cell
1036 (green). Scale bars: 20 μ m. Yellow box indicates region of single-channel images. DAPI stains
1037 nuclei (blue). (H) Staining for TUBA1A (green), TUBA1B (grey) and Ac-TUB (red) in TAU-
1038 overexpressed and control cells. (I) Quantification of cell area, cell thickness and the percentage
1039 of infected cells exhibiting thick MT-bundles. * p =0.05, Mann Whitney statistical test. ** p <0.005,
1040 unpaired t-test, n=3 biological replicates. Data in E and I are presented as mean \pm s.e.m.
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051

Figure 4

1053 **Figure 4. Loss of *Mapt* leads to abnormal cell organization and increased fibrosis in**
1054 **response to bleomycin injury.** (A) Schematic of AT2-specific gRNA delivery to *H11-Cas9* mice
1055 followed by bleomycin injury and sample collection. (B) Staining for GFP (green, gRNA delivered
1056 AT2s) and AGER (red) in control and *Mapt*-deleted cells after bleomycin injury. Scale bars: 20 μ m.
1057 (C) Quantification of cell thickness and the distribution of GFP⁺ cells with different thickness in
1058 control and AT2-specific *Mapt*-KO lungs after bleomycin injury. * p <0.05, unpaired two-tailed t-
1059 test. (D) Staining for GFP (green), ACTA2 (red) and SFN (grey) in controls and *Mapt*-deleted
1060 AT2s after bleomycin injury. Scale bars: 50 μ m. (E) Staining for GFP (green), TAGLN (red), and
1061 LGALS3 (grey) in controls and *Mapt*-deleted AT2s after bleomycin injury. Scale bars: 50 μ m. DAPI
1062 stains nuclei (blue). (F) Quantification on ACTA2⁺ area in bleomycin-injured lungs. * p <0.05
1063 unpaired t-test. (G) Quantification of SFN⁺ cells among GFP⁺ cells in bleomycin-injured lungs.
1064 ** p <0.005, unpaired t-test. (H) Quantification of LGALS3⁺ cells among GFP⁺ cells in bleomycin-
1065 injured lungs. *** p ≤0.001, unpaired t-test. (I) Trichrome staining on lungs collected from
1066 bleomycin-injured controls and *Mapt*-deleted mice. Scale bars: 100 μ m. Data in C, F, G and H are
1067 presented as mean ± s.e.m. n=3 biological replicates.
1068
1069

Figure 5

1071 **Figure 5. Loss of TP53 disrupts microtubule organization and AT1 differentiation.** (A)
1072 Experimental workflow for tamoxifen administration to delete TP53 in AT2s followed by AT2s
1073 isolation for *ex vivo* analysis in *Sftpc-CreER;R26R-tdTomato;Trp53^{fl/fl}* or control mice. (B) Images
1074 showing TAU and tubulin localization in control and TP53-deleted cells. Scale bars: 20 μ m. DAPI
1075 stains nuclei (blue). (C) Western blot of TAU and GAPDH (loading control) in control and TP53-
1076 deleted cells. (D) Experimental design for *EB1-EGFP* lentivirus administration in TP53-deleted
1077 AT2s followed by live imaging on days-7 and 14. (E) Kymograph and time-lapse images for EB1-
1078 EGFP in *Trp53*-deleted cells on days-7 and 14 of culture. (F) Quantification of EB1-EGFP comet
1079 velocity (μ m/min), directionality concentration, angle fluctuation (degree) and track straightness
1080 in TP53-deleted cells cultured for 7 and 14 days. ns - not significant, unpaired t-test. (G)
1081 Experimental workflow for tamoxifen administration to delete TP53 in AT2s followed by bleomycin
1082 injury in *Sftpc-tdT-Trp53-KO* or control mice (*Sftpc-tdT*). (H) Staining for AGER (green) and
1083 tdTomato (red) in bleomycin-injured controls and *Trp53*-KO mice. Scale bars: 20 μ m. (I)
1084 Quantification on cell thickness of lineage labelled cells in controls and *Trp53*-KO mice following
1085 bleomycin injury. * p =0.017, unpaired t-test. (J) IGV tracks show significant enrichment for TP53
1086 binding in genomic loci corresponding to *Mapt* promoter. (K) Graph depicting enrichment of TP53
1087 binding on microtubule associated genes (red) and unrelated negative controls (grey). Data in F
1088 and I are presented as mean \pm s.e.m. n=3 biological replicates

