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mechanisms of lymphatic metastasis for intervention.

Introduction

Colorectal cancer (CRC) is the third most prevalent malignancy
and the second leading cause of cancer-related deaths worldwide
(1, 2). Metastatic dissemination, particularly via the lymphatic sys-
tem, is a major contributor to CRC mortality. Lymphatic metastasis
plays a critical role in the progression of CRC and serves as an
independent prognostic factor, strongly associated with poorer sur-
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Hypoxia in the tumor microenvironment promotes lymphatic metastasis, yet the role of cancer-associated fibroblasts
(CAFs) in this process remains insufficiently elucidated in colorectal cancer (CRC). In this study, we developed a large
language model-based cellular hypoxia-predicting classifier to identify hypoxic CAFs (HCAFs) at single-cell resolution.
Our findings revealed that HCAFs enhance CRC lymphatic metastasis by secreting CLEC11A, a protein that binds to the
LGRS5 receptor on tumor cells, subsequently activating the WNT/-catenin signaling pathway. This promotes epithelial-
mesenchymal transition and lymphangiogenesis, facilitating the spread of tumor cells via the lymphatic system.
Furthermore, we demonstrate that the hypoxia-induced transcription factor HIF1A regulates the conversion of normoxic
CAFs to HCAFs, driving CLECT1A expression and promoting metastasis. In vivo and vitro experiments confirmed the pro-
metastatic role of CLEC11A in CRC, with its inhibition reducing lymphatic metastasis. This effect was markedly reversed by
targeting the LGR5 receptor on tumor cells or inhibiting the WNT/B-catenin pathway, further elucidating the underlying
mechanisms of CLEC11A-driven metastasis. These findings underscore the potential of targeting the CLEC11A-LGR5

axis to prevent lymphatic dissemination in CRC. Our study highlights the role of HCAFs in CRC progression and reveals

vival outcomes (3-5). Additionally, it is a key indicator for assessing
tumor invasiveness, guiding clinical staging and surgical planning,
informing the administration of postoperative adjuvant chemother-
apy, and predicting tumor recurrence (6—10). Despite its well-estab-
lished clinical importance, the molecular mechanisms underlying
lymphatic metastasis in CRC remain poorly understood, highlight-
ing the need for further investigation.

Cancer-associated fibroblasts (CAFs) are a fundamental com-
ponent of the tumor microenvironment (TME) and play critical
roles in diverse biological processes, including tumor angiogenesis,
cell proliferation, treatment resistance, and immune escape (11—
14). Recently, increasing attention has been paid to the involvement
of CAFs in tumor lymphatic metastasis (15). For example, specific
CAF subpopulations—such as PDGFRa'ITGA11*" CAFs in blad-
der cancer, periostin® CAFs in breast cancer, and FAP* CAFs in
esophageal squamous cell carcinoma—have been shown to mark-
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Figure 1. Construction and validation of the CHPC based on the LLM. (A) Overview of the CHPC based on the LLM. DEGs, differentially expressed genes;
ssGSEA, single-sample gene set enrichment analysis. (B-E) Differences in accuracy (B) and AUROC (D) between the 2 matrices across varying test set
sizes, as well as accuracy (C) and AUROC (E) across different machine-learning models. (F and G) Differences in accuracy (F) and AUROC (G) between the 2
matrices across various machine-learning models and datasets when using 10% of the training data. XGBoost, eXtreme Gradient Boosting; SVM, Support
Vector Machine; RF, Random Forest; NB, Naive Bayes; MLP, Multilayer Perceptron; LR, Logistic Regression; LightGBM, Light Gradient Boosting Machine;
GBM, Gradient Boosting Machine; DT, Decision Tree; CatBoost, Categorical Boosting. All data are presented as means + SEM. *P < 0.05, **P < 0.01, ****P
< 0.00071; by distribution type, normally distributed data were analyzed using paired t test, whereas non-normally distributed data were examined by

Wilcoxon'’s signed-rank test (B-E).

edly enhance lymphatic metastasis (16-18). Similarly, in cervical
cancer and cholangiocarcinoma, CAFs promote lymphatic metas-
tasis via the secretion of PAI-1 and PDGF-BB, respectively (19,
20). Nevertheless, the mechanisms by which CAFs contribute to
lymphatic metastasis in CRC remain to be elucidated.

Recent advancements in single-cell technologies have offered
important insights into the functional heterogeneity of CAF sub-
types in tumor progression. For example, distinct CAF subtypes
have been identified: matrix CAFs (mCAFs) drive extracellular
matrix (ECM) remodeling, inflammatory CAFs (iCAFs) secrete
pro-inflammatory factors, and antigen presenting CAFs (apCAFs)
participate in antigen presentation (21, 22). While the use of cellu-
lar markers for CAF identification has greatly advanced our under-
standing, it offers limited insight into the precise mechanisms by
which CAFs contribute to lymphatic metastasis. Furthermore,
the TME is inherently dynamic, with various environmental con-
ditions inducing cellular state transitions and remodeling gene
expression profiles (23-25). A recent study in pancreatic cancer
demonstrated that differential activation of the MAPK pathway
leads to substantial variations in the functional states and gene
expression profiles of CAFs, even among cells expressing identical
markers (26). These findings highlight the limitations of classical
CAF classification based solely on static markers. A more nuanced
classification may offer valuable biological insights by incorporat-
ing the influence of dynamic TME conditions, such as hypoxia, a
well-known modulator that promotes lymphangiogenesis and lym-
phatic metastasis in breast cancer, cervical cancer, and melanoma
(27-29). However, in CRC, how hypoxic conditions affect CAF
state transitions and their potential association with lymphatic
metastasis remain incompletely understood.

In this study, we integrated bulk, single-cell, and spatial tran-
scriptomic data to systematically investigate the mechanisms by
which hypoxic CAFs (HCAFs) drive lymphatic metastasis in CRC.
‘We developed a predictive model based on a large language mod-
el (LLM) to accurately identify HCAFs at single-cell resolution,
addressing the limitations of previous studies that primarily relied
on control experiments and lacked reliable hypoxia ground-truth
labels (30, 31). Our analyses revealed that HCAFs are spatially
adjacent to tumor cells and engage in robust interactions, with their
abundance strongly correlating with lymphatic metastasis. Fur-
thermore, comprehensive bioinformatics analyses, in combination
with in vivo and in vitro experiments, demonstrated that CLEC11A
secreted by HCAFs binds to the LGRS receptor on tumor cells,
subsequently activating the WNT/B-catenin signaling pathway to
promote lymphatic dissemination. Overall, these findings demon-
strate the central role of HCAFs in CRC lymphatic metastasis and
suggest that targeting the CLEC11A-LGRS axis may represent a
promising therapeutic strategy.

J Clin Invest. 2025;135(20):e194243 https://doi.org/10.1172/)C1194243

Results

Cellular hypoxia—predicting classifier based on the LLM. Despite the
progress in single-cell analysis, several key challenges remain in
accurately identifying hypoxic cells. First, existing methods often
fail to achieve robust and generalizable performance across different
datasets. While some approaches may outperform raw count-based
methods on specific classification models, they often lack the abili-
ty to consistently deliver superior results across all datasets, raising
concerns about potential overfitting and insufficient generalization.
Second, the demand for a large amount of training data poses a hur-
dle. Although high information density could theoretically reduce
the need for extensive training data, in practice, obtaining a sufficient
volume of labeled data from various datasets is often unfeasible.
Finally, the issue of gene mismatching due to differences in sequenc-
ing conditions and postsequencing processing further complicates
the process. Traditional methods relying solely on raw counts are
highly sensitive to gene missingness, rendering them ineffective when
certain genes are absent. This lack of flexibility in handling incom-
plete gene data limits the applicability and transferability of trained
models across diverse sequencing datasets (32, 33).

