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Abstract

Cells exhibit diverse sizes and shapes, tailored for functional needs of tissues. Lung alveoli are
lined by large, extremely thin epithelial alveolar type-1 cells (AT1s). Their characteristic
morphology is essential for lung function and must be restored after injury. The mechanisms
underlying small, cuboidal alveolar type-2 cells (AT2s) differentiation into thin AT1s remain
elusive. Here, we demonstrated that AT2s undergo a stepwise morphological transformation
characterized by the development of a unique thick microtubule (MT) bundle organization, critical
for AT1 morphology. Using AT2 cultures and in vivo genetic loss of function models, we found
that MT bundling process occurs in a transitional cell state during AT2 differentiation and was
regulated by the TP53/TAU signaling axis. Notably, TAU underwent a linear clustering process,
forming beads-on-a-string-like pattern that preceded thick MT-bundle formation. Genetic gain or
loss of function of TAU in mouse or human models, prevented the formation of thick MT-bundles,
highlighting the critical role of precise TAU levels in generating ultra-thin AT1s. This defect was
associated with increased tissue fibrosis following bleomycin-induced injury in vivo. GWAS
analysis revealed risk variants in MAPT locus in lung diseases. Moreover, TP53 controlled TAU
expression and its loss phenocopied TAU deficiency. This work revealed an unexpected role for

TAU in organizing MT-bundles during AT2 differentiation.

Introduction

Tissues must maintain proper cellular composition and morphological organization to carry out
their functions. Defects in either cellular composition or structure have been implicated in various
diseases such as cancers, organ fibrosis and tissue atrophy (1—4). Therefore, it is essential to

understand the mechanisms that allow cells to achieve their appropriate identity and often
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complex cell morphology during development, homeostasis, and repair. In the lung, the gas-
exchanging alveoli have an extremely thin epithelial lining that both facilitates diffusion of gases
and serves as a barrier (5). About 95% of this lining is occupied by AT1s, one of the thinnest cell
types in the human body (6—9). The remaining area is occupied by the apical domains of small
cuboidal AT2s, which serve as facultative stem cells that can self-renew and differentiate into

AT1s both at homeostasis and after injury.

Multiple growth factor signaling and transcriptional regulators have been implicated in AT2-to-
AT1 differentiation during development and regeneration (10-25). Additionally, cells must
coordinate structural components such as actin, microtubules, and cytokeratin to provide a
cytoskeleton to build and support the cell body. Indeed, recent studies have implicated actin-
dependent biophysical forces mediated by breathing movements and CDC42 mechanical stretch
in the maintenance of AT1 identity or AT2-to-AT1 differentiation, respectively(18, 26). Additionally,
integrins and cytokeratins have been shown to play critical roles in AT2-to-AT1 differentiation via
regulation of immune cell-mediated alveolar epithelial repair processes(27, 28). Previous studies
have demonstrated that AT2-to-AT1 differentiation involves a transitional state (also known as
PATS, DATPs or KRT8hi-ADIs), which the abnormal induction or persistence of can induce
fibrotic responses in alveolar fibroblasts leading to pulmonary fibrosis (29—-33). Nevertheless, the
relationship between programs that drive PATS and those that effect morphological changes
remain elusive. Specifically, little is known about the transcriptional programs that guide structural
components to shape the thin, expansive morphology of AT1s.

Here, we show that AT2-to-AT1 differentiation is associated with a MT bundling process that is
essential for them to acquire large and thin morphology. Specifically, using a newly optimized 2-
dimensional culture model, we have uncovered a dynamic process in which individual radial MTs
are remodeled to generate thick MT-bundles. This process is mediated by TAU (encoded by the

Microtubule-Associated Protein Tau (MAPT) gene), which is highly expressed in PATS and AT1s
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and localized to thick MT-bundles. Genetic gain and loss of function of TAU leads to
disorganization of MTs, loss of thick MT-bundles, and disruption in AT1 generation both ex vivo
and in vivo. Furthermore, we show that loss of function of the transcription factor TP53 regulates

TAU and recapitulates phenotypes observed in TAU mutant cells.

Results

Newly optimized conditions for AT2 maintenance and differentiation in 2-dimensional cultures
To assess morphological dynamics during mouse AT2-to-AT1 differentiation, we sought to
optimize 2-dimensional cultures that enable efficient cell state transitions. Previous studies have
demonstrated that AT2s can be cultured in 50% matrigel (10, 34). To establish a 2D-culture
model, AT2s were first plated on 5% Matrigel coated wells. However, even at later times both
large and thin cells that express AGER (AT1 marker) and ABCA3 (AT2 marker) were observed,
suggesting incomplete differentiation (Supplemental Figure 1A). On Collagen-l coated plates
tightly packed colonies of cells expressing ABCA3 and SFTPC were present throughout the
culture duration (Supplemental Figure 1B). By contrast, culture on fibronectin coated plates
revealed the presence of CLDN4* PATS and large and thin AGER™ AT1-like cells at early (day-5)
and later (day-9) times (Figure 1A and Supplemental Figure 1C). To visualize the morphological
dynamics during AT2-to-AT1 differentiation, we performed time-lapse live imaging of cells
cultured on fibronectin starting day-3 for 72 hours. Our data revealed gradual stretching of AT1-
like cells with the appearance of arborizing cytoskeletal components from day-6 that were
maintained throughout the culture duration (Supplemental Figure 1D and Video S1). We then
performed bulk RNA sequencing (RNA-seq) on cells collected from collagen-1 (AT2s) and
fibronectin coated plates harvested on day-5 (PATS) and day-9 (AT1s) (Figure 1A). As expected,
differential gene expression analysis revealed previously reported AT2 (Sftpa1, Abca3, Sftpc,

Lamp3), PATS (Krt8, Sfn, Sox4), and AT1 (Hopx, Aqp5, Ager, Cav1) markers in different culture
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conditions (Supplemental Figure 1E). Together, we established a 2-dimensional culture system

to maintain AT2s and their differentiation to AT1s in defined conditions.

Transcriptome profiling revealed dynamic expression pattern of structural and regulatory
components of microtubules during AT2-to-AT1 differentiation

Our above live imaging data revealed the appearance of arborizing cytoskeletal structures. To
further evaluate these structures, we analyzed the above transcriptome data and found
expression of transcripts related to both structural (Tubac, Tuba1b, Tubala) and regulatory
(Map6, Mapre3, Map1a, Map2, Kifla, Camsap1) components of MT assembly in specific cell
types. We found enrichment of multiple structural and regulatory components of MTs in PATS
and AT1s indicating that MTs undergo significant reorganization during AT2 differentiation to AT1
via PATS (Figure 1B). To assess whether such changes occur during AT2 differentiation in vivo,
we reevaluated previously generated scRNA-seq data from bleomycin-induced lung injury(30).
We found enrichment of Tubb2b, Tubb5, Tubb6, Map1b, Map4, and Map7 in PATS, whereas
Tuba1la, Tuba8, Tubb2a, Tubb4b, Map2, and Map6 were enriched in AT1s (Supplemental Figure
2A). Together, transcriptome data revealed dynamic expression of MT components during AT2

to AT1 differentiation both in vivo and ex vivo.

MTs wundergo dynamic reorganization and generate thick bundles during AT2-toAT1
differentiation ex vivo and in vivo

We next performed immunostaining to visualize expression and localization of MTs, actin and
cytokeratins during AT2 to AT1 differentiation. AT2s have a dense network of individual radial
MT-fibers distributed throughout the cell body. By contrast, AT1s have organized thick bundle-
like structures each composed of multiple individual MT-fibers (Figure 1C and Supplemental
Figure 2B). Interestingly, MT changes correlate with an increase in cell area and decrease in cell

thickness (Figure 1D). Immunostaining for TUBA1B revealed a dynamic change in its localization
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as AT2s differentiate to AT1s via PATS. On day-5, we observed the emergence of individual thick
MT-bundles, whereas on day-9, cells had a highly branched network of thick bundles all around
the cell body as the cells mature to AT1s (Figure 1C). In most cell types, MTs are anchored to the
peri-nuclear Golgi via microtubule organizing centers (MTOCs) (35, 36). To assess Golgi
localization, we performed immunostaining for GM130 (37). Golgi apparatus is restricted to peri-
nuclear regions in PATS. Whereas it is co-localized with thick MT-bundles including at branch
points in AT1s, suggesting that the Golgi serves as an anchoring point for MTs, as in neuronal
axons (38, 39) (Figure 1E). Additionally, staining for PK-mito, LAMP1 and CANX, which marks
mitochondria, lysosomes and ER, respectively, revealed that these organelles co-localize with
thick MT-bundles (Supplemental Figure 2C). Furthermore, immunostaining for acetylated tubulin
(Ac-TUB), a marker of stabilized form of MTs, revealed that thick MT-bundles correlate with
mature forms of MTs (40) (Figure 1F). Of note, immunostaining for TUBA1A, TUBA1B, and MAP2
showed thick MT-bundles are composed of multiple tubulin classes and MT-associated proteins
(MAPs) (Figure 1F and Supplemental Figure 2D). Among the actin and intermediate filaments,
KRT8 localization overlapped with tubulins within the thick MT-bundles whereas actin (phalloidin)
is highly enriched in the cortex and the basal side of the cells (Figure 1C, G and Supplemental

Figure 2E).