1089

1090

1091

1092

1093

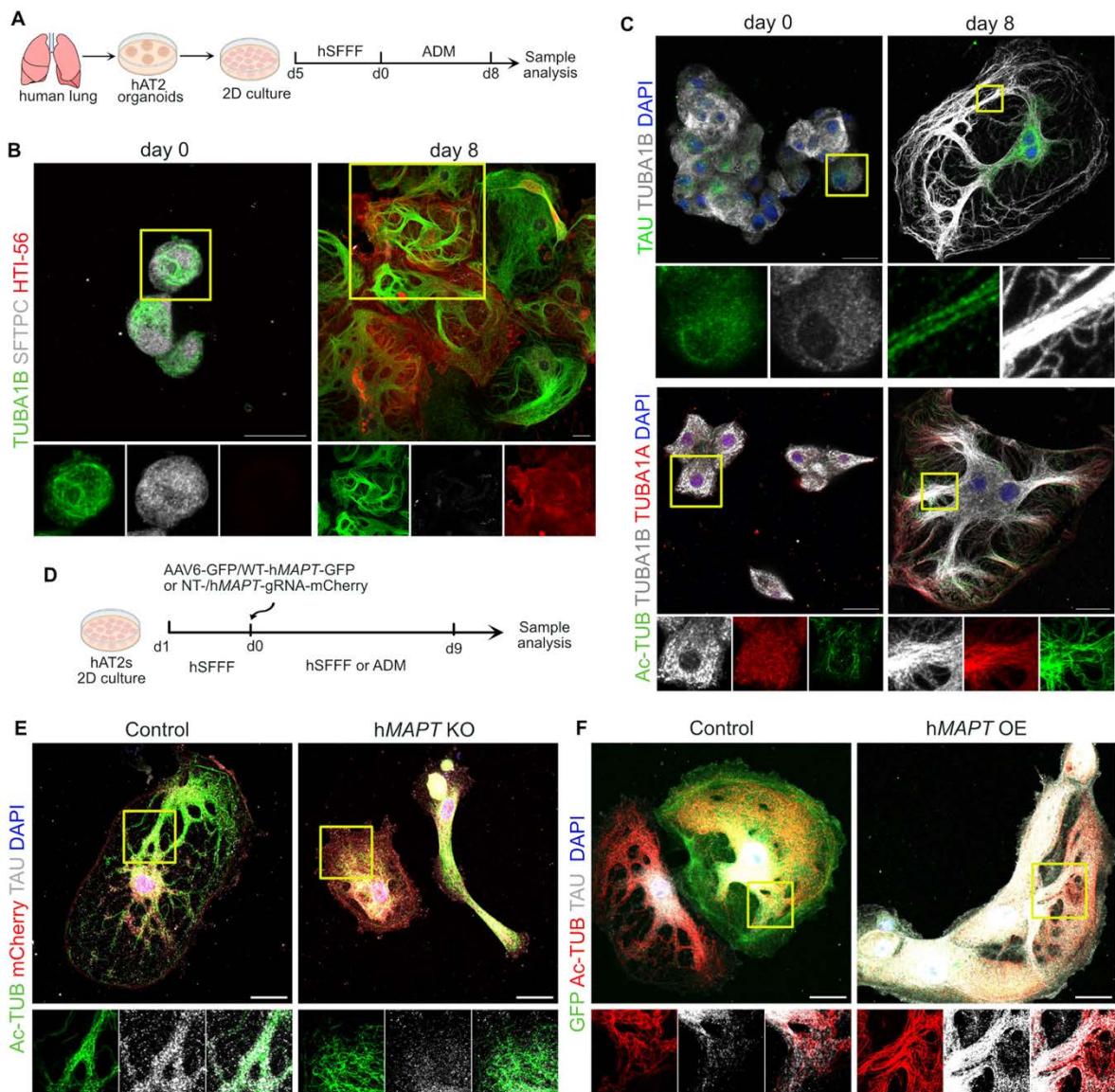
1094

1095

1096

1097

1098

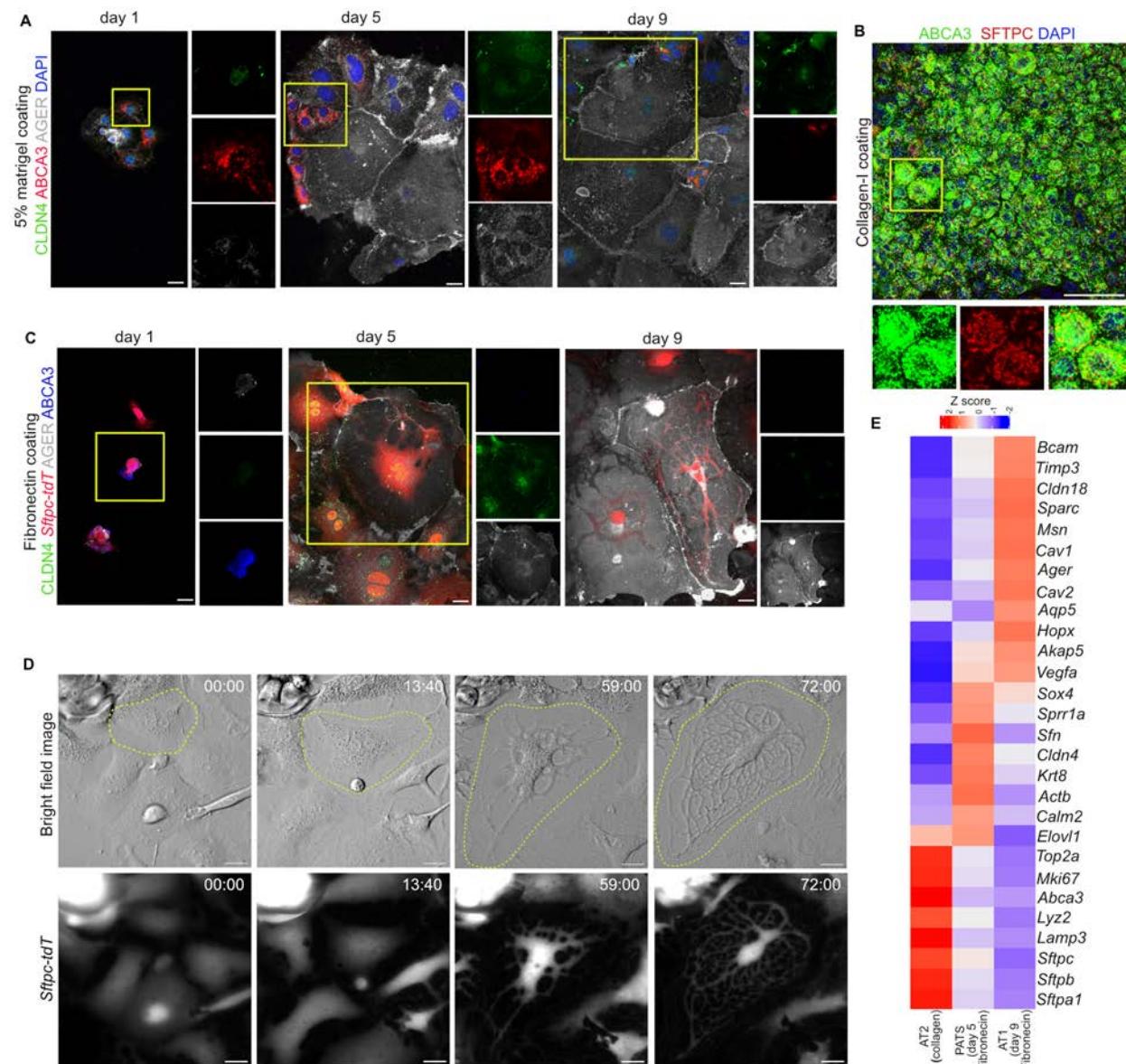

1099

1100

1101

1102

Figure 6


1103 **Figure 6. MAPT regulates human AT2 differentiation into AT1s.** (A) Schematic of human AT2
1104 purification, culture and differentiation followed by analyses. B) Staining for TUBA1B (green),
1105 SFTPC (grey) and HTI-56 (red) in AT2s and ex vivo differentiated AT1s. Scale bars: 20 μ m. (C)
1106 Staining for TAU (green) and TUBA1B (grey) (upper panel) and Ac-TUB (green), TUBA1A (red)
1107 and TUBA1B (grey) (lower panel) in AT2s and AT1s. Scale bars: 20 μ m. (D) Workflow for MAPT
1108 deletion or overexpression in AT2s followed by differentiation to AT1s and analyses. (E) Staining
1109 for Ac-TUB (green) mCherry (red) and TAU (grey) on MAPT-deleted and control cells. Scale bars:
1110 20 μ m. DAPI stains nuclei (blue). (F) Staining for GFP (green), Ac-TUB (red)N and TAU (grey) on
1111 MAPT-overexpressed and control cells. Scale bars: 20 μ m. Yellow box in merged image indicates
1112 region of single-channel images.