To better characterize cellular hypoxia in CRC, we integrated
multiple machine-learning models to develop a cellular hypox-
ia—predicting classifier (CHPC) that leveraged an LLM-inspired
framework (Figure 1A).

First, we analyzed 177,202 cells from 57 untreated CRC sam-
ples to characterize cellular hypoxia status. Cells were stratified
into high-confidence hypoxic/normoxic populations and low-con-
fidence groups using a Gaussian Mixture Model (GMM) based on
activity scores derived from canonical hypoxia pathway signatures
(34). Finally, we obtained 4,331 positive and 43,603 negative sin-
gle-cell samples for further training.

Inspired by the capabilities of foundation models in single-cell
representation, particularly their exceptional performance in cross-task
transfer and few-shot learning, here we applied a pretrained single-cell
model, scGPT (35), to generate cell embeddings. These LLM-de-
rived embeddings serve as reliable feature inputs for constructing
machine-learning classifiers, particularly for low-confidence cells.

To evaluate the advantages of our approach, we implemented a
10%-100% equal-interval sampling strategy to partition training and
validation sets from both high-confidence single-cell cohorts and 4
independent real-world hypoxic cell line validation datasets (36-38).
Through systematic comparisons of 10 machine-learning models,
we found that classifiers based on the embedding matrix consistently
outperformed traditional methods across all experimental conditions,
achieving improvements in accuracy, area under the receiver operat-
ing characteristic curve (AUROC), and F1 score (Figure 1, B-E, and
Supplemental Figure 1, A-E; supplemental material available online
with this article; https://doi.org/10.1172/JCI194243DS1). Notably,
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Figure 2. HCAFs interact strongly with tumor cells and are linked to lymphangiogenesis. (A) Dimensionality reduction plot showing the distribution

of 9 major cell types. (B) Dimensionality reduction plot showing the distribution of the hypoxia status. UMAP, uniform manifold approximation and
projection. (C) Stacked bar charts depicting the distribution of hypoxic and normoxic cells across major cell types, epithelial cells, and different tissues.
(D) Intercellular communication network between malignant epithelial (EpiT) and other cells. (E) Spatial transcriptomics revealing the spatial proximity
between HCAFs and EpiT. (F) Dimensionality reduction plot depicting the distribution of 4 CAF subtypes, including mCAFs, iCAFs, apCAFs, and pCAFs.
(G) Dot plot showing the expression of classical CAF-type markers across identified cell populations. (H) Dimensionality reduction plot showing the dis-
tribution of the hypoxia status in classical CAF types. (I) Stacked bar charts depicting the distribution of hypoxic and normoxic cells across 4 CAF types.
() Functional enrichment analysis of HCAFs and NCAFs. (K) Bar plots displaying the relative information flow of differential signaling pathways between
HCAFs and NCAFs. (L) Prediction of ligand-receptor interactions between HCAFs, NCAFs, and other cells. (M) mIHC revealing the spatial relationships
among HIF-1a, a-SMA, LYVET1, and EPCAM. Scale bar: 50 um. (N) Box plot illustrating the distribution of HCAF proportions across different N stages (n =
20). (0) Correlation analysis showing a positive correlation between the number of HCAFs and lymphatic vessel density. All data are presented as means
+ SEM. **P < 0.01, by Mann-Whitney U test (N) and Spearman'’s rank correlation test (0).

even with only 10% training data, the embedding matrix demon-
strated its high information density by improving mean accuracy by
0.16 (Figure 1F), AUROC by 0.17, and F1-score by 0.20 (Figure 1G
and Supplemental Figure 1F), showcasing its superior generalization
capability in low-sample-size scenarios. As the training set increased,
performance gains were minimal (Supplemental Figure 2, A and B),
further highlighting the efficiency of LLM-generated embeddings in
capturing cellular features with limited data. Moreover, the LLM-in-
spired framework’s ability to tolerate gene missingness was evident,
as the embeddings could effectively compensate for missing genes
based on gene relationships, unlike raw count-based methods that
fail when genes are absent. Ultimately, cross-validation based on the
average rankings across all metrics identified the CatBoost model
as the top performer among the evaluated classifiers (Supplemental
Figure 1, G-J), and it was subsequently selected for hypoxia state
classification of low-confidence cells.

HCAFs exhibit stronger interactions with tumor cells, correlating with
poor prognosis and increased lymphangiogenesis. Using classical cell
markers, we identified 9 distinct cell types in single-cell RNA-Seq
(scRNA-Seq) data (Figure 2A and Supplemental Figure 3A). The
InferCNV algorithm (39) was applied to distinguish malignant epi-
thelial cells (Supplemental Figure 3, B and C). We then applied the
classifier to identify cellular hypoxia states, revealing that the propor-
tion of hypoxic cells was more prevalent in myeloid cells, fibroblasts,
and mast cells. Additionally, hypoxic cells were enriched in tumor
tissues compared with adjacent normal tissue (Figure 2, B and C). To
explore cell—cell interactions, we utilized the CellphoneDB algorithm
(40), which demonstrated that HCAF's exhibited the highest interac-
tion frequency with malignant epithelial cells (Figure 2D). Addition-
ally, through spatial transcriptomic data and multiplex immunohisto-
chemistry (mIHC) staining using various hypoxic markers (HIF-1a,
CA9, and GLUT1), we further confirmed that HCAFs are predomi-
nantly enriched in the hypoxic regions of tumor tissues (Supplemen-
tal Figure 4, A-C, and Supplemental Figure 5, A—C). Furthermore,
the spatial transcriptomics results revealed that HCAFs are in close
spatial proximity to malignant epithelial cells (Figure 2E, Supple-
mental Figure 3D, and Supplemental Figure 6, A—-C), suggesting
that HCAFs may play a pivotal role in tumor progression. Next, we
reclustered CAFs into 4 subgroups: mCAFs, iCAFs, apCAFs, and
proliferative CAFs (pCAFs) (Figure 2, F and G) (21, 22, 41). Inter-
estingly, there were no differences in the distribution of these classi-
cal CAF subpopulations between hypoxic and normoxic conditions
(Figure 2, H and I, and Supplemental Figure 3E), indicating that
traditional CAF markers may have limited sensitivity for capturing
hypoxia-induced alterations.

J Clin Invest. 2025;135(20):e194243 https://doi.org/10.1172/)C1194243

Further analysis revealed that HCAFs exhibited biological
functions in lipid metabolism, immune response, and angiogenesis,
while normoxic CAFs (NCAFs) primarily retained typical fibroblast
functions such as collagen contraction (Figure 2J). Cell—cell inter-
action analyses highlighted increased activity in multiple signaling
pathways in HCAFs, including the IL6 pathway (inflammation
and immunity), the VEGF pathway (angiogenesis), and pathways
involved in cellular proliferation and differentiation (GDF, WNT,
TGF-B, and NOTCH), compared with NCAFs (Figure 2K). At
the ligand-receptor level, HCAFs showed heightened expression
of ligands and receptors involved in WNT and TGF-f pathways
with tumor cells, VEGF signaling with endothelial cells, and IL6
signaling with immune cells (Figure 2L). These findings are consis-
tent with previous studies on the roles of HCAFs in angiogenesis,
immune responses, ECM modulation, and metabolic reprogram-
ming, further supporting the accuracy of the classifier in identifying
hypoxic cells (42-45). Bulk transcriptomic analysis revealed the role
of HCAFs in promoting CRC lymphatic metastasis (Supplemental
Figure 3F). Then, mIHC and spatial transcriptomic analysis revealed
that HCAFs were spatially adjacent not only to tumor cells but also
in close proximity to lymphatic endothelial cells (Figure 2M and
Supplemental Figure 6). In tissues with lymphatic metastasis, the
abundance of HIF-lo'a-SMA* cells was also significantly elevated
(Figure 2N). The analysis also showed a positive correlation between
HIF-1a*a-SMA* cells and the extent of lymphatic vessel formation
(Figure 20; R = 0.46, P = 0.0079), indicating the involvement of
HCAFs in lymphangiogenesis.