To assess whether the thick MT-bundles observed in 2D cultures are also presentin AT1s in vivo,
we utilized the Rtkn2-CreER;R26R-Kaleidoscope (hereafter referred as Rtkn2-Kaleidoscope)
mouse line, which expresses TUBA1C fused to green fluorescent protein (EGFP) (41).
Administration of tamoxifen (in vivo) or adeno-cre virus (ex vivo) activates the expression of
TUBA1C-EGFP, thereby enabling the localization of tubulins specifically in AT1s (Figure 1H). To
assess TUBA1C-EGFP protein localization in cultured cells, we purified AT2s from Rtkn2-
Kaleidoscope mice and cultured them as described above (Figure 1H). As expected, we found

radial distribution of TUBA1C-EGFP throughout the cell body in AT2s from Kaleidoscope mice
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whereas AT1s exhibited EGFP localization in a pattern similar to that of thick MT-bundles (Figure
11 and Supplemental Figure 2F). To assess the tubulin localization pattern in vivo, lungs were
collected from tamoxifen administered Rtkn2-Kaleidoscope mice followed by thick tissue
sectioning and imaging to visualize large, flat and thin AT1s in alveolar sacs. Confocal imaging
followed by maximum intensity projection revealed EGFP localization consistent with AT1s having

thick MT-bundles in vivo (Figure 11).

MTs are polar structures with a fast growing plus end and a slow growing minus end that
collectively provide the directionality of MT growth (42). We utilized end-binding 1 (EB1)-EGFP
that allows tracking of MT plus ends to assess MT growth directionality and kinetics in real-time.
2D-cultured mouse AT2s were transduced with lentiviral EB7-EGFP followed by live imaging at
early (day-7) and late stages (day-14) of differentiation to capture these dynamics in PATS and
AT1s, respectively (Figure 1J and Video S2 and S3). Time-lapse imaging and comet tracking
revealed that cells at day-7 showed unidirectional movement from center to cortex, whereas cells
from day-14 showed bidirectional growth. This finding was further confirmed by kymograph-based
quantification analysis (Figure 1K and Video S2 and S3). These data suggest that alveolar
epithelial cells shift their MT growth from unidirectional to bidirectional as the AT2s differentiate
into large and thin AT1s. Moreover, an increase in EB1 comet velocity and angle fluctuation on
day-14, indicated enhanced MT dynamics and polymerization and switching directions within
bundled tracks (Figure 1L). Additionally, a decrease in directionality concentration, and track
straightness at day-14 compared to day-7 suggested that emergence of bidirectional movement
along bundled MTs during PATS-to-AT1 transition (Figure 1L). Together, AT2-PATS-AT1
differentiation processes can be recapitulated in our 2D ex vivo culture system revealing a unique

thick MT-bundle organization pattern in AT1s.

Dynamic expression and localization of TAU during AT2 differentiation
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The above data revealed that MT components and associated genes are differentially expressed
during AT2 to AT1 differentiation. Among these, MAPs are known to directly bind MTs and
facilitate their nucleation in neurons and oligodendrocytes (43). To evaluate the expression of
MAPs, we plotted relative expression of relevant genes in a pseudotime trajectory encompassing
AT2, PATS, and AT1s using time-series scRNA-seq data that captured cellular dynamics at
different times following bleomycin-induced lung injury (30). Unexpectedly, we found that Mapt
(encoding TAU), a gene that has been extensively studied in Parkinson’s and Alzheimer’s
diseases, is dynamically expressed during AT2-to-AT1 differentiation (44, 45). Specifically, Mapt
expression is gradually increased as AT2s transition to PATS with highest expression in AT1s
(Figure 2A). Furthermore, this expression pattern correlated with that of MT components including
Tuba1b, suggesting that TAU plays a role in assembling MTs. To validate its expression in AT1s
in vivo, we performed co-immunostaining for TAU and AGER on thick tissue sections followed by
imaging and maximum intensity projection (Figure 2B). To further evaluate its expression and
localization dynamics, we carried out co-immunostaining for TAU and TUBA1B on cells collected
at different times during AT2-to-AT1 differentiation. In line with transcriptome data, we found a
gradual increase in TAU levels as AT2s differentiate into AT1s via PATS (Figure 2C and
Supplemental Figure 3A). Although it is expressed at low levels in AT2s, TAU shows a punctate
localization pattern throughout the cell body. Notably, the localization changed to an organized
fiber-like pattern as AT2s transition to PATS. Super resolution imaging revealed that multiple TAU
puncta are organized into beads-on-a-string like pattern in PATS and in mature AT1s
(Supplemental Figure 3B). Interestingly, the fiber-like pattern resembled that of thick MT-bundle
pattern even in the absence of clear bundles of TUBA1B, suggesting that TAU-fibers precede
MT-bundle formation. At later times, dense thick MT-bundles are formed in mature AT1s. These
data suggest a model in which TAU is organized into a string like pattern that precedes thick MT-

bundle formation during AT2-to-AT1 differentiation(Figure 2D).
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Loss or gain of TAU disrupts thick MT-bundle formation and AT1 cell thickness ex vivo

To assess the role of TAU during AT2 differentiation, we performed CRISPR-based Mapt
knockout in purified AT2s in culture. First, we screened for efficient gRNAs selected from a
previously described mouse Brie genome-wide gRNA library (46). Of the four gRNAs screened,
two gave knockout efficiencies of 97% (gRNA 1) and 67% (gRNA 4) as assessed by ICE analysis
(47) (Supplemental Figure 4A and B). Then we generated adeno-associated viral 2/6 (AAV6)
particles expressing gRNAs and GFP followed by transduction into AT2s purified from H17-Cas9
mice and harvested cells for analysis on day-9 post infection (48). AAV6 co-expressing non-
targeting control (NTC) gRNA and GFP served as a control. Co-immunostaining for TAU and GFP
(infected cells) revealed efficient deletion of the gene in Mapt gRNA infected cells but not in
controls (Figure 3A and B; Supplemental Figure 4C and D). As expected, Mapt gRNA infected
GFP” cells lacked thick MT-bundles compared to NTC gRNA infected cells. Immunostaining for
GFP and TUBA1B and Ac-TUB revealed disorganized MTs dispersed throughout the cell body in
Mapt gRNA1 infected cells, further validating the above observations (Figure 3C and D).
Quantification revealed a significant decrease in the number of cells with thick MT-bundles in
Mapt gRNA1 cells compared to NTC gRNA. Furthermore, we found a significant increase in the
apical-basal thickness of Mapt gRNA1 versus NTC gRNA infected cells (Figure 3E). We observed
similar phenotypes using Mapt gRNA4 (Supplemental Figure 4E).

Previous studies using in vitro reconstitution assays revealed that a fine balance in the
levels of TAU is essential for its proper assembly, localization and MT organization (49, 50) To
assess whether an increase in TAU levels affects MT-bundle formation during AT2-to-AT1
differentiation, we ectopically expressed TAU in AT2s. Full length Mapt coding sequence from
mouse fused with FLAG-tag was used to generate AAV6-mouse Mapt-Flag vectors. Similarly,
human full length MAPT was cloned into a plasmid expressing GFP and was used to generate
AAV6-human MAPT-GFP virus. AAV6-GFP served as a control (Figure 3F). Co-immunostaining

for GFP/FLAG, TAU, TUBA1B, Ac-TUB, and TUBA1A revealed disorganized MTs in both mouse
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and human TAU gain of function conditions compared to controls (Figure 3G, H and Supplemental
Figure 5A). Quantification further revealed a significant loss of thick MT-bundles in MAPT gain of
function cells compared to controls. Additionally, Mapt gain of function cells showed a significant
decrease in cell area and increase in cell thickness, a phenotype similar to that seen in Mapt loss
of function (Figure 3A-I). In certain brain tauopathies, a mutation in TAU at amino acid position
301 with proline to lysine substitution is known to have gain of function activity and to disrupt MT
organization (51-53). Therefore, we ectopically expressed a pathological form of TAU (TAUP'H)
co-expressing GFP in mouse AT2s during their differentiation. Immunostaining for TUBA1B, TAU,
GFP, TUBA1A, and Ac-TUB revealed disorganization of tubulins and lack of thick MT-bundles in
GFP” cells (Supplemental Figure 5B). Further, to assess whether MT-bundles are essential for
maintaining AT1 cell thickness, we deleted or ectopically expressed Mapt once MT-bundles were
established in cultured AT1s. To do so, we first generated AT1s followed by delivery of Mapt-
gRNA or mMapt-OE on day-9, at which point the AT1s established MT-bundles. Immunostaining
for Ac-TUB and quantification of MT-bundles on day-6 post gRNA delivery revealed that Mapt-
gRNA and Mapt-OE transduced cells lacked MT-bundles (Supplemental Figure 5C, D). Strikingly,
we found a significant increase in cell thickness in Mapt-gRNA and OE cells compared to controls
(Supplemental Figure 5E). Collectively, these data suggest that both loss and gain of TAU

function alters MT-bundle formation, and AT1 cellular organization.