1113

1114

Supplemental Figures

Supplemental Figure 1

1115

1116

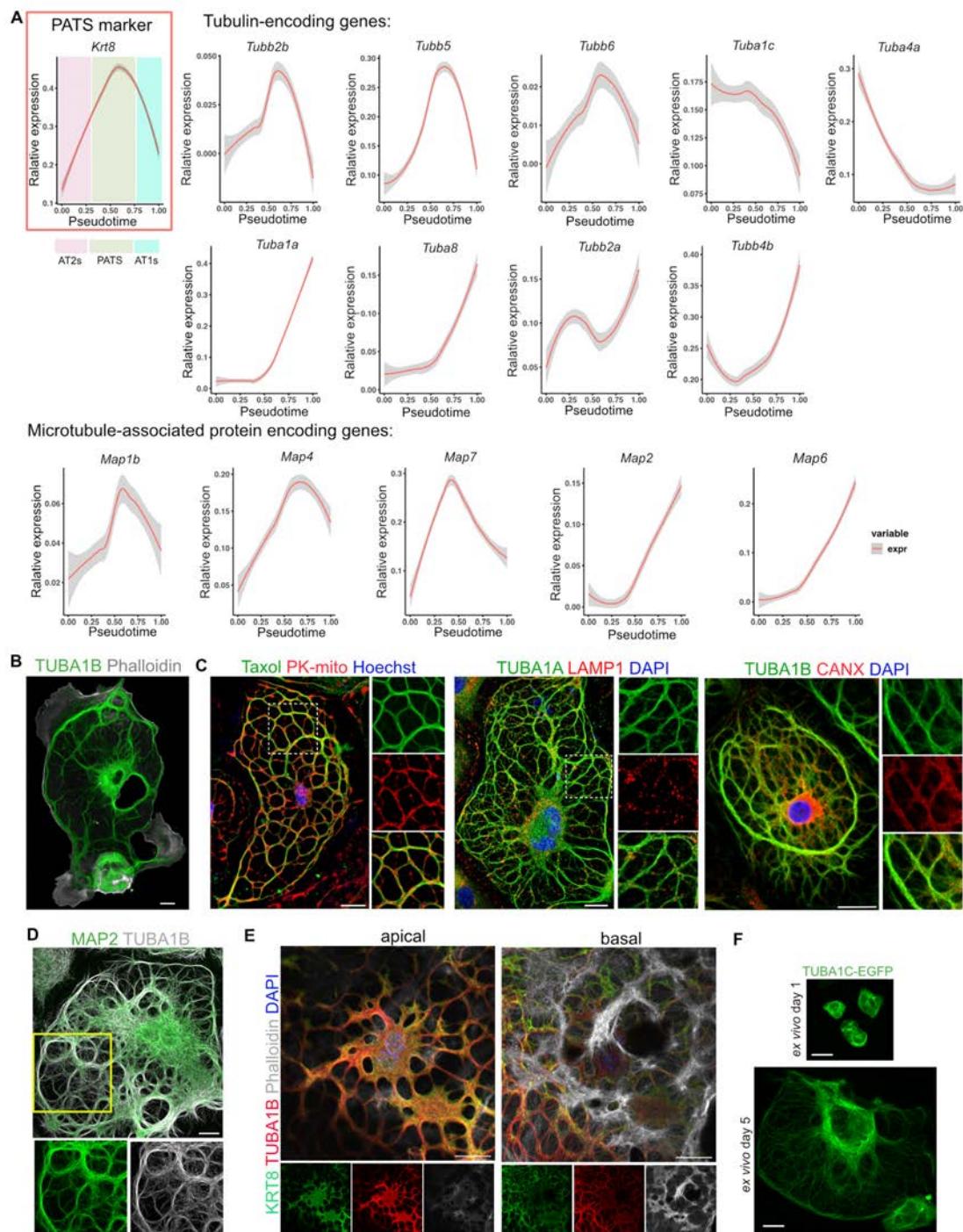
1117

1118

1119

1120

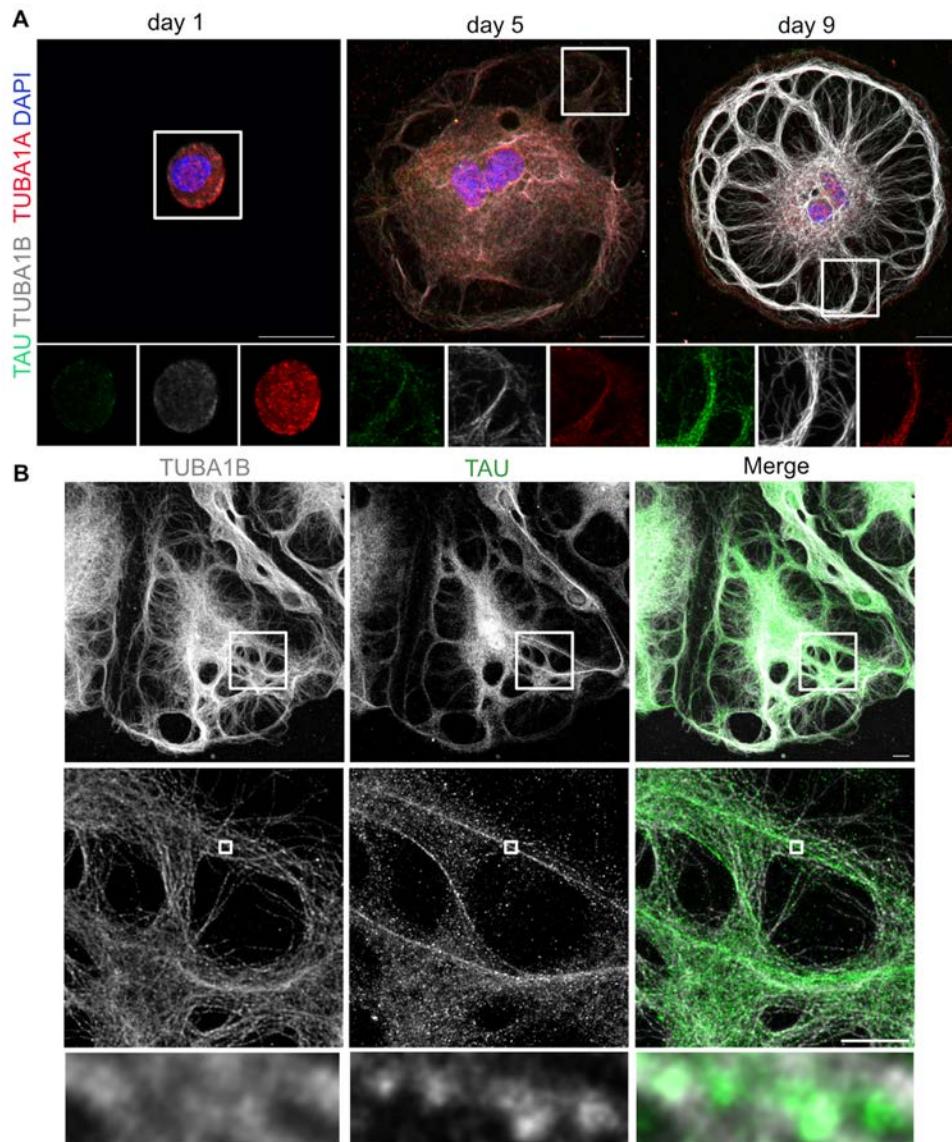
1121

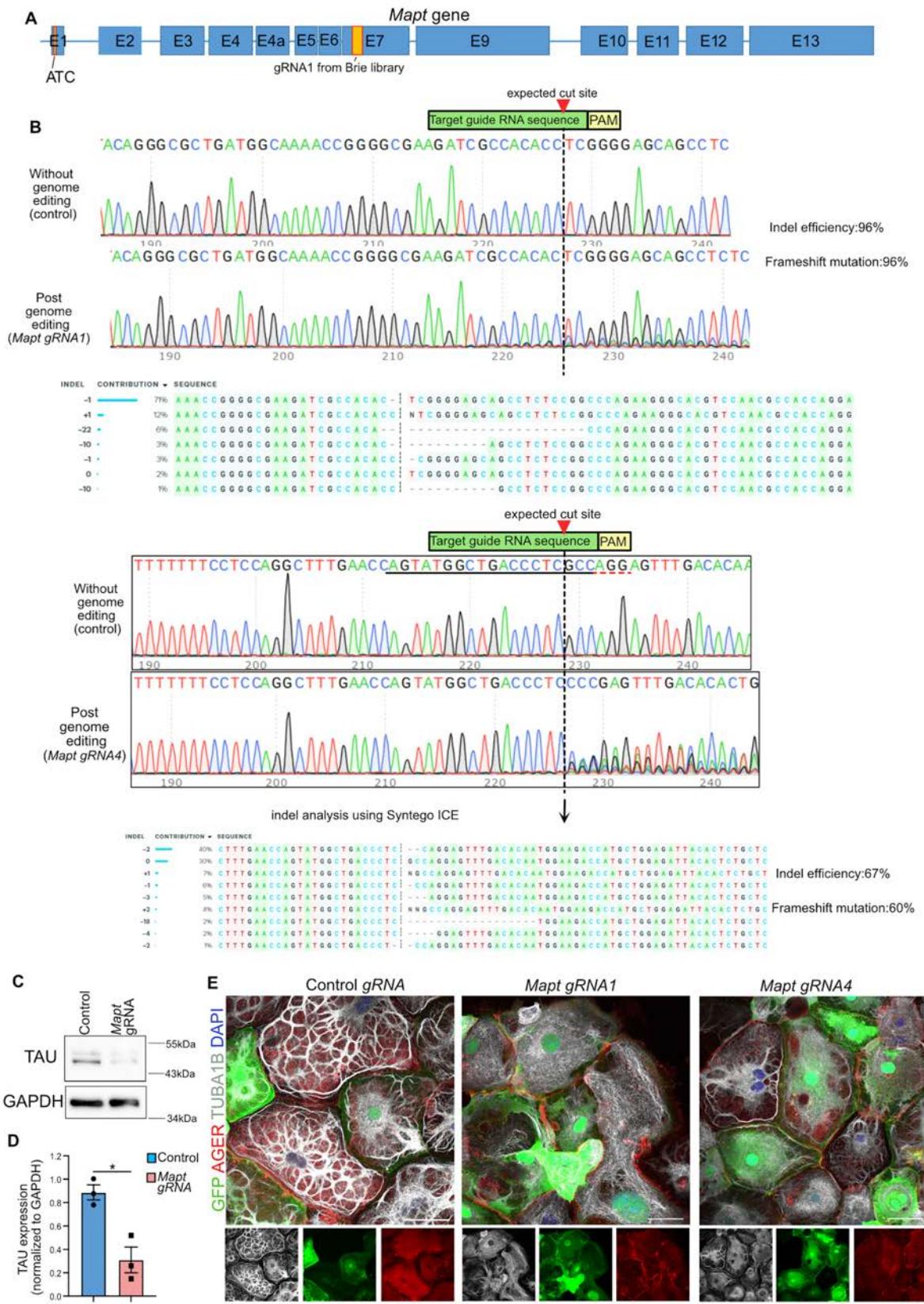

1122

Supplemental Figure 1. The establishment and characterization of ex vivo 2D alveolar epithelial cells culture conditions. (A) Immunostaining for CLDN4 (green), ABCA3 (red) and AGER (grey) on alveolar epithelial cells cultured on 5% Matrigel for different days. Scale bars: 20 μ m. (B) Staining for AT2 markers, ABCA3 (green) and SFTPC (red), in AT2s cultured on Collagen I for 5 days. Scale bar: 50 μ m. (C) Staining for CLDN4 (green), ABCA3 (blue), and AGER (grey) on AT2s isolated from *Sftpc-CreER;R26R-tdTomato* (red) lungs and cultured on fibronectin for different days. Scale bars: 20 μ m. (A and B) DAPI stains nuclei (blue). Yellow box indicates