HCAF-secreted CLECI1A is linked to unfavorable prognosis and
lymphatic metastasis. To elucidate how HCAFs promote CRC pro-
gression, we first compared the differential expression profiles
between NCAFs and HCAFs. This analysis revealed that HCAFs
upregulated multiple ECM-related genes (Figure 3A). Consistently,
differential analyses of TCGA-CRC transcriptomic and CPTAC
proteomic datasets confirmed that ECM-related genes were mark-
edly upregulated in tumor tissues (Figure 3B). Next, we applied the
Mfuzz algorithm (46) to examine the transcriptional dynamics of
CRC lymphatic metastasis, which identified 6 distinct gene clus-
ters. Notably, expression in cluster 5 increased with advancing node
stage (Figure 3C). Functional enrichment analysis indicated that
genes within cluster 5 are predominantly involved in ECM remod-
eling, WNT signaling, cell adhesion and migration, and epithelial
proliferation (Figure 3C). By integrating upregulated genes from
single-cell, TCGA, and CPTAC data with those in cluster 5, we
identified 22 shared genes (Figure 3D). Cox regression analysis
indicated that CLECI1A4 exhibited the highest hazard ratio among
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Figure 3. CLEC11A secreted by HCAFs is associated with poor prognosis and lymphatic metastasis. (A) Volcano plot displaying differentially expressed
genes (DEGs) between HCAFs and NCAFs. (B) Volcano plot of DEGs between normal and tumor tissues from TCGA-CRC (left) and CPTAC datasets (right).
(C) Mfuzz analysis revealing different gene expression patterns dependent on lymph node stages. The left panel shows the gene expression heatmap, the
middle shows gene expression curves, and the right shows the results of pathway enrichment analysis. (D) Venn diagram of upregulated genes in HCAFs,
tumor upregulated genes, and genes in the cluster 5. (E) Univariate Cox plot of the 22 shared genes. TMA, tissue microarray cohort. (F and G) Kaplan-Mei-
er survival curve from independent CRC transcriptome datasets (F) and proteomic tissue microarray cohorts (n = 90) (G), indicating the poorer overall
survival in patients with high CLEC11A expression. (H) Representative images of IHC staining for CLEC11A in CRC tissues. (I) Violin plots displaying CLECTIA
expression levels in CRC tissues from 2 independent transcriptomes. (J) Violin plots displaying CLECT1A expression levels in different lymph node stages
from 2 independent CRC transcriptomes. (K) IHC staining of CLEC11A in CRC tissues with and without lymph node metastasis. (L) WB analysis showing the
expression levels of CLECT1A in HCAFs and NCAFs. (M) RT-gPCR analysis of CLECTIA mRNA levels in HCAFs and NCAFs (n = 4 per group). (N) ELISA quanti-
fication of CLECT1A levels in HCAFs and NCAFs (n = 4 per group). Scale bars: 50 um (H and K). All data are presented as means + SEM. **P < 0.01, ****P <
0.0001, by empirical Bayes moderated t test with Benjamini-Hochberg correction (A-C), Wald's test (E), log-rank test (F and G), Student’s t test (M, N, and
I; GSE77953), Mann-Whitney U test (I; TCGA-CRC), Kruskal-Wallis test (J; GSE41258), and 1-way ANOVA (J; TCGA-CRC).

these shared genes, suggesting a key role in CRC progression and
lymphatic metastasis (Figure 3E).

Subsequent analyses across multiple transcriptomic datasets
(Figure 3, F and G, and Supplemental Figure 7C) and a proteomic
tissue microarray cohort confirmed that high CLEC11A expres-
sion was strongly associated with poor prognosis. Multivariate
regression analysis demonstrated that elevated CLEC11A expres-
sion exhibited the most significant adverse impact on prognosis
compared with other clinical parameters (P < 0.001; Supplemen-
tal Figure 8). Moreover, transcriptomic analysis and IHC showed
CLECI11A was significantly upregulated in tumor tissues (Figure 3,
H and I, Supplemental Figure 7D, and Supplemental Figure 9) as
well as in primary tumors exhibiting lymphatic metastasis (Figure
3, Jand K, and Supplemental Figure 9). Finally, experiments using
CAFs under hypoxic conditions found a substantial upregulation
of CLEC11A at the protein level (Western blot, Figure 3L), at the
mRNA level (reverse transcription quantitative PCR [RT-qPCR],
Figure 3M), and in its secreted form as detected in the culture
supernatant by ELISA (Figure 3N).

Hypoxia-activated HIF1A in CAF's and transcriptionally upregulated
CLEC11A4 expression. To investigate the transition between NCAFs
and HCAFs, we employed both the VECTOR (47) and Monocle
(48) algorithms to reconstruct the differentiation trajectory (Figure
4, A-C). Monocle analysis revealed a positive correlation between
pseudotime and the activity of hypoxia, WNT, and VEGF path-
ways, with gene expression gradually increasing along the differ-
entiation trajectory (Figure 4D). Functional enrichment analysis
of pseudotime-associated genes indicated notable involvement in
hypoxic responses, angiogenesis, epithelial cell proliferation and
migration, and epithelial-mesenchymal transition (EMT) (Figure
4, E and F).

To further elucidate the regulatory factors driving the NCAF-
to-HCAF transition, we used the GeneSwitches (49) tool, which
revealed dynamic changes in the activity of several transcription
factors, including IRF1, KLF4, ATF3, NR4A1, and HIFIA (Figure
4G). Subsequent validation using the single-cell regulatory network
inference and clustering (SCENIC) algorithm (50) confirmed that
HIFIA exhibits strong regulatory activity specifically in HCAFs
(Figure 4H). Moreover, correlation analysis showed a positive asso-
ciation between the regulatory activity and expression levels of
HIF14 and the differentiated pseudotime (Figure 4I). HIF1A4, a key
transcription factor in the hypoxic response (51), exhibited regula-
tory and expression specificity in HCAFs (31, 52, 53), which was
further validated by our findings (Figure 4, J and K).

J Clin Invest. 2025;135(20):e194243 https://doi.org/10.1172/)C1194243

HIFI4 has been reported as a transcription factor of CLE-
CI11A4 (Figure 4L) (54). The expression patterns of CLEC11A4 and
HIFI14 during the transition from NCAFs to HCAFs were similar
(Figure 4M). Both single-cell and multiple bulk transcriptomic
analyses revealed the positive correlation between HIFIA and
CLECI11A (Figure 4, N and O). ChIP-gPCR analysis demonstrat-
ed significant enrichment of HIFIA at the CLECI1A4 promoter
region (Figure 4P), and luciferase reporter assays showed that
HIFIA markedly enhanced CLECIIA promoter activity (Figure
4Q). Furthermore, CAF cell lines overexpressing HIFIA (CAF-
OE-HIF14), generated via lentiviral transduction (Supplemental
Figure 10), exhibited a significant increase in CLEC11A expres-
sion at both the protein level (Western blot, Figure 4R) and
mRNA level (RT-qPCR, Figure 4S). In contrast, knockdown of
HIF1A4 (CAF-si-HIF1A) led to a reduction in CLEC11A expres-
sion (Figure 4, R and S). These findings indicate that HIF'1A plays
a crucial role in driving the transition from NCAFs to HCAFs
and transcriptionally upregulating CLECI1A4.