TAU is required for proper organization of cells during AT2-to-AT1 differentiation in vivo

Next, we sought to study the role of TAU in vivo utilizing a previously described constitutive Mapt
deletion (Mapt-KO) mouse model (54) and assessing AT2-to-AT1 differentiation after bleomycin-
induced lung injury. To assess the morphology of cells derived from AT2s, we specifically labeled
AT2s with GFP using AAV5-GFP virus in control and Mapt-KO mice prior to bleomycin
administration (55). This approach also allowed us to identify regions undergoing repair in

response to bleomycin-induced injury (Supplemental Figure 6A). Co-immunostaining for GFP and

10
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AGER on thick tissue sections revealed large, flat and thin AGER* AT1s derived from GFP* AT2s
in control lungs. As expected, confocal single stack shows that GFP labeled AT1s in control lungs
exhibit a thin cell morphology. In contrast, Mapt-KO lungs showed thick and balloon-shaped GFP*
cells that extrude into the alveolar lumina and lack AT1 markers (Supplemental Figure 6B).
Further assessment revealed a significant decrease in the number of thin cells (0-6um) and an

increase in thick cells (13-40um) in Mapt-KO compared to controls (Supplemental Figure 6C).

To exclude the possibility of non-cell autonomous effects in the above experiments, we performed
CRISPR based loss of Mapt function specifically in AT2s. For this, we generated AAV5 virus
carrying Mapt or NTC gRNAs and a green fluorescent protein (GFP marks infected cells) and
administered them intranasally into H77-Cas9 mouse lungs prior to bleomycin-induced injury
(Figure 4A). As expected, co-immunostaining for GFP and AGER followed by imaging of thick
tissue sections revealed large, thin, and flat cells co-expressing these markers in NTC gRNA
lungs. However, Mapt gRNA transduced cells showed a thick and balloon-shaped morphology
and protruded into alveolar lumina (Figure 4B). Quantification further revealed a significant
decrease in the number of thin cells (0-6um) and an increase in thick cells (13-40um) in Mapt
gRNA administered lungs compared to controls (Figure 4C). Collectively, these data suggest that

loss of Mapt leads to defects in cell organization in vivo.

Previous studies revealed that defects in AT2-to-AT1 differentiation exacerbates alveolar fibrosis
after bleomycin-induced injury. Therefore, we sought to assess the consequences of loss of TAU
on alveolar repair and fibrosis (Figure 4A). Co-immunostaining for GFP with ACTA2 and TAGLN
revealed an increase in myofibroblasts in Mapt gRNA administered lungs compared to NTC lungs
(Figure 4D and 4E). Moreover, quantification revealed a significant increase in ACTA2-expressing
regions in areas that have GFP expression, suggesting that defective repair leads to an increase

in fibrosis in these lungs compared to controls (Figure 4F). Additionally, immunostaining and

11
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quantification for SFN (early PATS) and LGALS3 (late PATS) on sections collected from
bleomycin injured control and Mapt gRNA administered lungs revealed a significant increase in
SFN* and decrease in LGALS3" PATS in Mapt-depleted cells (Figure 4G and 4H). These data
suggest an impairment in alveolar epithelial differentiation in Mapt-deleted cells. Furthermore,
trichome staining revealed an increase in collagen deposition in bleomycin injured Mapt-deleted
lungs compared to controls (Figure 4l). Analysis of bleomycin injured Mapt-KO mice further
confirmed these findings (Supplemental Figure 6D-H). Together, these data demonstrate that
TAU regulates MT dynamics during AT2 differentiation that is required to ensure AT1 regeneration

after injury.

Loss of TP53 disrupts TAU expression, MT and AT1 organization during AT2-AT1 differentiation
In neurons from Alzheimer’s disease and in certain carcinomas, TP53 and TAU directly interact
to control cellular processes such as DNA damage repair and cellular stress pathways (56).
Previous studies have also implicated a role for TP53 in AT2 to AT1 differentiation after injury (17,
29, 30). To assess the role of TP53 in regulation of TAU and MT assembly, we purified AT2s from
Sftpc-creER;R26-tdT; Trp53" (here after referred as Trp53-KO) mice that had received tamoxifen.
AT2s from C57BI6 mice served as controls (Figure 5A). Using our 2D cultures, we assessed the
ability of AT2s to differentiate into AT1s, as well as MT organization and TAU expression.
Immunostaining and western blot analysis revealed that TAU expression is decreased in Trp53-
KO cells compared to controls (Figure 5B and Figure 5C). Moreover, localization pattern of
TUBA1B and TUBA1A correlated with disorganization of MTs including the loss of thick MT-
bundles in Trp53-KO cells (Figure 5B). Additionally, immunostaining revealed a decrease in
expression of AGER in mutant cells compared to controls (Figure 5B). Of note, mutant cells
exhibited more than 2 nuclei, a finding consistent with previous reports that suggested a role for
TP53 in regulating gamma-tubulin and blocking cytokinesis (57, 58). Consistent with MT

disorganization, mutant cells showed an increase in cell thickness and a slight decrease in cell
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area compared to controls (Figure 5B). To assess MT dynamics, we transduced a lentivirus
carrying EB1-GFP fusion protein into AT2s lacking TP53 (Figure 5D). Time-lapse imaging and
comet tracking analyses and velocity, directionality, and angle fluctuation quantification revealed
that cells at day-7 showed premature bidirectional movement of MTs from center to cortex, which
was maintained at day-14, suggesting that they undergo misdirected growth in mutant cells

(Figure 1K, 1L, 5E, 5F and Video S4 and S5).

To assess the consequences of TP53 deficiency on alveolar epithelial organization, we utilized
Sftpc-tdT-Trp53-KO mice. Upon tamoxifen administration, there is concomitant expression of
tdTomato and loss of Trp53 specifically in AT2s. Sftpc-creER;R26-tdT (hereafter referred as
Sftpc-tdT) mice served as a control (Figure 5G). To assess the consequences of TP53 loss on
alveolar epithelial cell organization, we administered bleomycin to cause lung injury and collected
tissues on day-13 post injury (Figure 5G). Co-immunostaining for AGER and tdTomato on thick
tissue slices followed by confocal 3D reconstruction of alveoli revealed large and thin cells co-
expressing tdTomato and AGER in control lungs. In contrast, we observed large balloon-shaped
tdTomato expressing cells that lacked AGER in TP53 deficient cells, a phenotype similar to that
of TAU mutant cells (Figure 4B and 5H). Quantification further confirmed a significant increase in
cell thickness in TP53 deficient cells compared to controls (Figure 51). To assess whether TP53
directly binds on Mapt genomic locus, we reanalyzed a previously described ChlP-seq data from
purified PATS (29). Integrative Genomics Viewer (IGV) tracks revealed enrichment of TP53 on
Mapt promoter (Figure 5J). Additionally, we found TP53 binding on multiple tubulin and MT-
associated gene loci (Figure 5K and Supplemental Figure 7A). To further test whether the
expression of tubulin and microtubule-associated genes is altered in TP53 deficient cells, we
utilized previously published scRNA-seq data (17). Pseudo-bulk RNA expression analysis of this
data revealed that the expression of Map1b, Map2, Map4, Map6, Map7, Tubalb, Tubafc,

Tubb4b, Tubb5, and Tubb6 was decreased in Trp53 knock-out cells (Figure Supplemental Figure
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7B). Additionally, to assess whether TP53 similarly controls tubulin and MAP encoding genes in
human cells, we reanalyzed a publicly available scRNA-seq data from lung adenocarcinoma (59).
Although these datasets lack TP53 mutation annotation, the majority of tumor cells exhibit
decreased TP53 transcript levels (consistent with loss-of-function or nonsense mutations). We
found that MAP2, MAP4, MAP7, TUBA1A, TUBB4B, TUBB6, and TUBG2, were downregulated
in TP53-low cells (Figure Supplemental Figure 7C). Together, these data point to a mechanism
whereby TPS3 directly binds and controls tubulin and MAP encoding genes during AT2 to AT1

differentiation.

TAU expression, localization, and requirement during human AT2 differentiation

We then sought to assess TAU expression, localization and requirement during human AT2
differentiation. First, we purified human AT2s as previously described and cultured them in
serum-free, feeder free (SFFF) conditions for expansion or in alveolar differentiation medium
(ADM) for differentiation into AT 1s on plates coated with either collagen or FN as described above
(Figure 1A, Supplemental Figure1A-C, and 6A). As expected, these culture conditions supported
either selective expansion of AT2s or their differentiation into large, thin, and flat AT1s ex vivo as
assessed by co-immunostaining for SFTPC and HTI-56, respectively, (Figure 6B). Furthermore,
immunostaining for TUBA1B revealed the presence of thick MT-bundles in the AT1s. We then
assessed the expression and localization dynamics of TAU at early and late stages in culture. Co-
immunostaining for TAU, TUBA1B, TUBA1A, and Ac-TUB revealed a gradual increase in TAU
expression as the AT2s differentiate to AT1s. Further, TAU localization changed from random
puncta to an organized fiber-like pattern that aligned along the thick MT-bundles similar to results

seen in mice (Figure 6C).