1123 region of single channel images. (D) Time frames showing the expansion of cultured alveolar
 1124 epithelial cells isolated from over time. Scale bars: 10 μ m. Yellow dashed line depict expanding
 1125 cell. (E) Heatmap showing expression of AT2, PATS and AT1 markers in cells collected from
 1126 indicated culture conditions.

1127

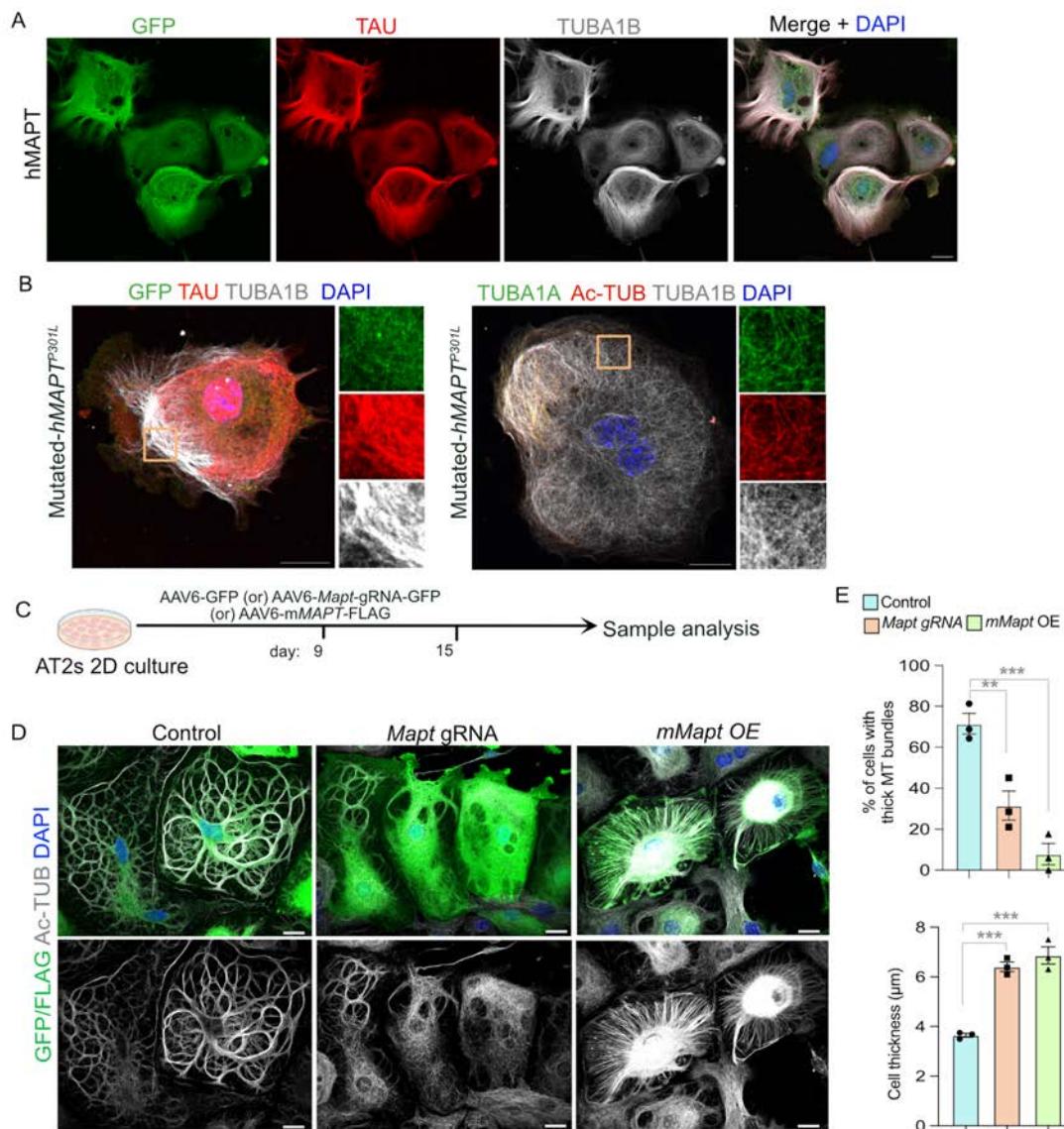

Supplemental Figure 2


1128

1129 **Supplemental Figure 2. Dynamics expression of tubulin-encoding genes and microtubule-
1130 associated protein encoding genes during AT2 differentiation to AT1.** (A) Pseudotime
1131 analysis visualizing expression dynamics of tubulin-encoding genes and microtubule-associated
1132 protein encoding genes during AT2-AT1 differentiation. *Krt8* expression is depicting emergence
1133 of PATS. The pseudotime for AT2, PATS and AT1s were labelled manually based on expression
1134 of *Krt8*. (B) Staining for TUBA1B (green) and phalloidin (grey) in the day 9 cultured cells. Scale
1135 bar: 20 μ m. (C) Staining for Taxol-tubulin (green), PK-mito (red, mitochondria), TUBA1A (green),
1136 LAMP1 (red, lysosomes), and CANX (red, endoplasmic reticulum). Hoechst and DAPI stain nuclei
1137 (blue). Scale bar: 20 μ m. (D) Staining for MAP2 (green) and TUBA1B (grey) at day-9 of culture.
1138 Scale bar: 20 μ m. (E) Images showing localization of KRT8 (green), TUBA1B (red) and phalloidin
1139 (grey) on apical and basal side of the AT1s. Scale bar: 20 μ m. (F) Representative images showing
1140 TUBA1C-EGFP in cultured AT2 (culture day-1) and PATS (culture day-5). Scale bars: 20 μ m.