CLECI11A promotes lymphangiogenesis and lymphatic metastasis in
vivo. To investigate the role of CLEC11A in CRC lymphatic metas-
tasis, we established the popliteal lymph node metastasis model
in immunodeficient nude mice. In this model, CAFs with stable
overexpression (CAF-OE-CLEC11A) or knockdown (CAF-sh-CLE-
Cl114) of CLEC11A4 were coinjected with SW480 or HCT116 cells
into the footpad (Figure 5, A and B). In vivo fluorescence imaging
results showed that the lymph node fluorescence intensity in the
CAF-OE-CLEC114 and HCT116 cell coinjection group was higher
than that in the tumor cell-only injection group and the CAF-vec-
tor coinjection group. Meanwhile, the fluorescence intensity in
the CAF-sh-CLECI1A coinjection group was lower than that in
the CAF-sh-NC coinjection group (Figure 5, C and D). In both
the SW480 and HCT116 models, overexpression of CLEC11A in
CAFs significantly increased the lymph node volume and metasta-
sis rate compared with other groups. Conversely, the CAF-sh-CLE-
Cl1A4 group exhibited significantly smaller lymph node volumes
and a reduced metastasis rate compared with the CAF-sh-NC
group, further confirming the role of CLEC11A in promoting CRC
lymphatic metastasis (Figure 5, E-G). Additionally, IHC analysis
demonstrated that CLEC11A overexpression elevated lymph vessel
density in footpad tumors and enhanced cytokeratin 20 expression
in popliteal lymph nodes, indicating a higher level of metastatic
spread. In contrast, CLEC11A knockdown suppressed these effects
(Figure 5, H-J). These findings suggest that CLEC11A contributes
to CRC lymphatic metastasis in vivo.
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Figure 4. Hypoxia-activated HIF1A in CAFs transcriptionally enhanced the expression of CLEC11A. (A-C) VECTOR (A) and Monocle (B and C) analyses
of the transition from NCAFs to HCAFs. UMAP, uniform manifold approximation and projection. (D) Changes in gene expression (left) and pathway
activity correlation (right) along Monocle pseudotime. (E) Gene Ontology Biological Process enrichment analysis of pseudotime-associated genes.

(F) Gene set enrichment analysis revealed the association of pseudotime-associated genes related to hypoxia and EMT pathways. NES, normalized
enrichment score. (G) GeneSwitches analysis identifying key transcription factors involved in the transition from NCAFs to HCAFs. TFs, transcription
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and pseudotime correlation. () and K) Box plot showing differences in HIF1A regulatory specificity (J) and expression (K) between NCAFs and HCAFs.
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group). (R) WB analysis of CLEC11A and HIF1A protein levels in CAFs. (S) RT-gPCR analysis of CLECT1A mRNA levels in CAFs (n = 4 per group). All data
are presented as means + SEM. **P < 0.01, ***P < 0.001, ****P < 0.0001, by Spearman’s rank correlation test (D, I, and 0), Pearson’s correlation test
(N), hypergeometric test with Benjamini-Hochberg correction (E), permutation test with Benjamini-Hochberg correction (F), empirical Bayes moderat-
ed t test with Benjamini-Hochberg correction (H), Mann-Whitney U test (J, K, and P), and 1-way ANOVA with Tukey's post test (Q and S).
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Tumor cell-dependent CLEC11A4 promotes lymphatic vessel abnor-
malities and lymphangiogenesis in vitro. Although CLECI11A pro-
motes lymphangiogenesis and lymph node metastasis in vivo,
its direct impact on human lymphatic endothelial cells (HLECs)
under in vitro conditions remains unclear. In vitro experiments
demonstrated that neither treatment of CAFs with recombinant
human CLEC11A (thCLEC11A) protein nor modulation of CLE-
C114 expression (overexpression/knockdown) in CAFs affected
the tube formation or migration capabilities of HLECs (Figure 6,
A and B). These findings suggest that, while CLEC11A contrib-
utes to lymphangiogenesis and lymph node metastasis in CRC in
vivo, its direct effect on HLECs is limited under in vitro condi-
tions. To further investigate whether the role of CLEC11A in pro-
moting lymphangiogenesis and lymph node metastasis in vivo is
tumor cell dependent, we used the conditioned medium of thCLE-
Cl1A-treated SW480 cell line to culture HLECs. Phalloidin stain-
ing revealed that HLECs in the thCLEC11A-treated group transi-
tioned from a typical cobblestone morphology to a spindle shape
(Figure 6C), suggesting potential alterations in their functional
state. Western blot (WB) analysis further revealed that thCLE-
C11A treatment reduced VE-cadherin expression in HLECs, indi-
cating weakened intercellular adhesion and enhanced migratory
capacity (Figure 6D). Functional assays showed that hCLEC11A
treatment markedly increased HLEC lymphangiogenic and migra-
tory abilities while disrupting lymphatic vessel integrity (Figure
6, E and F). These findings suggest that CLEC11A may medi-
ate HLEC dysfunction through tumor cells, promoting aberrant
lymphangiogenesis and tumor lymphatic metastasis.

CLECI11A targets tumor cells to promote EMT and VEGFC pro-
duction, leading to lymphangiogenesis and lymphatic metastasis. To fur-
ther investigate how CLEC11A promotes lymphangiogenesis and
lymphatic metastasis through its effects on tumor cells, we first
analyzed the correlation between CLECIIA and cancer hallmark
pathways (55). Both single-cell and bulk analyses revealed a sig-
nificant positive correlation between CLECI1A expression and the
EMT pathway, as well as with EMT-related genes (Figure 7, A
and B). Immunofluorescence results showed that treatment with
rhCLEC11A enhanced the expression of EMT-related genes in the
SW480 and HCT116 cell lines (Figure 7C), which was further sup-
ported by WB analysis (Figure 7D).

Previous studies have demonstrated that VEGF family mem-
bers, particularly VEGFC and VEGFD, are crucial in promoting
lymphangiogenesis and lymphatic metastasis in various cancers
(56). By analyzing the TCGA-CRC dataset, we identified a signif-
icant correlation between CLECI1A expression and that of VEG-
FC (R = 0.66, P < 2.2e-16; Figure 7E) and VEGFD (R = 0.29,
P = le-13; Figure 7E). Subsequently, RT-qPCR and WB analyses
revealed that thCLEC11A treatment upregulated VEGFC expres-
sion in tumor cells, with no significant effect on VEGFD expres-
sion (Figure 7, F and G). Further ELISA analysis confirmed a sig-
nificant increase in VEGFC expression at the protein level (Figure
7H and Supplemental Figure 11).

Next, we investigated whether CLEC11A-induced lymphangio-
genesis and lymphatic metastasis depend on VEGFC. In vitro exper-
iments demonstrated that silencing VEGFC or using the VEGFR3
inhibitor (SAR131675) to block the VEGFC/VEGFR3 signaling
pathway reduced CLECI11A-induced lymphatic vessel migration
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and formation (Figure 7I and Supplemental Figure 12, A-E). In the
popliteal lymph node metastasis animal model, blocking VEGFC/
VEGFR3 signaling inhibited the effects of CLEC11A, resulting in
smaller lymph nodes and reduced lymphatic metastasis (Figure 7, J
and K, and Supplemental Figure 12, F and G). IHC analysis further
showed that in the CLEC11A-overexpressing group, VEGFC and
EMT-related gene expression levels were elevated. However, after
blocking the VEGFC/VEGFR3 signaling pathway, their expression
levels decreased (Figure 7L). In conclusion, these in vitro and in
vivo findings indicate that CLEC11A promotes lymphangiogenesis
and lymphatic metastasis by enhancing the EMT process in tumor
cells and upregulating VEGFC expression.