Second, to test the requirement of TAU for proper differentiation of AT2s into AT1s, we

screened and selected a gRNA that can efficiently target human MAPT gene (Supplemental
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Figure 8A). As illustrated in Figure 6D, we generated lenti-viral particles expressing Cas9, MAPT
gRNA, and a fluorescent reporter, mCherry, and transduced them into human AT2s. NTC gRNA
served as a control. Transduced cells were then induced to differentiate into AT1s and collected
on day-9 post infection for analysis. Co-immunostaining for mCherry, TAU, and Ac-TUB revealed
loss of TAU and absence of thick MT-bundles in MAPT gRNA transduced cells compared to NTC
gRNA (Figure 6E). Further, we found disorganization of morphology from thin, large, and flat in
the case of NTC gRNA transduced cells to thick and elongated in MAPT gRNA transduced cells.
To assess the consequences of TAU gain of function, we transduced AAV6 expressing human
MAPT and GFP into AT2s. Of note, ectopic expression of TAU in AT2s was not sufficient to induce
AT2-AT1 differentiation (Supplemental Figure 8B). However, induction of differentiation by
administering ADM resulted in the disorganization of cell morphology specifically in ectopic TAU
expressed cells compared to controls as revealed by co-immunostaining for GFP, TAU, and Ac-
TUB (Figure 6F). Additionally, ectopic TAU expressing cells showed abnormal thick MT-bundles.
Together, both gain and loss of TAU disrupted MT organization and gave rise to thick cells during

human AT2 to AT1 differentiation, similar to what had been observed with mouse cells.

Genetically regulated MAPT expression within the 17q21.31 haplotype influences pulmonary
disease risk

Common genetic variation at the MAPT-containing 17g21.31 locus has been strongly associated
with IPF, COPD, and lung function traits (60—64). More specifically, this locus includes a 900kb
inversion, which contains genetic variation in strong linkage disequilibrium, resulting in the H1 and
H2 inversion-tagging haplotypes (65). Consequently, these pulmonary disease associations
reflect haplotype-level association, rather than a single SNP. Within, the disease-associated
haplotype, we found no MAPT nonsynonymous coding variants. Rather most haplotype variants
localized to the MAPT locus are non-coding, consistent with the idea that if disease risk is

conferred by this locus, it is through MAPT-expression regulation. To explore this, we examined
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MAPT eQTL data from nasal airway epithelial brushings generated on a childhood asthma cohort
(GALA=681). MAPT was identified as a significant nasal eGene, with genetic variation tagging
the inversion haplotype associated with MAPT-expression (Supplemental Figure 8C). Examining
MAPT-expression by one of the eQTL variants, rs1981997, we found that the minor allele (A) was
associated with lower MAPT-expression (Supplemental Figure 8D). Notably, the A allele of
rs1981997 has been associated with decreased IPF risk (60). In contrast, based on data reported
by the GTEx consortium in lung tissue, the A allele for rs1981997 is associated with increased
MAPT-expression. GTEXx also reports rs1981997 as a MAPT eQTL across 18 additional tissues,
with the direction of effect sometimes matching that of lung tissue and other times matching the
nasal pattern. Together, these results support a model whereby genetically regulated MAPT-
expression within the 17g21.31 haplotype influences pulmonary disease risk, with the direction of

effect depending on the tissue context.

Discussion

Efficient diffusion of gases across the alveolar epithelium into the blood capillaries and vice versa
requires that these tissues maintain appropriate cell numbers and organization (6, 66). Here, we
describe a unique MT organization, in which differentiating AT1s develop thick MT-bundles that
control cell thickness and area. We speculate that such thick MT-bundle organization promotes
the expansion of the cytoplasm and decrease in cell thickness that enhances gas diffusion as
compared to the radial and dispersed pattern observed in AT2s and other cell types. Furthermore,
thick MT-bundles likely provide structural support and stability for the thin and expansive AT1s
during cyclic breathing movements. Our work uncovered an unexpected role for TAU in alveolar
epithelial differentiation. Specifically, TAU seems to undergo condensation and is organized into
a beads-on-a-string like pattern in PATS and in AT1s. We also find that TAU localization precedes
thick MT-bundle formation suggesting that TAU initiates MT organization during AT2

differentiation. This aligns with prior studies using in vitro reconstitution assays that revealed TAU
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droplet formation and localized condensation, which in turn facilitates MT assembly (50). Further,
it has been shown that TAU is critical for assembly of well-organized MTs and spacing between
bundles in neuronal axons and dendrites (67, 68). Previous studies have implicated that
endothelium derived TAU promotes neuronal tauopathy in Pseudomonas aeruginosa infected
mice (69, 70). However, to our knowledge, this is the first report implicating TAU in alveolar
epithelial stem cell mediated repair after injury.

Our data revealed that both gain and loss of TAU disrupted thick MT-bundle formation leading to
generation of aberrant differentiated cells with an increase in cell thickness and decrease in cell
area. These data suggest that a fine balance in the expression levels of TAU is essential to control
thick MT-bundle formation and cellular organization. In tauopathies, it has been well documented
that hyper-phosphorylation and different splice forms of TAU can differently influence MT
organization, organelle transport and mitochondrial function (71). Future studies need to evaluate
the role of these different isoforms in alveolar epithelial cells. Interestingly, AT1s share some
similarities with oligodendrocytes. For instance, oligodendrocytes generate elaborate myelin
sheaths that wrap around neuronal axons, facilitating rapid signal conduction. Both cell types
express Mapt and generate expansive membrane, which in turn is regulated by MTs and MAPs
(72-76). Additionally, both AT1s and oligodendrocytes express the transcription factor MYRF
(myelin regulatory factor). Based on this, we propose that both AT1s and oligodendrocytes use

similar programs to generate expansive membranes via TAU and organized MT structures.

Our study also revealed that expression of TAU is decreased upon loss of transcription factor
TP53 during AT2 differentiation. Aside from its well-known functions in genome stability, DNA
damage repair and cell death pathways, previous studies have also implicated a role for TP53 in
regulating cytoskeleton in alveolar epithelial cells (29). We now implicate a role for TP53 in
regulating TAU expression and thereby MT organization during differentiation of alveolar

epithelial cells. This is in line with previous studies that revealed a role for TP53 in directly
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regulating the expression of MAPs in neurons and other cells (56). Indeed, we find that loss of
TP53 leads to altered MT-bundle formation, generation of aberrant alveolar epithelial cells with
an increase in cell thickness, a phenotype similar to TAU loss of function. These data suggest
that TP53/TAU axis controls thick MT-bundle formation to control cellular alveolar epithelial cell

organization.

Recent genome-wide association studies have identified potential risk variants in the MAPT locus
in COPD and pulmonary fibrosis patients (60, 61). In addition to MAPT, this 17921 locus also
harbors other genes including KANSL 1, which has been identified as a risk allele in eQTL studies
that utilized scRNA-seq and GWAS data to compute risk allele association (77). Our analyses
further provide support that variants in MAPT locus are associated with IPF disease risk.
Together, these data indicate the need to further investigate the TAU association in IPF and

COPD.

Material and Methods

Sex as a biological variable

Our study examined male and female animals, and similar findings are reported for both sexes.

Mouse strains, bleomycin injury and viral delivery

Both male and female mice aged between 8—-16 weeks were used for experiments. All the mice
were C57BL/6 unless otherwise indicated. The following mice were used for experiments: wild
type,  Sftpc™!CERTIBI (Sftpc-CreER)(78), B6.Cg-Gt(ROSA)26Sor™ #(CACdTomato)Hze j (ROGR-
tdTomato)(79), H11-Cas9(48), Rtkn2-CreER;R26R-Kaleidoscope(41) , B6.129X1-Mapttm1Hnd/J
(54) and Trp53™ (80) (mixed background). For lineage tracing mice received 3—5 doses of 2mg

tamoxifen (Sigma-Aldrich) per 20g of body weight via intraperitoneal injection. For bleomycin-
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induced lung injury, 2.5 U kg™' bleomycin was administered intranasally 2 weeks after tamoxifen
injection and the mice were monitored daily. Mice that were administered PBS served as controls.
The mice were sacrificed at different times after bleomycin injury. For intranasal AAV viral
infection, mice were anesthetized with 3% isoflurane in an induction chamber followed by 2.5e10

viral particles administration resuspended in 60uL of physiological saline (Henry Schein, 002477).

Mouse lung tissue dissociation and AT2 cell isolation

Lung dissociation was performed as described previously(34, 81). Briefly, lungs were inflated with
an enzymatic dissociation solution (450U/mL Collagenase | (Worthington, LS004197), 5U/mL
Dispase (Corning, 354235), and 0.33U/mL DNase | (Roche, 10104159001). Lung lobes were
minced and incubated in enzyme solution at 37°C for 25-35min. Dissociation was quenched with
10% FBS/DMEM and strained. Cell pellet was resuspended in red blood cell lysis buffer (100uM
EDTA, 10mM KHCO3, 155mM NHA4CI) for 2min, followed by quenching with 10% FBS/DMEM
and filtration. For FACS sorting, the cell pellet was resuspended in a sorting buffer (0.5% BSA
(Genclone, 25-529F), 2mM EDTA). Cells were stained with EpCAM/CD326-Brilliant-Violet-711
(Biolegend, 118233, 1:200), Lysotracker-Green DND-26 (Invitrogen, L7526, 1:10000), CD140a-
PE (Biolegend, 135905, 1:200), CD31-eFluor-450 (Invitrogen, 48-0311-82, 1:200) and CD45-
eFluor-450 (Invitrogen, 48-0451-82, 1:200). EpCAM*Lysotracker™" cells were collected in 2%

FBS/DMEM/F12. Sorting was performed using either a SONY SH800S or MA900.