Supplemental Figure 3

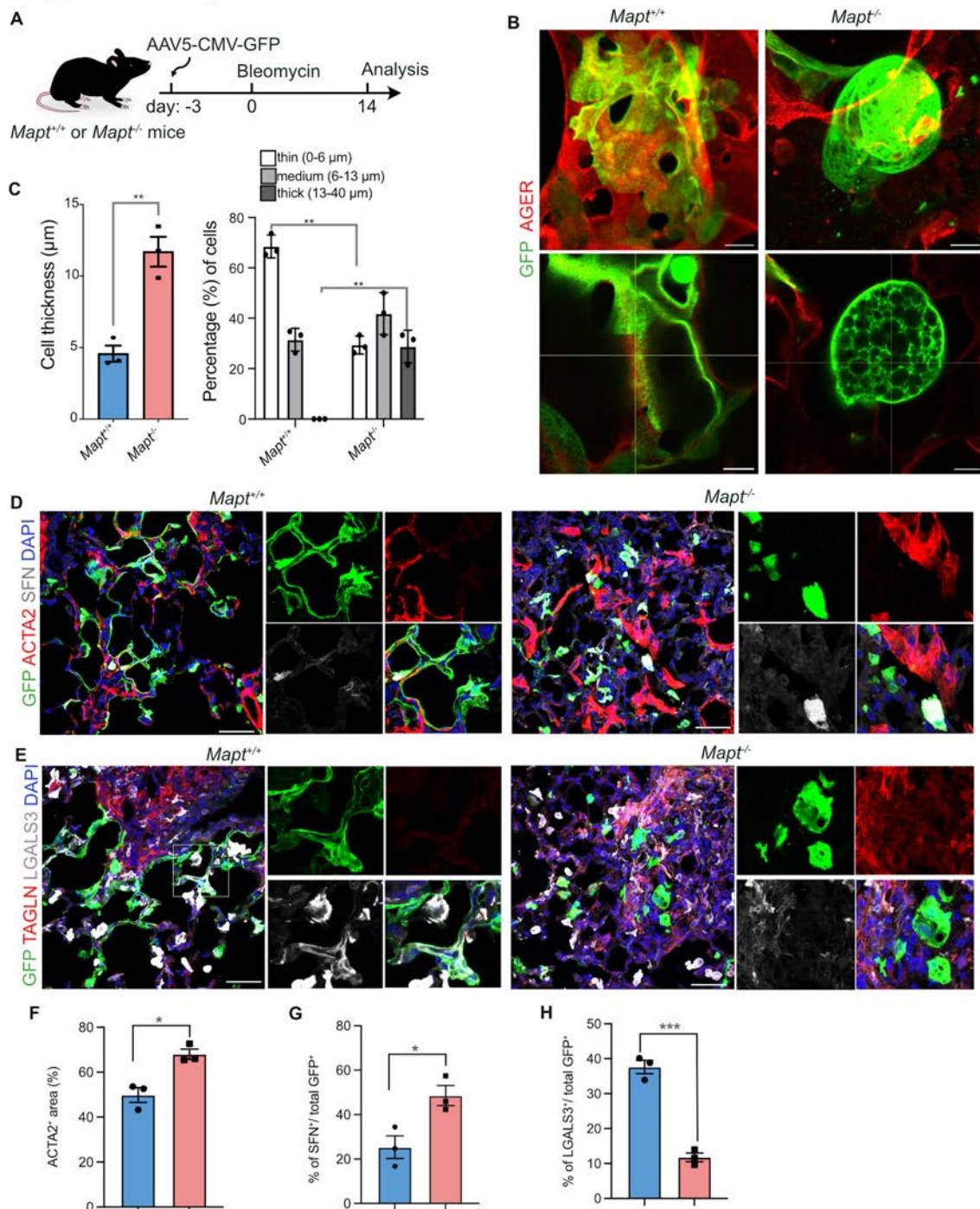
Supplemental Figure 4


1148 **Supplemental Figure 4. Characterization of mouse *Mapt* gRNA efficiency.** (A) Schematic of
1149 *Mapt* gene. (B) Representative Sanger chromatograms and indel efficiency analysis in controls
1150 and *Mapt* gRNA1 and *Mapt* gRNA4 edited cells. (C) Western blot of TAU in control and *Mapt*-
1151 deleted cells. GAPDH was used as a loading control. (D) Quantification of TAU expression in
1152 control and *Mapt*-deleted cells. * $p<0.05$, unpaired t-test. n=3 biological replicates. (E) Staining
1153 for GFP (green, gRNA delivered AT2s) and AGER (red) and TUBA1B (grey) in control and *Mapt*-
1154 deleted AT2s. Scale bars: 50 μ m.

