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Introduction
Colorectal cancer (CRC) is the third most prevalent malignancy 
and the second leading cause of  cancer-related deaths worldwide  
(1, 2). Metastatic dissemination, particularly via the lymphatic sys-
tem, is a major contributor to CRC mortality. Lymphatic metastasis 
plays a critical role in the progression of  CRC and serves as an 
independent prognostic factor, strongly associated with poorer sur-

vival outcomes (3–5). Additionally, it is a key indicator for assessing 
tumor invasiveness, guiding clinical staging and surgical planning, 
informing the administration of  postoperative adjuvant chemother-
apy, and predicting tumor recurrence (6–10). Despite its well-estab-
lished clinical importance, the molecular mechanisms underlying 
lymphatic metastasis in CRC remain poorly understood, highlight-
ing the need for further investigation.

Cancer-associated fibroblasts (CAFs) are a fundamental com-
ponent of  the tumor microenvironment (TME) and play critical 
roles in diverse biological processes, including tumor angiogenesis, 
cell proliferation, treatment resistance, and immune escape (11–
14). Recently, increasing attention has been paid to the involvement 
of  CAFs in tumor lymphatic metastasis (15). For example, specific 
CAF subpopulations—such as PDGFRα+ITGA11+ CAFs in blad-
der cancer, periostin+ CAFs in breast cancer, and FAP+ CAFs in 
esophageal squamous cell carcinoma—have been shown to mark-

Hypoxia in the tumor microenvironment promotes lymphatic metastasis, yet the role of cancer-associated fibroblasts 
(CAFs) in this process remains insufficiently elucidated in colorectal cancer (CRC). In this study, we developed a large 
language model–based cellular hypoxia–predicting classifier to identify hypoxic CAFs (HCAFs) at single-cell resolution. 
Our findings revealed that HCAFs enhance CRC lymphatic metastasis by secreting CLEC11A, a protein that binds to the 
LGR5 receptor on tumor cells, subsequently activating the WNT/β-catenin signaling pathway. This promotes epithelial-
mesenchymal transition and lymphangiogenesis, facilitating the spread of tumor cells via the lymphatic system. 
Furthermore, we demonstrate that the hypoxia-induced transcription factor HIF1A regulates the conversion of normoxic 
CAFs to HCAFs, driving CLEC11A expression and promoting metastasis. In vivo and vitro experiments confirmed the pro-
metastatic role of CLEC11A in CRC, with its inhibition reducing lymphatic metastasis. This effect was markedly reversed by 
targeting the LGR5 receptor on tumor cells or inhibiting the WNT/β-catenin pathway, further elucidating the underlying 
mechanisms of CLEC11A-driven metastasis. These findings underscore the potential of targeting the CLEC11A-LGR5 
axis to prevent lymphatic dissemination in CRC. Our study highlights the role of HCAFs in CRC progression and reveals 
mechanisms of lymphatic metastasis for intervention.
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Results
Cellular hypoxia–predicting classifier based on the LLM. Despite the 
progress in single-cell analysis, several key challenges remain in 
accurately identifying hypoxic cells. First, existing methods often 
fail to achieve robust and generalizable performance across different 
datasets. While some approaches may outperform raw count–based 
methods on specific classification models, they often lack the abili-
ty to consistently deliver superior results across all datasets, raising 
concerns about potential overfitting and insufficient generalization. 
Second, the demand for a large amount of  training data poses a hur-
dle. Although high information density could theoretically reduce 
the need for extensive training data, in practice, obtaining a sufficient 
volume of  labeled data from various datasets is often unfeasible. 
Finally, the issue of  gene mismatching due to differences in sequenc-
ing conditions and postsequencing processing further complicates 
the process. Traditional methods relying solely on raw counts are 
highly sensitive to gene missingness, rendering them ineffective when 
certain genes are absent. This lack of  flexibility in handling incom-
plete gene data limits the applicability and transferability of  trained 
models across diverse sequencing datasets (32, 33).

To better characterize cellular hypoxia in CRC, we integrated 
multiple machine-learning models to develop a cellular hypox-
ia–predicting classifier (CHPC) that leveraged an LLM-inspired 
framework (Figure 1A).