Collagen |, fibronectin and 5% Matrigel coating

To maintain AT2s collagen was used. Briefly, 100ul of Cellmatrix Type I-A (Wako Chemicals,
637-00653) was mixed with 100ul of DMEM-F12/Ham media and 20ul of reconstitution buffer
(2.2g NaHCOS in 100 ml of 0.05 N NaOH and 200 mM HEPES) was added. Ice-cold collagen
solution was added to well, spread and polymerized at 37°C for 30min. AT2s were plated on

collagen-coated wells. To induce mouse AT1 differentiation, AT2s were seeded on fibronectin. At
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first, fibronectin (Millipore-sigma, F4759) was diluted with PBS to a concentration of 50ug/ml,
added to wells at 37°C for 30min-6h. Fibronectin was removed, and wells were washed once with
PBS followed by mouse AT2 seeding diluted in culture medium. For 2D-cultures on Matrigel, AT2s
were plated on wells collated with 5% Matrigel (Corning, 354230). Briefly, Matrigel was serially
diluted in DMEM/F12 to concentration of 5%, followed by well-coating at 37°C for 30min. Next,
Matrigel was removed and AT2s were seeded. AT2s were cultured in SFFF medium. The medium

was changed every two days.

Mouse AT2 cell expansion

Mouse AT2 organoids were cultured in SFFF conditions as described previously (34, 81). Briefly,
3000-5000 FACS-sorted AT2s were resuspended in SFFF media and mixed with Matrigel in
droplet format. After Matrigel solidification at 37°C for 15-20min, the mouse SFFF medium was
added. AT2 organoids were passaged to single cells using TrypLE select (Gibco, 12563029)

every 10-12 days.

Human lung dissociation and AT2s purification

Human lung dissociation was performed as described previously (34, 81). Briefly, 2-3g of tissue
was washed with PBS/1% Antibiotic-Antimycotic followed by pleura, small airway and vasculature
removal. Remaining tissue was cut into small pieces followed by digestion (Collagenase type-I:
1.68mg/ml, Dispase: 5U/ml, DNase: 10U/ml) at 37°C for 1-1.5h. Cells were filtered and rinsed
with 10% FBS/DMEM. Cell suspension was spun down at 450g for 10min and pellet was
resuspended in red blood cell lysis buffer (Thermo Fisher Scientific, A1049201) for 5min, washed
with 10% FBS/DMEM, filtered and pelleted. Approximately 2-10 million cells were resuspended
in MACS (magnetic activated cell-sorting) buffer (PBS, 1% BSA, 2mM EDTA) as per
manufacturer’s instructions and incubated with TruStain-FcX (Biolegend, 422032) for 15min at

4°C followed by mouse HTII-280 (1:60 dilution) antibody for 1h at 4°C. Cells were washed twice
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with MACS buffer and incubated with anti-mouse IgM microbeads for 15min at 4°C, loaded into

the LS-column (Miltenyi Biotec, 130-042-401) and collected magnetically.

Human AT2 cell culture and cell differentiation

Human AT2 cultures were performed as previously described (34, 81). Human AT2 organoids
were cultured in SFFF conditions in 50% Matrigel. For differentiation, AT2s were dissociated and
plated in 5% Matrigel and cultured in SFFF media for 3-5 days followed by 7-8 days of ADM media

replacement containing 10% human serum.

EB1-EGFP lentivirus transduction

Lentivirus production was performed as described previously with modification (82). Briefly, 70-
80% confluent HEK293T were prepared in 10% FBS/DMEM/1% penicillin-streptomycin. Two
hours before transfection, the medium was changed to 5% FBS/DMEM without penicillin-
streptomycin followed by transfection with 10ug of pLenti-EB1-EGFP (Addgene, plasmid 118084),
7ug psPAX2 (Addgene, plasmid 12260), and 5ug pCMV-VSV-G (Addgene, plasmid 8454)
plasmids using PEI Max (1:4) (Polysciences, 24765). After overnight incubation, the medium was
changed to 10% FBS/DMEM/1% penicillin—streptomycin. Viral supernatant was collected 48, 72,
and 96h after transfection followed by virus concentration using Lenti-X Concentrator (Takara,
631231). The viral pellet was dissolved in DMEM/F12 and titrated using a qPCR lentivirus titter
kit (Applied Biological Materials, LV900). Single cell suspensions of mouse AT2s were
resuspended in SFFF containing lentivirus at 1:100 and seeded on fibronectin-coated glass
bottom dish (Matsunami Glass, D35-14-1-U). Cells were incubated with lentivirus overnight

followed by SFFF replacement.

Live cell imaging of EB1-EGFP signal in mouse AT2s and kymograph analysis
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Virus infected mouse AT2s were recorded on days 7 and 14 at 1.5-second intervals. For
kymograph analysis, the time series stack data was applied to the Fiji plugin software: tubeness
to remove background signals followed by KymoResliceWide analysis according to the
distributor’s guide. Analysis including velocity, directionality concentration, angle fluctuation and
track straightness were performed. Briefly, images were converted to 8-bit. A region of interest
(ROI) was manually defined within the cell boundary. To enhance linear comet signals, the
tubeness filter was applied. Tracking of EB1-comets was performed using the TrackMate plugin
(Simple LAP tracker). All quantitative analyses were performed in R (packages: tidyverse, readr,
ggplot2, circular). For each EB1-comet track, the XY displacement and duration were used to
calculate velocity (um/min) and movement angle (degrees). Directionality concentration (DC) was
calculated using circular statistics to quantify the uniformity of comet movement angles, with
higher DC values indicating more coherent orientation. Angle fluctuation was calculated as the
standard deviation of frame-to-frame directional changes, reflecting local instability. Track
straightness, defined as the ratio of net displacement to total path length, was quantified to
evaluate the linearity of EB1-comet trajectories. All measurements were calibrated using the

imaging scale (um/pixel) and frame interval (s/frame).

Vector cloning of AAV-CRISPR KO plasmids

Candidate gRNA sequences were picked up from Brie library(46) or designed using
CHOPCHOP(83). Two oligos containing sgRNA sequences (Oligo1:ACC+5’gRNA(20-mer)3’,
Oligo 2:AAC+5'Reverse complement of gRNA(20-mer)3’) were obtained and annealed using
T4PNK (NEB M0201S) according to the manufacturing protocol. Backbone plasmid: pAAV-U6-
sgRNA-CMV-GFP (addgene:85451) was cut with restriction enzyme Sap1 (NEB, R0569S), and
a larger size of cut-plasmid was extracted from gel. Finally, annealed oligo was ligated to

backbone plasmid using Quick ligase (NEB, M2200S).
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AAYV production and transduction

AAV production and transduction was performed as previously described(55). Briefly, 70-80%
confluent HEK293T cells were prepared in 10% FBS/DMEM/1% penicillin-streptomycin. Two
hours before transfection, medium was changed to 5% FBS/DMEM without penicillin-
streptomycin and cells were transfected using PEI Max (1:4) with 50ug of transgene plasmid,
100ug of adenovirus helper plasmid (XX680), and 50ug of AAV serotype plasmid. Following
overnight incubation, the medium was replaced to 5% FBS/DMEM/1% penicillin—streptomycin.
Viral supernatant was collected 4-days after transfection and purified by iodixanol gradient using
Opti-prep Density Gradient Medium (Sigma, D1556) and ultracentrifuge. Titters of virus were
measured by gPCR  with primers  amplifying the  AAV2 ITR  regions
(fw:5’AACATGCTACGCAGAGAGGGAGTGG-3 rev:5'-
CATGAGACAAGGAACCCCTAGTGATGGAG-3'). For AAV transgene transduction to ex vivo
culture, AAV supernatant was diluted with SFFF medium at a ratio of 1:4 to 1:5 without

concentration and administered to cells.

RNA preparation and bulk RNA-seq

For total RNA extraction, cells were resuspended in TRIzol (Thermo Fisher Scientific, 15596026)
and total RNA was extracted using Direct-zol RNA Microprep kit (Zymo, R2061) according to the
manufacturer’s protocol. Bulk RNAseq was conducted on samples with RIN values greater than
8.0 using a bioanalyzer. Ribosomal RNA from total RNA samples (100ug) was performed using
NEBNext rRNA Depletion Kitv2 (NEB, E7400L). Libraries were prepared using NEBNext Ultra I

Directional RNA Library Prep Kit for lllumina (NEB, 7760S).

Reanalysis of scRNA-seq data
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Line plots of relative gene expression were performed by re-analyzing the available data (GSE
141259)(30). We extracted gene expression trajectory data from the converging trajectories using

the interactive web tool (https://theislab.qgithub.io/LunglnjuryRegeneration/).

Bulk RNA sequencing and differential gene expression analysis

Purified RNA (1ug) from each sample was enriched for Poly-A RNA using NEBNext Poly(A)
MRNA Magnetic Isolation Module (NEB, #E7490). Libraries were prepared using NEBNext Ultra
I RNA Library Prep Kit for lllumina (NEB, #E7770). Paired-end sequencing (150bp for each read)
was performed using HiSeq X with at least 15 million reads per sample. Quality of sequenced
reads were assessed using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
PolyA/T tails were trimmed using Cutadapt(84). Adaptor sequences were trimmed and reads
shorter than 24bp were trimmed using Trimmomatic(85). Normalization and extraction of
differentially expressed genes (DEGs) between samples were performed using an R package,

DESeq2(86).