1155

1156

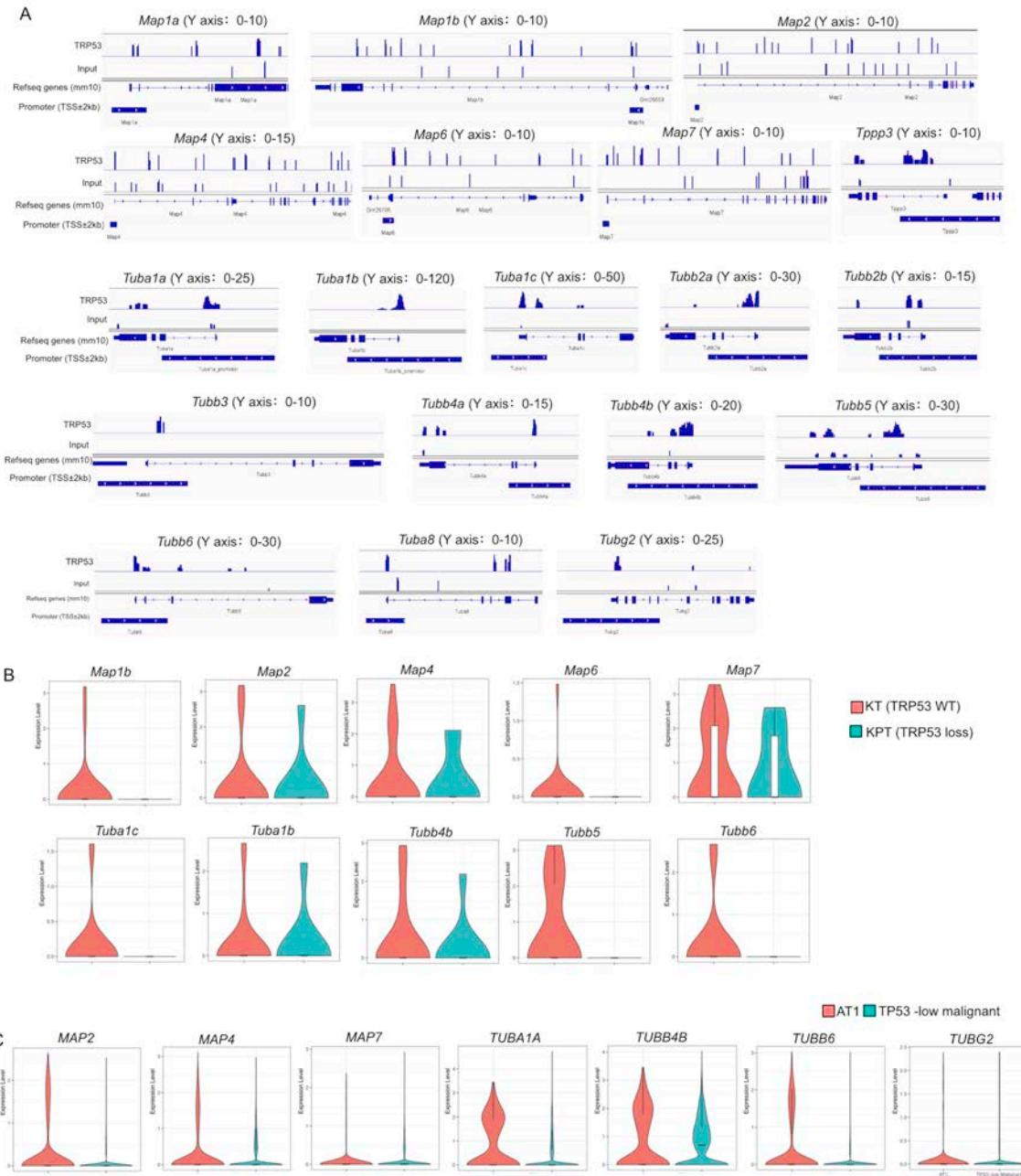
1157


Supplemental Figure 5

1158

1159 **Supplemental Figure 5. Ectopic expression of WT hMAPT or mutated hMAPTP^{301L} and Mapt-
1160 KO disrupts thick MT-bundle formation.** (A) Staining for GFP (green), TAU (red) and TUBA1B
1161 (grey) in hMAPT-overexpressed cell (green). Scale bars: 20μm. (B) Staining for GFP (green),
1162 TAU (red) and TUBA1B (grey) (left image) and TUBA1A (green), Ac-TUB (red) and TUBA1B
1163 (grey) in hMAPTP^{301L} overexpressed cells. DAPI stains nuclei (blue). (C) Experimental workflow
1164 for AT2-AT1 differentiation followed by AAV6-Mapt gRNA or AAV6-Mapt-OE administration and
1165 sample collection. (D) Staining for Ac-TUB (grey) in virus infected (green) Mapt-KO, Mapt-OE,
1166 and control cells. (E) Percentage of transduced cells exhibiting thick MT-bundles and
1167 quantification of cell thickness. ** p=0.005, *** p<0.001. one-way ANOVA. Data are presented as
1168 mean ± s.e.m. n=3 biological replicates.