CLEC11A binds to the LGRS receptor on tumor cells to promote lymph-
angiogenesis and lymphatic metastasis. To investigate how CLEC11A
secreted by HCAFs acts on tumor cells, we utilized the TimeCCI
tool based on our previous study (57) to examine the temporal cor-
relation of potential ligand—receptor interactions in cell-cell com-
munications (Figure 8A). The analysis revealed that the CLEC11A—-
LGRS interaction exhibited the highest Spearman’s correlation
coefficient within the CLEC11A signaling (Figure 8B), suggesting
a strong and specific interaction exclusively between HCAFs and
tumor cells (Figure 8C). Spatial transcriptomic (ST) data further
validated the extensive CLEC11A-LGRS5 interactions within the
TME (Figure 8D and Supplemental Figure 13A).

To evaluate the stability and binding affinity of the CLE-
C11A-LGRS5 interaction, we conducted molecular dynamics
simulations. These simulations indicated that CLEC11A and
LGRS interact through hydrogen bonds, contributing to the sta-
bility of the complex (Figure 8E). Root mean square deviation
analysis indicated that the complex reached a stable state early in
the simulation, and additional analyses of the radius of gyration
and buried surface area confirmed a compact and stable inter-
action interface (Supplemental Figure 13B). These results sug-
gest that the CLEC11A-LGRS5 complex exhibited strong binding
affinity and structural integrity. Using mIHC, we observed the
spatial proximity between LGR5" tumor cells and CLEC11A*
CAFs (Figure 8F). Furthermore, co-IP assays detected the spe-
cific interaction between CLEC11A and LGR5 (Figure 8QG).
Together, these results indicate that CLEC11A binds to LGRS on
tumor cells, providing insights into its role in promoting lymph-
angiogenesis and lymphatic metastasis.

CLECI11A activates the WNT/B-catenin pathway via LGRS on tumor
cells to promote EMT and VEGFC secretion. To investigate the mecha-
nism underlying the interaction between CLEC11A and LGRS in
promoting EMT and VEGFC expression in tumor cells, we per-
formed transcriptomic sequencing on SW480 CRC cells treated with
PBS or thCLEC11A. The results revealed that ECM- and WNT
pathway-related genes were upregulated in thCLEC11A-treated
cells (Figure 9A). Enrichment analysis revealed that the WNT sig-
naling pathway was enriched in thCLEC11A-treated cells (Figure
9B). Meanwhile, gene set variation analysis using the TCGA-CRC
dataset showed a positive correlation between CLECI1A expression
and WNT pathway activity, along with upregulation of WNT-relat-
ed genes (Figure 9, C and D).

In vitro experiments demonstrated that inhibition of LGR5
or treatment with the WNT/B-catenin inhibitor (KYA1797K)
suppressed the migratory and tube formation abilities of HLECs
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Figure 5. CLEC11A promotes lymphangiogenesis and metastasis in vivo. (A) Schematic diagram of popliteal lymph node metastasis model establishment
in nude mice. (B) Representative images of popliteal lymph node metastasis in a nude mouse model. (C and D) Representative bioluminescence images
(€) and bioluminescence quantification (D) of popliteal lymph node metastasis in the mouse model (n = 5 per group). (E and F) Representative images of
the mouse popliteal lymph node metastasis model generated using specific CAFs and SW480 (E) or HCT116 (F) cell treatment. Histograms quantifying
lymph node volumes (mm?) in nude mice (n = 5 per group). (G) Lymph node metastasis rates in nude mice inoculated with specific CAFs and SW480 (left)
or HCT116 (right) cells (n = 15 per group). (H and I) Representative images (H) of anti-LYVE1 staining in plantar tumor tissues. and histogram (I) showing
the ratio of LYVE1-positive lymphatic vessels (n = 3 per group). (J) IHC with anti-cytokeratin 20 (CK20) antibody and H&E staining was performed on the
CLECT1A overexpression group and CLECT1A knockdown group, showing representative images of the popliteal lymph nodes. Scale bars: 100 um (H), 50 um
(), right), 500 um (), left and middle). All data are presented as means + SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, by 1-way ANOVA with

Tukey's post test (D-F and 1) and y? test (G).

(Figure 9E and Supplemental Figure 14, A-F). WB analysis fur-
ther demonstrated that LGRS inhibition or KYA1797K treatment
reversed the rhCLEC11A-induced upregulation of B-catenin, VEG-
FC, N-cadherin, ZEB1, and Vimentin expression in tumor cells,
while restoring E-cadherin expression levels (Figure 9F). In the
lymph node metastasis model, both the LGRS knockdown group
and the KYA1797K treatment group exhibited reduced lymph
node volume and lower incidence of lymphatic metastasis (Figure
9, G and H). IHC analysis further showed that the LGRS knock-
down group and KYA1797K treatment group exhibited reduced
expression of B-catenin, VEGFC, N-cadherin, ZEB1, and Vimen-
tin, along with increased E-cadherin expression, compared with the
control and CLEC11A overexpression groups (Figure 9I).

Overall, these findings suggested that CLEC11A promotes lym-
phatic metastasis in CRC by activating the WNT/B-catenin path-
way via LGRS, thereby enhancing EMT and VEGFC secretion.

Discussion

In this study, we developed a CHPC based on an LLM to identi-
fy HCAFs in CRC and explore their role in lymphatic metastasis.
By leveraging this approach, we found that HCAFs promote CRC
lymphatic metastasis through the secretion of CLEC11A, which
interacts with the LGRS receptor on tumor cells to activate the
WNT/B-catenin pathway. These findings illustrate the intricate
interplay between the TME, cellular states, and metastasis, provid-
ing potential insights into CRC progression and therapeutic targets.

Although traditional machine-learning methods such as Sup-
port Vector Machines and Random Forests have been applied in
scRNA-Seq data analysis, particularly for immune and neural
cell type classification (58, 59), challenges including data sparsity,
high noise, zero inflation, and gene dropout often result in unsta-
ble model performance and limited applicability (32). In contrast,
LLMs leveraging pretraining and transfer learning can compensate
for data scarcity through prior knowledge integration and extract
meaningful signals from noisy data (60). The CHPC model pro-
posed in this study can accurately identify cellular hypoxic states
without requiring extensive labeled data, demonstrating strong
robustness across multiple platforms and multiscale datasets,
thereby providing a more efficient and stable solution for hypoxia
state identification.

Recent research indicated that hypoxia promotes tumor lym-
phatic metastasis by altering various cellular states (27-29), yet the
specific role of CAFs in this process remains largely unexplored.
This study demonstrates that HCAFs can enhance CRC lymphat-
ic metastasis by secreting CLEC11A. While hypoxia-driven con-
version of CAFs to inflammatory phenotypes has been a major
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focus in cancer research, which involves immune-inflammatory
factor secretion to modulate the inflammatory TME (30, 31, 61,
62), our findings describe the role of CAFs in promoting lym-
phatic dissemination. By identifying CLEC11A as a key secret-
ed factor that interacts with LGR5 on tumor cells, we describe a
mechanism through which CAFs influence tumor cell behavior
and metastatic potential.

