Lactylation, a post-translational modification derived from glycolysis, plays a pivotal role in ischemic heart diseases. Neutrophils are predominantly glycolytic cells that trigger intensive inflammation of myocardial ischemia reperfusion (MI/R). However, whether lactylation regulates neutrophil function during MI/R remains unknown. Employing lactyl proteomics analysis, S100a9 was lactylated at lysine 26 (S100a9K26la) in neutrophils, with elevated levels observed in both acute myocardial infarction (AMI) patients and MI/R model mice. S100a9K26la was demonstrated driving the development of MI/R using mutant knock-in mice. Mechanistically, lactylated S100a9 translocated to the nucleus of neutrophils, where it binded to the promoters of migration-related genes, thereby enhancing their transcription as a co-activator and promoting neutrophil migration and cardiac recruitment. Additionally, lactylated S100a9 was released during NETosis, leading to cardiomyocyte death by disrupting mitochondrial function. The enzyme dihydrolipoyllysine-residue acetyltransferase (DLAT) was identified as the lactyltransferase facilitating neutrophil S100a9K26la post-MI/R, a process that could be restrained by α-lipoic acid. Consistently, targeting DLAT/S100a9K26la axis suppressed neutrophil burden and improved cardiac function post-MI/R. In patients with AMI, elevated S100a9K26la levels in plasma were positively correlated with cardiac death. These findings highlight S100a9 lactylation as a potential therapeutic target for MI/R and as a promising biomarker for evaluating poor prognosis of MI/R.
Xiaoqi Wang, Xiangyu Yan, Ge Mang, Yujia Chen, Shuang Liu, Jiayu Sui, Zhonghua Tong, Penghe Wang, Jingxuan Cui, Qiannan Yang, Yafei Zhang, Dongni Wang, Ping Sun, Weijun Song, Zexi Jin, Ming Shi, Peng Zhao, Jia Yang, Mingyang Liu, Naixin Wang, Tao Chen, Yong Ji, Bo Yu, Maomao Zhang
Usage data is cumulative from October 2025 through November 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 1,099 | 0 |
| 471 | 0 | |
| Supplemental data | 256 | 0 |
| Citation downloads | 72 | 0 |
| Totals | 1,898 | 0 |
| Total Views | 1,898 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.