ChIP-seq Signal Filtering and Visualization

To visualize TP53 binding enrichment across microtubule-related genes, published ChlIP-seq
data for TP53 (GSE141635; CTGF*tdTomato™ PATS) and its corresponding Input control were
processed using R (v4.3.2). Signal tracks in bedGraph format were imported via the rtracklayer
package and converted into BigWig files after filtering by signal intensity and genomic coordinates
for each gene were obtained from TxDb.Mmusculus.UCSC.mm10.knownGene and
org.Mm.eg.db. ChIP and Input signals overlapping each gene region were extracted using subset
ByOverlaps. Peaks with signal intensity greater than 5.29 were selected corresponding to the
95th percentile of the Input signal distribution. Only peaks exceeding this percentile were

considered TP53-enriched relative to the Input control. The resulting BigWig files were loaded
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into the Integrative Genomics Viewer (IGV) (v2.17.0) to visualize TP53 ChIP enrichment relative

to Input across the analyzed microtubule-related genes.

Re-analysis of human and mouse scRNA-seq datasets to assess TP53-dependent
regulation of AT1-associated microtubule gene programs

Re-analysis of publicly available scRNA-seq datasets (human Ilung adenocarcinoma
(GSE131907)(59) and a Kras-driven mouse lung cancer model (GSE231681) (17) were
conducted in Seurat v5.0.1. Briefly, for the human dataset, raw UMI matrices and cell annotations
were filtered. Data were normalized, highly variable genes were selected, and PCA was
performed. Cell-type annotations from the original study were incorporated as metadata, and
AT1s were extracted. Malignant epithelial cells were stratified based on TP53 expression, and
those with TP53 expression below the median were defined as TP53-low malignant. For the
mouse dataset, raw HDF5 matrices were imported and filtered. Samples representing KT (Trp53
WT), KPT (Trp53 loss), and KFT (Trp53 hyperactive) were merged and normalized, and the top
2,000 variable genes were identified. Scaled data were subjected to PCA, and principal
components 1-30 were used for UMAP embedding and clustering. Cluster identities were
assigned using canonical markers. AGER-positive AT1-like cells were extracted for analyses.
KFT samples were excluded from KT-KPT comparisons. MAP and tubulin isoform genes were

analyzed, and violin plots were generated.

GWAS data analyses

MAPT eQTL data based on nasal brushings were obtained from a published genome-wide GALA
nasal eQTL analysis(87). The MAPT LocusZoom plot was constructed using the locuszoomr R
package (88), where LD patterns were generated relative to the lead variant using LDIinkR based
on the 1000 Genomes Project European population(89). Publicly available eQTL data were

examined using the GTEXx version 10 portal (gtexportal.org).
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Lung tissue fixation and sectioning

Mouse lungs were inflated and fixed in 4% Paraformaldehyde (PFA) at 4°C for 4-6 hours. Lung
lobes were separated and washed in PBS followed by incubation in 30% sucrose overnight at
4°C. Lobes were incubated in 1:1 30% sucrose:OCT for 1h followed by embedding in OCT blocks

and cryosectioning at 8-10um thickness.

Immunostaining on lung sections

OCT sections were washed with PBS. Antigen retrieval was performed using 10mM sodium
citrate buffer at 90-95°C for 15min. Sections were washed with PBS, permeabilized in PBST
(0.1% Triton X-100 in PBS), and incubated with 1% BSA in PBST for 30min at RT followed by
primary antibodies at 4°C overnight. Sections were then washed 3x in PBST, incubated with
secondary antibodies in blocking buffer for 1h at RT, washed with PBST 3x, and mounted using

Fluor G with DAPI.

Immunostaining of cultured cells

Cultured cells were fixed with 4% PFA at RT for 15min or with methanol at -20°C for 10min.
Samples were washed with PBS, permeabilized in 0.2% Triton X-100 in PBS, and incubated with
1% BSA in PBS for 30min at RT, followed by primary antibodies at 4°C overnight. Samples were
then washed 3x in PBST, incubated with secondary antibodies for 1h at RT, washed with PBST

3x, and mounted.

Precision cut lung slices (PCLS) and immunostaining of PCLS
Mouse lungs were inflated with 2% low-melting agarose dissolved in PBS as previously
described(90). PCLS (300um) were obtained using compresstome (PRECISIONARY, VF510-2).

For immunostaining, PCLS were fixed in 4% PFA at 4°C for 1h. Sections were washed with PBS,
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permeabilized in 0.3% Triton X-100 in PBS, and incubated with blocking buffer (1% BSA, 0.3%
Triton X-100 in PBS) for 1h at RT followed by primary antibodies at 4°C overnight. Sections were
then washed 3x in wash buffer (0.5% Tween-20, 0.5% Triton X-100 in PBS), incubated with
secondary antibodies in blocking buffer at 4°C overnight, washed 3x in wash buffer and twice in
PBS before imaging on glass bottom dish. Three-dimensional rendering of acquired stack images

was performed using Imaris (Oxford instruments) or Icy software.

Protein extraction and western blot analysis

Cultured cells were washed with ice-cold PBS and collected in cell lysis buffer (50mM Tris-HCI,
pH 7.5, 150mM NaCl, 1% Triton X-100, 2mM EDTA and 2mM DTT and protease inhibitor
cocktail). Following a 15-minute incubation on ice, the lysates were spun down at 13,000g for
15min and the supernatant was collected for a Bradford analyses. Samples were prepared in
Laemmli buffer, boiled for 10min at 95°C and loaded on 12% SDS-PAGE gels followed by
transfer, blocking in 5% milk for 1h at RT, incubation with primary antibodies overnight at 4°C,
washes with TBST and incubation with secondary antibodies. The following primary and
secondary antibodies were used: anti-Tau (10274-1-AP, Proteintech, 1:1000), anti-GAPDH
(GT239, GeneTex, 1:10000), anti-Rabbit IgG-HRP (4030-05, Southern Biotech, 1:10000), anti-
Mouse IgG-HRP (1030-05, Southern Biotech, 1:10000). Signals were detected using a Pierce

ECL-2. Band intensities were quantified using ImageJ.

Imaging of mitochondria and tubulin in mouse AT1s

Cultured AT1s were incubated for 30min at 37°C in SFFF media containing Tubulin Tracker Green
(T34075, Invitrogen, 1:4000) and PKmito Orange Dye (CY-SC053, Cytoskeleton-Inc., 1:5000)
followed by a 5min wash in SFFF containing 1ug/mL Hoechst-33342 stain. Cells were rinsed 3x

in SFFF media and imaged.
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Masson-Trichrome staining

Trichrome staining was performed using a Masson Trichrome Staining Kit (HT15-1KT, Sigma-
Aldrich) and a Weigert's Iron Hematoxylin Set (HT1079-1SET, Sigma-Aldrich) according to
manufacturer protocols on OCT-frozen sections. Images were recorded using a 20X objective of

Axio imager (Zeiss).

Antibodies

The following antibodies and dyes were applied to samples for immunostaining: anti-
RAGE/AGER (MAB1179, R&D systems, 1:500), anti-proSP-C (AB3786, MilliporeSigma, 1:500),
anti-ABCA3 (3C9) (sc58220, Santacruz, 1:300), anti-Claudin4 (36-4800, Invitrogen, 1:200), anti-
Actin, alpha-Smooth Muscle Cy3-conjugated (C6198, MilliporeSigma,1:500), anti-HT1-56 (TB-
29AHT1-56, Terrace Biotech, 1:300), anti-HTII-280 (TB-27AHT2-280, Terrace Biotech, 1:50),
anti-GFP (NB100-1770, Novus Biologicals, 1:500), anti-tdTomato (AB8181-200, Origene,
1:1000), anti-TUBA1A antibody (PA5-22060, Invitrogen, 1:100), anti-TUBA1B (66031-1-Ig,
Proteintech, 1:500), anti-acetylated Tubulin (66200-1-1g, Proteintech, 1:500), anti-Tau (10274-1-
AP, Proteintech, 1:200), anti-Tau-1 (PC1C6) (MAB3420, MilliporeSigma,1:100), anti-Tau (Tau-5)
(AHB0042, Invitrogen,1:50), anti-MAP2 (17490-1-AP, Proteintech, 1:500), anti-Keratin8
(TROMA-I, DSHB, 1:50), anti-GM130 (610822, BD, 1:50), Alexa Fluor-555 Phalloidin (A34055,
Invitrogen,, 1:400), Alexa Fluor-647 Phalloidin (A22287, Invitrogen,, 1:400), LEL-DyLight®-649
(DL-1178, Vector Laboratories,1:1500), anti-FLAG-M2 (F1804, Sigma-Aldrich, 1;1000), anti-
Calnexin (AB22595, Abcam, 1:500), anti-CD107a/LAMP-1 (121601, BioLegend, 1:500), anti-SFN
(PA5-95056, Invitrogen, 1:250), anti-LGALS3-Alexa647 (125408, BioLegend, 1:500), anti-

TAGLN/Transgelin (ab14106, Abcam, 1:250).