CLECI11A, a secreted protein originally recognized for its
role in hematopoietic progenitor cell growth and bone remodeling
(63, 64), has recently gained attention in cancer research due to its
prognostic value in lung and gastric cancers (65, 66). However, its
role in CRC has not been well characterized. This study identified
a strong association between CLEC11A secreted by HCAFs and
poor prognosis in patients with CRC. Given its secretion properties,
CLECI11A may serve as a viable marker for liquid biopsy, facili-
tating early diagnosis and risk stratification in CRC. Moreover, its
marked correlation with N stage suggests potential utility in pre-
dicting lymph node metastasis and informing personalized thera-
peutic strategies.

The WNT/B-catenin pathway plays an important role in CRC
initiation and progression, where its aberrant activation drives tumor
cell proliferation, invasion, metastasis, and angiogenesis (67). Cur-
rently, several pathway inhibitors (including LGK974, PRI-724, and
Foxy-5) have entered early-phase clinical trials, though therapeutic
development remains in its infancy (68). Our study demonstrates
that targeting the LGRS receptor on CRC cells effectively inhibits
CLECI11A-mediated WNT/f-catenin activation and lymphatic
metastasis, thereby expanding potential intervention strategies for
this pathway. Furthermore, combining this targeting strategy with
existing therapies may suppress chemotherapy-induced compensa-
tory activation of the WNT pathway (69), thereby enhancing con-
ventional treatment efficacy and providing both theoretical founda-
tions and practical approaches for comprehensive CRC therapy.

Another important aspect of our findings is the role of the
hypoxia-induced transcription factor HIF14 in regulating the con-
version of NCAFs to HCAFs. As a regulator of the cellular response
to low oxygen levels, HIF'/4 has been shown to control gene expres-
sions involved in angiogenesis, metabolism, and cell survival (51).
Our study further reveals that HIF1A4 not only regulates the expres-
sion of CLEC11A but also drives the differentiation of NCAFs into
HCAFs, contributing to CRC progression. These findings provide
information about the molecular mechanisms governing CAF acti-
vation in the hypoxic TME and suggest that targeting HIF'14 could
be an effective strategy for preventing CAF-mediated metastasis.

Despite the promising results, there are several limitations
to our study that warrant consideration. First, although CHPC

+



] -

RESEARCH ARTICLE

Migration

CAF-Vector

ENYA

Tube formation

A _ Relative cell counts

Relative tube length D

o
Zn il y >
, (2]
o I

B-actin

The Journal of Clinical Investigation

C ciectia Blank NC/CM rhCLEC11A/CM

8
%

Phalloidin/DAPI

Phalloidin/DAPI

50pm
5 ..

- Blank NC/CM rhCLEC11A/CM
£
el
o | B | — —— 120kDa
|
>
5
£
Q.
c Blank NC/CM rhCLEC11A/CM
2 ;
©| 8 - 120kDa
o A w
[
o >
I
T e Sm— | 43kD2

0.00 0.25 0.50 0.75 1.00 1.25

HCT116+HLECs F Il Control [l rhCLEC11A

Control

W

Migration

Tube formation

Transendothelial
migration

rhCLEC11A

2.5 _xx _kk
20
1.5
1.0 °
0.5
0.0

Relative cell counts

** o *%k

20
1.5
1.0
0.5
0.0

6 * * o

100pm

Relative migration ratio Relative tube length

Figure 6. CLEC11A promotes lymphatic vessel abnormalities and lymphangiogenesis in vitro in a tumor cell-dependent manner. (A and B) Represen-
tative images (left) and quantification (right) of HLEC migration (A) and tube formation assays (B) (n = 3 per group). (C) Experimental grouping under
different conditions and representative phalloidin/DAPI staining images of HLECs. (D) WB analysis of VE-cadherin in HLECs cultured in conditioned medi-
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ANOVA (A and B) and Student’s t test (F).

demonstrates high accuracy in hypoxic cell recognition, its reli-
ance on large-scale pretrained data may limit its generalizabili-
ty in specific biological contexts. Furthermore, LLMs consume
substantial computational resources when processing high-di-
mensional single-cell data, which may limit their applicability in
certain settings. Mechanistically, we identified HIF1A as a driver
of NCAF-to-HCAF transition, but the involvement of other tran-

scription factors cannot be excluded. Furthermore, our analysis
was focused on CRC, and further research is needed to validate
the role of CLEC11A and HCAFs in lymphatic metastasis across
other cancer types. Given the heterogeneity of the TME in differ-
ent cancers, it will be important to explore whether similar mech-
anisms are at play in other cancers, such as breast, lung, or gastric
cancers. Moreover, the broader biological functions of CLEC11A
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Figure 7. CLEC11A promotes EMT and VEGFC production in tumor cells, leading to lymphangiogenesis and lymphatic metastasis. (A) CLECT1A showing

a strong association with EMT pathway activity in both single-cell and bulk datasets. (B) CLECT1A expression showing the significant correlation with
EMT-related genes (P < 0.05) in the TCGA-CRC dataset. (C and D) Immunofluorescence (C) and WB (D) analysis of EMT-related genes in CRC cell lines
treated with rhCLEC11A. (E) Correlation plot showing positive associations between CLECT1A and VEGFC/VEGFD gene expression in the TCGA-CRC dataset.
(F) RT-gPCR analysis of VEGFC and VEGFD expression in SW480 and HCT116 cells treated with rhCLEC11A (n = 4 per group). (G) WB analysis of VEGFC
expression in SW480 and HCT116 cells treated with rhCLEC11A. (H) ELISA guantification of VEGFC levels in HCT116 cells treated with rhCLEC11A (n = 4 per
group). (I) Representative images of HLEC migration (top) and tube formation (bottom) assays cultured in conditioned media under specific treatments. (J)
Representative images of popliteal lymph nodes from the mouse metastasis model established using HCT116 cells coinjected with CAFs subjected to spe-
cific treatments. Histograms quantify lymph node volumes (mm?) in nude mice (n = 6 per group). (K) Ratio of metastasis to total dissected lymph nodes in
mice inoculated with specific CAFs and HCT116 cells (n =15 per group). (L) IHC staining of E-cadherin, N-cadherin, Vimentin, ZEB1, and VEGFC. Scale bars:
20 pum (C), 100 um (1), 200 pum (L). All data are presented as means + SEM. *P < 0.05, ***P < 0.001, ****P < 0.0001, by Spearman’s rank correlation test (A,
B, and E), Welch's t test (F and H), 1-way ANOVA with Tukey's post test (J), and y? test (K).

within the TME, such as its potential effects on immune cell infil-
tration, endothelial function, and ECM remodeling, require fur-
ther investigation. The possibility that other signaling pathways
may collaborate with the WNT/B-catenin pathway to mediate the
metastasis-promoting function of CLEC11A cannot be excluded
and warrants further investigation. Finally, while our study estab-
lishes CLEC11A as a mediator of lymphatic metastasis, the clin-
ical application of targeting this pathway needs to be explored
further. In particular, the development of specific inhibitors or
monoclonal antibodies that can block CLEC11A-LGRS5 inter-
actions or inhibit the WNT/B-catenin signaling pathway could
provide a promising strategy for treating CRC patients with high
metastatic potential. Further preclinical and clinical studies will
be necessary to evaluate the efficacy and safety of such therapeu-
tic interventions.