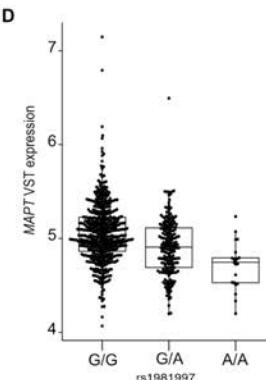
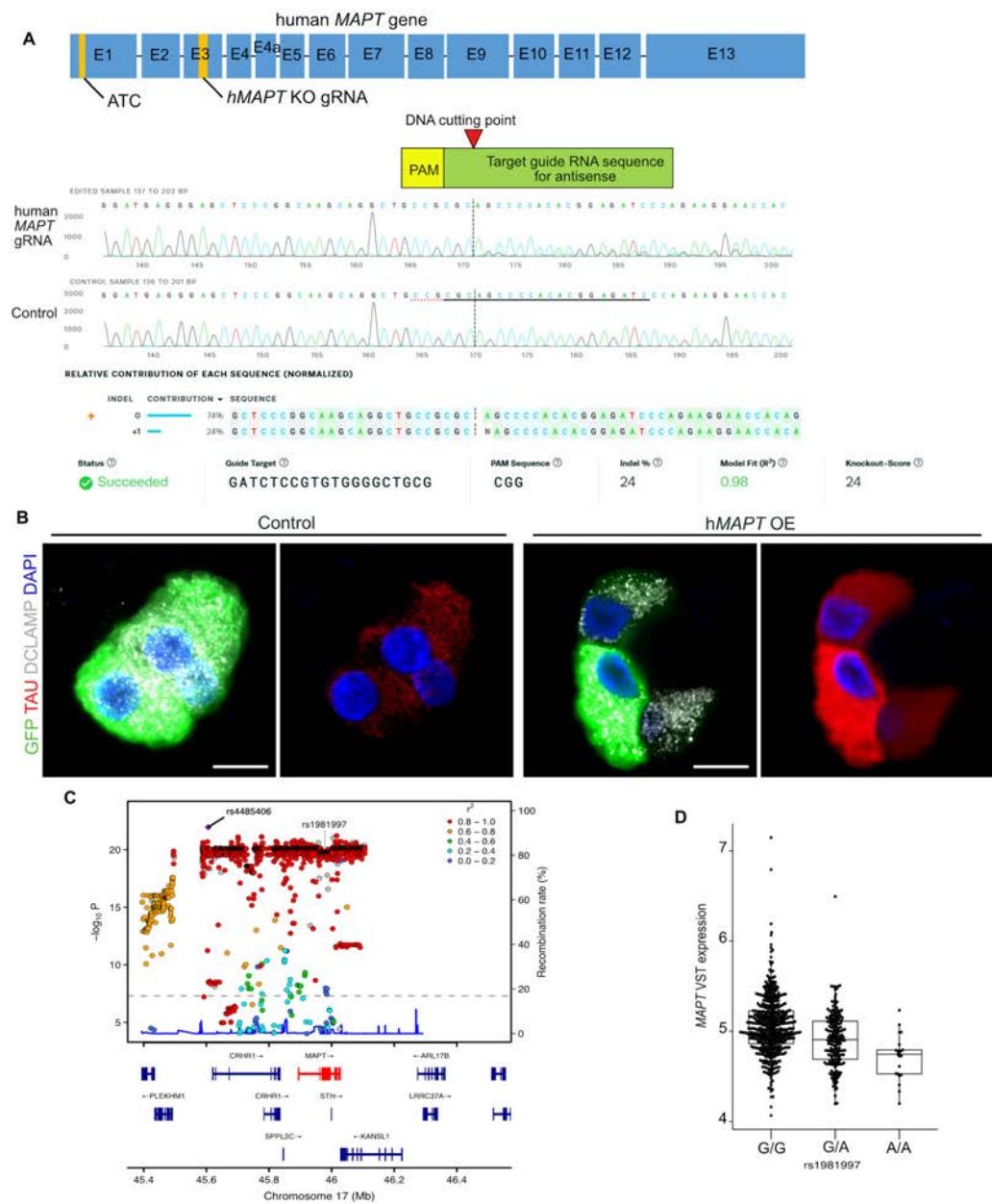
Supplemental Figure 6



1169

1170 **Supplemental Figure 6. Mapt deficient AT2s exhibit balloon-like cell morphology in**
 1171 **response to bleomycin-induced lung injury.** (A) Schematic of experimental workflow for AT2
 1172 labelling using AAV5-GFP followed by bleomycin injury for lung sample collection from controls
 1173 and Mapt-/- mice. (B) Staining for GFP (green) and AGER (red) in controls and Mapt-/- mice after
 1174 bleomycin injury. Scale bars: 20μm. (C) Quantification on cell thickness and the distribution of

1175 GFP⁺ cells with different thickness in wild type control and *Mapt*−/− lungs after bleomycin injury.
1176 ** $p<0.005$, unpaired two-tailed t-test. (D) Staining for GFP (green), ACTA2 (red) and SFN (grey)
1177 in controls and *Mapt*−/− mice after bleomycin injury. Scale bars: 50μm. (E) Staining for GFP
1178 (green), TAGLN (red), and LGALS3 (grey) in controls and *Mapt*-deleted AT2s after bleomycin
1179 injury. Scale bars: 50μm. DAPI stains nuclei (blue). (F) Quantification of ACTA2⁺ area of the
1180 bleomycin injured lungs. * $p<0.05$ unpaired t-test. (G) Quantification of SFN⁺ cells within all GFP⁺
1181 cells in bleomycin injured lungs. * $p<0.05$, unpaired t-test. (H) Quantification of LGALS3⁺ cells
1182 within all GFP⁺ cells in bleomycin injured lungs. *** $p<0.001$, unpaired t-test. Data in C, F, G and
1183 H are presented as mean ± s.e.m. n=3 biological replicates.



Supplemental Figure 7

1184
1185
1186
1187
1188
1189
1190
1191

Supplemental Figure 7. TP53 directly binds on promoters of distinct microtubule related genes and regulates their expression. (A) IGV tracks show significant enrichment for TRP53 binding in genomic loci corresponding to indicated microtubule associated genes. (B) Violin plots showing the expression of indicated genes in AGER-positive AT1-like cells from KT (TRP53 WT) and KPT (TRP53 loss) lungs in the Kras-driven mouse lung cancer. (C) Violin plots showing the expression of indicated genes in AT1s and TP53-low malignant epithelial cells from the human lung adenocarcinoma. All plots display log-normalized RNA expression values.

Supplemental Figure 8

1201 **Videos Legends**

1202

1203 **Video 1. Morphological changes in differentiating alveolar epithelial cells.** Bright field and
1204 epifluorescence (*tdTomato*) showing differentiating alveolar epithelial cells.

1205

1206 **Video 2. Tubulin dynamic in transitional epithelial states.** Time-lapse images illustrating
1207 tubulin dynamics (EB1-EGFP) and orientation in cells cultured for 7-days.

1208

1209 **Video 3. Tubulin dynamic in AT1s.** Time-lapse images illustrating tubulin dynamics and
1210 orientation in cells cultured for 14-days.

1211

1212 **Video 4. Tubulin dynamic in *Trp53*-KO alveolar epithelial cells cultured for 7-days.** Time-
1213 lapse images illustrating tubulin dynamics and orientation in cells cultured for 7-days.

1214

1215 **Video 5. Loss of *Trp53* in alveolar epithelial cells leads to disrupted tubulin dynamics in ex
1216 vivo day-14 cultures.** Time-lapse images illustrating tubulin dynamics and orientation in cells
1217 cultured for 14-days.

1218

1219