Image acquisition, processing and quantification
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Images were captured using an Olympus FV3000 confocal microscope with a 20X, 30X, 40X,
60X objectives. For long term live-imaging Olympus VivaView FL Incubator Microscope was used
with 20x objective. Images were processed using the Olympus CellSens application or ImageJ
and Figures were prepared using Affinity Designer. Measurements and quantifications were

performed using Image J-Fiji using a sample of biological replicates (n=3).

Statistical analysis

Statistical methods relevant to each Figure are outlined in the Figure legend. Sample size was
not predetermined. Data are presented as means with standard error (SEM). Statistical analysis
was performed in Excel, Prism and R. A two-tailed Student’s t-test was used for the comparison
between two experimental conditions. We used Shapiro-Wilk analyses to test whether data are
normally distributed and used Mann-Whitney statistical test for the comparison between two

conditions that showed non-normal distributions.

Study approval

The animal experiments were approved by the Duke University Institutional Animal Care and Use
Committee in accordance with US National Institutes of Health guidelines. Healthy human lungs
were obtained in accordance with Institutional Review Board oversight (Duke University
Pro00114526— exempt research as described in 45 CFR 46.102(f), 21 CFR 56.102(e) and 21

CFR 812.3(p) which satisfies the Privacy Rule as described in 45CFR164.514).

Data Availability Statement
All quantification values represented in the graphs are provided in the Supporting Date Values
file. Requests for further information and resources should be directed to and will be fulfilled by

Purushothama Rao Tata (purushothamarao.tata@duke.edu). Bulk RNA-seq data of cultured cells

have been deposited at GEO (GSE287523) and are publicly available as of the date of publication.
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Figure 1: Alveolar stem cell microtubules undergo dynamic changes to form thick MT
bundles during differentiation. (A) Experimental design for mouse AT2 isolation, culture and
sample collection. (B) Heatmap shows expression of tubulin-encoding and MAP encoding genes
in cultured AT2s, PATS and AT1s. (C) Staining for TUBA1B (green) phalloidin (red) and AGER
(grey) on cells cultured on fibronectin showing AT2-PATS-AT1 cell fate and cell morphology
transition. Scale bar: 20um. (D) Quantification of area and thickness (in the middle and edge) of
alveolar epithelial cells on day-1, 5 and 9 of culture. **p<0.005, ***p<0.001, one-way ANOVA. n=3
biological replicates. (E) Staining for TUBA1B (green) and GM130 (red) at indicated times. Scale
bar: 20um. (F) Staining for tubulin proteins in AT2s cultured on fibronectin for 9-days. Scale bar:
20um. (G) Staining for TUBA1B (green), KRT8 (grey) and phalloidin (red) in AT1s. Scale bar:
20um. (H) Experimental design for ex vivo and in vivo AT1-specific tubulin lineage tracing in
Rtkn2-CreER;R26R-Kaleidoscope mice. (l) Images showing TUBA1C-EGFP in cultured AT1s
and in vivo lungs. Scale bars: 20um. (J) Experimental workflow for AT2 infection with EB1-EGFP
lentivirus followed by live imaging on day-7 and day-14. (K) Kymograph and time-lapse images
illustrating tubulin dynamics and orientation in cells on day-7 and day-14. Scale bars: 20um. (L)
Quantification of EB1-EGFP comet velocity (um/min), directionality concentration, angle
fluctuation (degree) and track straightness in cells cultured for 7 and 14 days. *p<0.05, unpaired

t-test. Data in D and L are presented as mean + s.e.m. n=3 biological replicates.
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Figure 2. Dynamic expression and localization of TAU precede thick MT-bundles formation
during AT2 differentiation. (A) Pseudo time analysis visualizing gene expression dynamics of
Mapt and Tuba1b during AT2-AT1 differentiation. (B) Immunostaining for AGER (red) and TAU
(green) in the alveolar region of a thick tissue section showing TAU localization in AT1s. Scale
bar: 20um. (C) Staining for TUBA1B (grey) and TAU (green) at indicated times of culture. Scale
bars: 20um. Yellow box indicates region of single-channel images. (D) Schematic showing the

expression and organization of TAU, microtubules, and F-actin during AT2-AT1 differentiation.
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Figure 3. TAU regulates the formation of thick MT-bundles. (A) Experimental design for AT2
isolation from H71-Cas9 mice followed by AT2 culture and AAV6-gRNA-GFP infection to knockout
(KO) Mapt ex vivo. (B) Staining for GFP (green, infected cells) and TAU (red)l in NTC (non-
targeting control) and Mapt-KO cells. Scale bars: 20um. (C) Staining for GFP (green) and
TUBA1B (grey) in control and Mapt-KO cells. Scale bars: 20um. (D) Staining for TUBA1B (grey)
and Ac-TUB (red) in infected GFP™ (green) control and Mapt-deleted cells. Scale bars: 20um (low
magnification); 5um (high magnification). Yellow box indicates region of single-channel images.
(E) Quantification of cells exhibiting thick MT-bundles and cell thickness in control and Mapt-
deleted cells. **p=0.0049, ***p=0.0005 unpaired t-test, n=3 biological replicates. (F) Schematic of
ex vivo cultured AT2s infected with mouse Mapt or human MAPT and analyses at indicated time
point. (G) Staining for TAU (red) and TUBA1B (grey) in control and TAU-overexpressed cell
(green). Scale bars: 20um. Yellow box indicates region of single-channel images. DAPI stains
nuclei (blue). (H) Staining for TUBA1A (green), TUBA1B (grey) and Ac-TUB (red) in TAU-
overexpressed and control cells. (1) Quantification of cell area, cell thickness and the percentage
of infected cells exhibiting thick MT-bundles. *p=0.05, Mann Whitney statistical test. **p<0.005,

unpaired t-test, n=3 biological replicates. Data in E and | are presented as mean + s.e.m.
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Figure 4. Loss of Mapt leads to abnormal cell organization and increased fibrosis in
response to bleomycin injury. (A) Schematic of AT2-specific gRNA delivery to H717-Cas9 mice
followed by bleomycin injury and sample collection. (B) Staining for GFP (green, gRNA delivered
AT2s) and AGER (red) in control and Mapt-deleted cells after bleomycin injury. Scale bars: 20um.
(C) Quantification of cell thickness and the distribution of GFP™ cells with different thickness in
control and AT2-specific Mapt-KO lungs after bleomycin injury. *p<0.05, unpaired two-tailed t-
test. (D) Staining for GFP (green), ACTA2 (red) and SFN (grey) in controls and Mapt-deleted
AT2s after bleomycin injury. Scale bars: 50um. (E) Staining for GFP (green), TAGLN (red), and
LGALS3 (grey) in controls and Mapt-deleted AT2s after bleomycin injury. Scale bars: 50um. DAPI
stains nuclei (blue). (F) Quantification on ACTA2" area in bleomycin-injured lungs. *p<0.05
unpaired t-test. (G) Quantification of SFN* cells among GFP* cells in bleomycin-injured lungs.
**p<0.005, unpaired t-test. (H) Quantification of LGALS3" cells among GFP* cells in bleomycin-
injured lungs. ***p<0.001, unpaired t-test. (I) Trichrome staining on lungs collected from
bleomycin-injured controls and Mapt-deleted mice. Scale bars: 100um. Data in C, F, G and H are

presented as mean £ s.e.m. n=3 biological replicates.
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Figure 5
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Figure 5. Loss of TP53 disrupts microtubule organization and AT1 differentiation. (A)
Experimental workflow for tamoxifen administration to delete TP53 in AT2s followed by AT2s
isolation for ex vivo analysis in Sftpc-CreER;R26R-tdTomato; Trp53" or control mice. (B) Images
showing TAU and tubulin localization in control and TP53-deleted cells. Scale bars: 20um. DAPI
stains nuclei (blue). (C) Western blot of TAU and GAPDH (loading control) in control and TP53-
deleted cells. (D) Experimental design for EB71-EGFP lentivirus administration in TP53-deleted
AT2s followed by live imaging on days-7 and 14. (E) Kymograph and time-lapse images for EB1-
EGFP in Trp53-deleted cells on days-7 and 14 of culture. (F) Quantification of EB1-EGFP comet
velocity (um/min), directionality concentration, angle fluctuation (degree) and track straightness
in TP53-deleted cells cultured for 7 and 14 days. ns - not significant, unpaired t-test. (G)
Experimental workflow for tamoxifen administration to delete TP53 in AT2s followed by bleomycin
injury in Sftpc-tdT-Trp53-KO or control mice (Sftpc-tdT). (H) Staining for AGER (green) and
tdTomato (red) in bleomycin-injured controls and Trp53-KO mice. Scale bars: 20um. (I)
Quantification on cell thickness of lineage labelled cells in controls and Trp53-KO mice following
bleomycin injury. *p=0.017, unpaired t-test. (J) IGV tracks show significant enrichment for TP53
binding in genomic loci corresponding to Mapt promoter. (K) Graph depicting enrichment of TP53
binding on microtubule associated genes (red) and unrelated negative controls (grey). Data in F

and | are presented as mean + s.e.m. n=3 biological replicates
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Figure 6
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1103 Figure 6. MAPT regulates human AT2 differentiation into AT1s. (A) Schematic of human AT2
1104  purification, culture and differentiation followed by analyses. B) Staining for TUBA1B (green) ,
1105  SFTPC (grey) and HTI-56 (red) in AT2s and ex vivo differentiated AT1s. Scale bars: 20um. (C)
1106  Staining for TAU (green) and TUBA1B (grey) (upper panel) and Ac-TUB (green), TUBA1A (red)
1107  and TUBA1B (grey) (lower panel) in AT2s and AT1s. Scale bars: 20um. (D) Workflow for MAPT
1108  deletion or overexpression in AT2s followed by differentiation to AT1s and analyses. (E) Staining
1109  for Ac-TUB (green) mCherry (red) and TAU (grey) on MAPT-deleted and control cells. Scale bars:
1110  20um. DAPI stains nuclei (blue). (F) Staining for GFP (green), Ac-TUB (red)N and TAU (grey) on
1111 MAPT-overexpressed and control cells. Scale bars: 20um. Yellow box in merged image indicates