In conclusion, our study provides evidence for the role of
HCAFs in promoting CRC lymphatic metastasis via the CLE-
C11A-LGRS5 interaction and the activation of the WNT/B-catenin
pathway. The identification of HIFIA as a key regulator of HCAF
differentiation in the hypoxic TME adds another layer of com-
plexity to our understanding of CAF biology. Targeting the CLE-
C11A-LGRS axis and HIFIA offers promising strategies for inhibit-
ing CRC metastasis. These findings warrant future research aimed
at translating these insights into clinical applications, potentially
improving the prognosis and treatment outcomes for CRC patients.

Methods

Sex as a biological variable. Sex was not considered as a biological vari-
able in this study. Patient samples and mice of both sexes were used.

Mouse popliteal lymphatic metastasis model. Ethical approval for all
procedures in this study was granted by Zhengzhou University’s Ani-
mal Care and Use Committee. Both male and female BALB/c nude
mice, aged 4-6 weeks, were obtained from Vital River Laboratory Ani-
mal Technology. Lentivirally transduced CRC cells (5 X 10° per mouse)
were mixed with lentivirally transduced CAF cells (5 x 10° per mouse)
and injected into the footpads of the mice. After 8 weeks, the research
team euthanized the mice and excised the footpad tumors and poplite-
al lymph nodes. Lymph node volumes were measured, and the tissues
were subsequently fixed in formalin and paraffin embedded.

Cell culture and treatments. The human CRC cell lines SW480 and
HCT116 (Pricella) were cultured in DMEM supplemented with 10% FBS
(Biochannel) and 1% penicillin-streptomycin (Servicebio). CAF-vector,
CAF-OE-CLEC11A4, CAF-sh-CLECI14, and CAF-sh-NC cells were cul-
tured under the same conditions. HLECs (Fuhengbio) were cultured in
HLEC-specific medium (Fuhengbio). All cells were incubated at 37°C

with 5% CO, for 24 hours. After the initial culture, the medium for CRC
cells was replaced with complete medium containing 200 ng/mL rhCLE-
C11A. Subsequent experiments followed the study protocol.

Lentiviral construction and stable cell line generation. The human sh-CLE-
CI114 sequence was introduced into the lentiviral vector pLKO.1-EG-
FP-Puro, and lentiviral particles were generated. For control purposes,
the empty vector (sh-NC) was used. Cells were transduced with these
lentiviral particles and subjected to puromycin selection for 14 days to
establish stable CLEC11A knockdown cell lines (CAF-sh-CLECI1A).
These stable knockdown cell lines were cultured up to passage 20 for
experimental use. The same methodology was applied to generate con-
trol cell lines (sh-NC). Additionally, the full-length human CLECIIA
gene was subcloned into the lentiviral vector pLent-EFIa-FH-CMV-RFP-
Puro and packaged into pLent-CLECI14 lentiviral particles. An empty
vector (pLent-empty) was used as a control. Cells were infected with
either pLent-CLECI1A or pLent-empty lentiviral particles, followed by
puromycin selection for 14 days, leading to the creation of stable CLE-
C11A-overexpressing CAF cell lines (CAF-OE-CLECI114). These stable
CAF-CLECI1A cell lines were used for experimental purposes alongside
the control (CAF-NC) cells, with all cells maintained up to passage 20.

Primary human CAF isolation. Fresh CRC tissues were obtained from
patients at The First Affiliated Hospital of Zhengzhou University, with eth-
ical approval granted by the Zhengzhou University Ethics Committee. The
tissues were washed multiple times with 5X PBS containing trypsin until
the PBS was clear, with fat and necrotic material removed. The tissues were
then minced into 1 mm? sections and treated with 1 mg/mL type IV col-
lagenase (Thermo Fisher Scientific) at 37°C for 2 hours. After centrifuga-
tion and filtration through a 200-mesh filter to remove the supernatant, the
tissue fragments were resuspended in DMEM (high glucose) containing
10% FBS and seeded into 6 cm culture dishes. After 72 hours, the culture
medium was changed to discard nonadherent cells.

Generation of HCAFs. Normal CAFs were cultured under normoxic
conditions (21% O,, 5% CO,, 37°C) until 70%-80% confluence. For
hypoxic induction, CAFs were incubated in a CO, tri-gas incubator
(Thermo Fisher Scientific) set to 1% O,, 5% CO,, and balanced N, for
48 hours to generate HCAFs. NCAFs (21% O,) served as controls. The
hypoxic response was verified using reverse transcription gPCR to ana-
lyze HIF-1o and VEGF expression.

Collection and analysis of scRNA-Seq data. In this study, we collect-
ed and analyzed 4 scRNA-Seq datasets (GSE132465, GSE144735,
GSE166555, and GSE200997) from the Gene Expression Omnibus
database. These datasets comprised 177,202 cells obtained from sam-
ples of 57 CRC patients. The R package Seurat was used for scRNA-
Seq data preprocessing (70), and DoubletFinder was employed to
identify and remove potential doublets (71). Cells with fewer than 500
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Figure 8. CLEC11A promotes lymphangiogenesis and lymphatic metastasis through its interaction with LGR5 on tumor cells. (A) Identification of
ligand-receptor pairs and a schematic of the TimeCCl pipeline, illustrating the calculation of Spearman'’s correlation coefficients (SCC) for covarying
ligand-receptor pairs between HCAFs and tumor cells. (B) CLEC11A-LGRS5 is the top ligand-receptor pair, with the highest SCC among CLEC11A interactions.
(C) Normalized interaction probabilities between CLEC11A and its receptors across different cell types. (D) ST data showing CLEC11A-LGRS interactions. (E)
Molecular dynamics simulation of the CLEC11A-LGR5 complex, with structural visualization of key interacting residues. (F) mIHC revealing spatial colocal-
ization between CLECT1A and LGRS5. Scale bar: 50 um. (G) Co-IP confirmed the physical interaction between CLEC11A and LGRS in SW480 cells.

detected genes, over 20% mitochondrial content, and high dropout
genes were removed to prevent analysis interference. The SCTrans-
form method was employed to normalize and scale the scRNA-Seq
data. A principal component analysis matrix with 30 components was
performed to achieve dimensionality reduction. The Harmony algo-
rithm was applied for batch correction prior to clustering analysis to
remove batch effects (72). Using the Seurat functions FindNeighbors
and FindClusters, we identified distinct cell clusters. These clusters
were subsequently visualized through the t-distributed stochastic neigh-
bor embedding technique. Markers previously identified in published
literature were utilized to distinguish each cluster during the initial
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phase of annotations: T cells (CD2, CD3D, CD3E, TRBCI, CD8A, and
CD&8B), NK cells (PRF1, KLRF1, KLRDI, FGFBP2, and NKG?7), B cells
(CD19, CD79A4, CD79B, and MS4A1), plasma cells (TNFRSF17, MZBI,
IGHGI, and IGHAI), myeloid cells (CD14, CD68, CD163, LYZ, S100438,
and FCGR3A), mast cells (TPSAB1, TPSB2, and MS4A2), fibroblasts
(COL1A1, COLIA2, COL3A1, DCN, MYHI1, and ACTA2), epithelial
cells (EPCAM, CD24, KRT18, KRTS, and CEACAMS), and endothelial
cells (VWF, PECAMI1, CDHS5, ENG, CLDNS5, and ACKRI). Large-scale
chromosomal copy-number variations were inferred from single-cell
transcriptome profiles using the InferCNV R package to distinguish
malignant from nonmalignant epithelial cells (39).
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Figure 9. CLEC11A promotes EMT and VEGFC secretion of tumor cells through the interaction with LGRS to activate the WNT/B-catenin pathway. (A)
Volcano plot displaying differentially expressed genes (DEGs) between SW480 CRC cells treated with either PBS or rhCLEC11A. (B) Gene Ontology enrichment
analysis of DEGs highlighting significant enrichment in the WNT signaling pathway. (C) Correlation analysis showing a positive association between CLECTIA
expression and WNT pathway scores in the TCGA-CRC cohort. (D) Bar plots depicting correlations between CLECTIA expression and WNT-related genes in