1112 region of single-channel images.
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Supplemental Figure 1. The establishment and characterization of ex vivo 2D alveolar
epithelial cells culture conditions. (A) Immunostaining for CLDN4 (green), ABCA3 (red) and
AGER (grey) on alveolar epithelial cells cultured on 5% Matrigel for different days. Scale bars:
20um. (B) Staining for AT2 markers, ABCA3 (green) and SFTPC (red), in AT2s cultured on
Collagen | for 5 days. Scale bar: 50um. (C) Staining for CLDN4 (green), ABCAS3 (blue), and AGER
(grey) on AT2s isolated from Sftpc-CreER;R26R-tdTomato (red) lungs and cultured on fibronectin
for different days. Scale bars: 20um. (A and B) DAPI stains nuclei (blue). Yellow box indicates
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1123 region of single channel images. (D) Time frames showing the expansion of cultured alveolar
1124  epithelial cells isolated from over time. Scale bars: 10um. Yellow dashed line depict expanding
1125  cell. (E) Heatmap showing expression of AT2, PATS and AT1 markers in cells collected from
1126 indicated culture conditions.
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Supplemental Figure 2. Dynamics expression of tubulin-encoding genes and microtubule-
associated protein encoding genes during AT2 differentiation to AT1. (A) Pseudotime
analysis visualizing expression dynamics of tubulin-encoding genes and microtubule-associated
protein encoding genes during AT2-AT1 differentiation. Krt8 expression is depicting emergence
of PATS. The pseudotime for AT2, PATS and AT1s were labelled manually based on expression
of Krt8. (B) Staining for TUBA1B (green) and phalloidin (grey) in the day 9 cultured cells. Scale
bar: 20um. (C) Staining for Taxol-tubulin (green), PK-mito (red, mitochondria), TUBA1A (green),
LAMP1 (red, lysosomes), and CANX (red, endoplasmic reticulum). Hoechst and DAPI stain nuclei
(blue). Scale bar: 20pm. (D) Staining for MAP2 (green) and TUBA1B (grey) at day-9 of culture.
Scale bar: 20 uym. (E) Images showing localization of KRT8 (green), TUBA1B (red) and phalloidin
(grey) on apical and basal side of the AT1s. Scale bar: 20um. (F) Representative images showing
TUBA1C-EGFP in cultured AT2 (culture day-1) and PATS (culture day-5). Scale bars: 20um.
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Supplemental Figure 3
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1143  Supplemental Figure 3. Localization of TAU in AT2s and AT1s. (A) Immunostaining for TAU
1144  (green), TUBA1B (grey) and TUBA1A (red) during AT2-to-AT1 differentiation. Scale bar: 20um.
1145  (B) Staining for TUBA1B (grey) and TAU (green) in AT1s. Scale bars: 20um. White box in merged
1146  image indicates region of single channel images.
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Supplemental Figure 4. Characterization of mouse Mapt gRNA efficiency. (A) Schematic of
Mapt gene. (B) Representative Sanger chromatograms and indel efficiency analysis in controls
and Mapt gRNA1 and Mapt gRNA4 edited cells. (C) Western blot of TAU in control and Mapt-
deleted cells. GAPDH was used as a loading control. (D) Quantification of TAU expression in
control and Mapt-deleted cells. *p<0.05, unpaired t-test. n=3 biological replicates. (E) Staining
for GFP (green, gRNA delivered AT2s) and AGER (red) and TUBA1B (grey) in control and Mapt-
deleted AT2s. Scale bars: 50um.
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Supplemental Figure 5
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Supplemental Figure 5. Ectopic expression of WT hMAPT or mutated hMAPT"*'" and Mapt-
KO disrupts thick MT-bundle formation. (A) Staining for GFP (green), TAU (red) and TUBA1B
(grey) in hMAPT-overexpressed cell (green). Scale bars: 20um. (B) Staining for GFP (green),
TAU (red) and TUBA1B (grey) (left image) and TUBA1A (green), Ac-TUB (red) and TUBA1B
(grey) in hAMAPTP't overexpressed cells. DAPI stains nuclei (blue). (C) Experimental workflow
for AT2-AT1 differentiation followed by AAV6-Mapt gRNA or AAV6-Mapt-OE administration and
sample collection. (D) Staining for Ac-TUB (grey) in virus infected (green) Mapt-KO, Mapt-OE,
and control cells. (E) Percentage of transduced cells exhibiting thick MT-bundles and
quantification of cell thickness. ** p=0.005, *** p<0.001. one-way ANOVA. Data are presented as

mean + s.e.m. n=3 biological replicates.
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Supplemental Figure 6. Mapt deficient AT2s exhibit balloon-like cell morphology in
response to bleomycin-induced lung injury. (A) Schematic of experimental workflow for AT2
labelling using AAV5-GFP followed by bleomycin injury for lung sample collection from controls
and Mapt-/- mice. (B) Staining for GFP (green) and AGER (red) in controls and Mapt-/- mice after

bleomycin injury. Scale bars: 20um. (C) Quantification on cell thickness and the distribution of
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GFP” cells with different thickness in wild type control and Mapt-/- lungs after bleomycin injury.
**p<0.005, unpaired two-tailed t-test. (D) Staining for GFP (green), ACTA2 (red) and SFN (grey)
in controls and Mapt-/- mice after bleomycin injury. Scale bars: 50um. (E) Staining for GFP
(green), TAGLN (red), and LGALS3 (grey) in controls and Mapt-deleted AT2s after bleomycin
injury. Scale bars: 50um. DAPI stains nuclei (blue). (F) Quantification of ACTA2" area of the
bleomycin injured lungs. *p<0.05 unpaired t-test. (G) Quantification of SFN* cells within all GFP*
cells in bleomycin injured lungs. *p<0.05, unpaired t-test. (H) Quantification of LGALS3" cells
within all GFP* cells in bleomycin injured lungs. ***p<0.001, unpaired t-test. Data in C, F, G and

H are presented as mean + s.e.m. n=3 biological replicates.
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Supplemental Figure 7. TP53 directly binds on promoters of distinct microtubule related
genes and regulates their expression. (A) IGV tracks show significant enrichment for TRP53
binding in genomic loci corresponding to indicated microtubule associated genes. (B) Violin plots
showing the expression of indicated genes in AGER-positive AT1-like cells from KT (TRP53 WT)
and KPT (TRP53 loss) lungs in the Kras-driven mouse lung cancer. (C) Violin plots showing the
expression of indicated gens in AT1s and TP53-low malignant epithelial cells from the human
lung adenocarcinoma. All plots display log-normalized RNA expression values.
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Supplemental Figure 8
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Supplemental Figure 8. Characterization of human MAPT gRNA efficiency, MAPT gain of
function and GWAS analyses. (A) Representative Sanger chromatograms and indel efficiency
analysis in controls and hMapt gRNA edited cells. (B) Staining for GFP (green), TAU (red) and an
AT2 marker-DC-LAMP (grey), on MAPT-overexpressed and control hAT2s. Scale bars: 20um.
DAPI stains nuclei (blue). (C) MAPT cis-eQTL Locus Zoom plot of nasal airway brushing data
from the GALA cohort, showing a strong LD block marking the MAPT eQTL. Linkage
disequilibrium is centered on the lead eQTL SNP, rs4485406. (D) MAPT expression in nasal
brushings stratified by genotype at the IPF risk variant, rs1981997.
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Videos Legends

Video 1. Morphological changes in differentiating alveolar epithelial cells. Bright field and

epifluorescence (tdTomato) showing differentiating alveolar epithelial cells.

Video 2. Tubulin dynamic in transitional epithelial states. Time-lapse images illustrating

tubulin dynamics (EB1-EGFP) and orientation in cells cultured for 7-days.

Video 3. Tubulin dynamic in AT1s. Time-lapse images illustrating tubulin dynamics and

orientation in cells cultured for 14-days.

Video 4. Tubulin dynamic in Trp53-KO alveolar epithelial cells cultured for 7-days. Time-

lapse images illustrating tubulin dynamics and orientation in cells cultured for 7-days.

Video 5. Loss of Trp53 in alveolar epithelial cells leads to disrupted tubulin dynamics in ex

vivo day-14 cultures. Time-lapse images illustrating tubulin dynamics and orientation in cells

cultured for 14-days.
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