the TCGA-CRC cohort. (E) Representative images of HLEC migration (top) and tube formation (bottom) after culture with HCT116 cell line-conditioned media
under different treatments. (F) WB analysis of LGR5, B-catenin, VEGFC, ZEB1, N-cadherin, E-cadherin, and Vimentin protein expression in HCT116 or SW480
cells treated with rhCLECT1A, sh-LGRS5, or KYA1797K. (G) Representative images (top) and quantification (bottom left) (n = 6 per group) of popliteal metastatic
lymph node volume in mice models generated using HCT116 cells and CAFs subjected to specific treatments. Metastasis rates and the ratio of metastatic to
total dissected lymph nodes are shown (bottom right) (n =15 per group). (H) Representative images (top) and quantification (bottom left) (n = 6 per group) of
popliteal metastatic lymph node volume in mice models generated using SW480 cells and CAFs subjected to specific treatments. Metastasis rates and the
ratio of metastatic to total dissected lymph nodes are shown (bottom right) (n = 15 per group). (1) IHC staining for protein expression of E-cadherin, N-cadher-
in, Vimentin, ZEB1, VEGFC, and B-catenin. Scale bars: 100 um (E), 20 pm (1). All data are presented as means + SEM. ***P < 0.001, ****P < 0.0001, by empiri-
cal Bayes moderated t test with Benjamini-Hochberg correction (A), hypergeometric test with Benjamini-Hochberg correction (B), Spearman'’s rank correlation
test (C and D), 1-way ANOVA with Tukey's post test (G and H, bottom left), and 2 test (G and H, bottom right).

CHPC based on the LLM. To identify hypoxic cells from single-cell
data, we designed a workflow as follows.

Selection of hypoxia-related pathways: We screened hypoxia-asso-
ciated pathways from the Molecular Signatures Database based on the
following criteria: (a) pathways supported by human data and upregu-
lated under hypoxic conditions and (b) exclusion of pathways involving
knockout experiments or chemical synthesis. After removing redundant
gene sets, 7 hypoxia-related gene sets were retained (34).

High-confidence hypoxic and normoxic cell classification: Using
single-sample gene set enrichment analysis, we calculated activity
scores for each cell across the 7 hypoxia-related gene sets. A GMM
was applied to classify cells into high- and low-scoring groups for each
gene set. Cells consistently assigned to high-scoring groups across all 7
gene sets were classified as high-confidence hypoxic cells, while those
consistently assigned to low-scoring groups were classified as high-con-
fidence normoxic cells. The remaining cells were categorized as low
confidence.

Classification of hypoxic states in low-confidence cells: To fur-
ther differentiate hypoxic states in low-confidence cells, we devel-
oped a machine-learning classifier embedded with the LLM based on
high-confidence cells. (a) Differential gene expression analysis: Wilcox-
on’s rank-sum test was used to identify differentially expressed genes
between high-confidence hypoxic and normoxic cells (P value < 0.05,
LogFC > 0.25), retaining protein-coding genes, which resulted in 573
hypoxia signature genes. (b) To address the issue of gene loss, we uti-
lized the LLM scGPT, specifically designed for single-cell transcriptom-
ic data, to construct the embedding matrix. This model is based on the
Transformer architecture, integrating a multihead attention mechanism
and a custom attention masking strategy. During the pretraining phase,
the model learns the regulatory relationships and coexpression patterns
between genes. After the input data are provided, the model, based on
the pretraining results, captures the associations between known genes
through the attention mechanism and transfers them to the missing
genes. Simultaneously, the attention masking strategy blocks irrele-
vant information, ultimately compressing the high-dimensional sparse
matrix into a dense, gene-agnostic embedding matrix, effectively com-
pensating for the missing data (35). (c) Classifier modeling and perfor-
mance evaluation: We utilized 10 machine-learning algorithms, includ-
ing Logistic Regression, eXtreme Gradient Boosting, Support Vector
Machine, Random Forest, Light Gradient Boosting Machine, Naive
Bayes, Decision Tree, Categorical Boosting, Multilayer Perceptron
neural network, and Gradient Boosting Machine. Subsequently, we
employed a 10%-100% stratified sampling strategy to partition train-
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ing and test sets in a high-confidence single-cell cohort and 4 hypoxic
cell line real-world independent validation cohorts. Accuracy, AUROC,
and F1 score were then evaluated across 10 machine-learning models.
Algorithms ranked in the top 3 across all metrics on average were inter-
sected to identify CatBoost as the optimal classifier.

Application of the optimal classifier: The best-performing Cat-
Boost model was used to classify hypoxic states in low-confidence cells.

Statistics. All data analysis, including processing, statistical evalu-
ation, and plotting, was conducted using R software (version 4.3.1).
Data normality and homogeneity of variance were assessed using
Shapiro-Wilk and Levene’s tests, respectively, guiding the selection of
either parametric tests (2-tailed paired ¢ test, 2-tailed Student’s ¢ test,
Welch’s ¢ test, 1-way ANOVA, 1-way ANOVA with Tukey’s post test)
or nonparametric alternatives (Wilcoxon’s signed-rank, Mann-Whitney
U, and Kruskal-Wallis tests). Categorical variables were analyzed using
¥’ tests, while correlation analyses employed Pearson’s or Spearman’s
methods as appropriate. Cox regression and Kaplan-Meier analysis
were performed using the survival R package. All statistical tests were 2
sided. P value <0.05 was regarded as statistically significant.

Study approval. All animal and human studies were approved
by Zhengzhou University Life Science Institutional Review Board
(ZZUIRB 2023-320). Animal procedures adhered to institutional
guidelines, using 4- to 6-week-old BALB/c nude mice (both sexes; Vital
River Laboratory Animal Technology). Human CRC tissues were col-
lected from The First Affiliated Hospital of Zhengzhou University with
patients’ informed consent.

Data availability. The scRNA-Seq and bulk RNA-Seq datasets
used in this study are publicly accessible through the GEO database
TCGA (https://
www.cancer.gov/ccg/research/genome-sequencing/tcga). The GEO
accession numbers are as follows: scRNA-Seq data GSE132465,
GSE144735, GSE166555, and GSE200997; bulk RNA-Seq data:
GSE35896, GSE92921, GSE143985, GSE75316, GSE18088,
GSE26682, GSE13067, GSE4554, GSE17537, GSE17536, GSE77953,
GSEA41258, GSE18105, GSE21510, GSE71187, GSE25071, and
GSE39582). Additionally, the ST datasets were retrieved from the
scCRLM atlas (http://www.cancerdiversity.asia/scCRLM/), 10X
Genomics (https://www.10xgenomics.com/), and the National Cen-

(https://www.ncbi.nlm.nih.gov/geo/) and the

ter for Biotechnology Information (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE225857). The transcriptomic data are
available at https://doi.org/10.7303/syn62787929. The source code
for the TimeCClI tool is available on GitHub at https://github.com/
Zaoqu-Liu/TimeCCI (commit ID: 183306c and commit URL: https://
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github.com/Zaoqu-Liu/TimeCCI/commit/183306c51{640581feae-
c26b21163d2e1{f05279). Values for all data points in graphs are report-
ed in the Supporting Data Values file.

Additional methods applied in this study are available in Supple-
mental Methods.
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