First, we analyzed 177,202 cells from 57 untreated CRC sam-
ples to characterize cellular hypoxia status. Cells were stratified 
into high-confidence hypoxic/normoxic populations and low-con-
fidence groups using a Gaussian Mixture Model (GMM) based on 
activity scores derived from canonical hypoxia pathway signatures 
(34). Finally, we obtained 4,331 positive and 43,603 negative sin-
gle-cell samples for further training.

Inspired by the capabilities of foundation models in single-cell 
representation, particularly their exceptional performance in cross-task 
transfer and few-shot learning, here we applied a pretrained single-cell 
model, scGPT (35), to generate cell embeddings. These LLM-de-
rived embeddings serve as reliable feature inputs for constructing 
machine-learning classifiers, particularly for low-confidence cells.

To evaluate the advantages of  our approach, we implemented a 
10%–100% equal-interval sampling strategy to partition training and 
validation sets from both high-confidence single-cell cohorts and 4 
independent real-world hypoxic cell line validation datasets (36–38). 
Through systematic comparisons of  10 machine-learning models, 
we found that classifiers based on the embedding matrix consistently 
outperformed traditional methods across all experimental conditions, 
achieving improvements in accuracy, area under the receiver operat-
ing characteristic curve (AUROC), and F1 score (Figure 1, B–E, and 
Supplemental Figure 1, A–E; supplemental material available online 
with this article; https://doi.org/10.1172/JCI194243DS1). Notably, 

edly enhance lymphatic metastasis (16–18). Similarly, in cervical 
cancer and cholangiocarcinoma, CAFs promote lymphatic metas-
tasis via the secretion of  PAI-1 and PDGF-BB, respectively (19, 
20). Nevertheless, the mechanisms by which CAFs contribute to 
lymphatic metastasis in CRC remain to be elucidated.

Recent advancements in single-cell technologies have offered 
important insights into the functional heterogeneity of  CAF sub-
types in tumor progression. For example, distinct CAF subtypes 
have been identified: matrix CAFs (mCAFs) drive extracellular 
matrix (ECM) remodeling, inflammatory CAFs (iCAFs) secrete 
pro-inflammatory factors, and antigen presenting CAFs (apCAFs) 
participate in antigen presentation (21, 22). While the use of  cellu-
lar markers for CAF identification has greatly advanced our under-
standing, it offers limited insight into the precise mechanisms by 
which CAFs contribute to lymphatic metastasis. Furthermore, 
the TME is inherently dynamic, with various environmental con-
ditions inducing cellular state transitions and remodeling gene 
expression profiles (23–25). A recent study in pancreatic cancer 
demonstrated that differential activation of  the MAPK pathway 
leads to substantial variations in the functional states and gene 
expression profiles of  CAFs, even among cells expressing identical 
markers (26). These findings highlight the limitations of  classical 
CAF classification based solely on static markers. A more nuanced 
classification may offer valuable biological insights by incorporat-
ing the influence of  dynamic TME conditions, such as hypoxia, a 
well-known modulator that promotes lymphangiogenesis and lym-
phatic metastasis in breast cancer, cervical cancer, and melanoma 
(27–29). However, in CRC, how hypoxic conditions affect CAF 
state transitions and their potential association with lymphatic 
metastasis remain incompletely understood.

In this study, we integrated bulk, single-cell, and spatial tran-
scriptomic data to systematically investigate the mechanisms by 
which hypoxic CAFs (HCAFs) drive lymphatic metastasis in CRC. 
We developed a predictive model based on a large language mod-
el (LLM) to accurately identify HCAFs at single-cell resolution, 
addressing the limitations of  previous studies that primarily relied 
on control experiments and lacked reliable hypoxia ground-truth 
labels (30, 31). Our analyses revealed that HCAFs are spatially 
adjacent to tumor cells and engage in robust interactions, with their 
abundance strongly correlating with lymphatic metastasis. Fur-
thermore, comprehensive bioinformatics analyses, in combination 
with in vivo and in vitro experiments, demonstrated that CLEC11A 
secreted by HCAFs binds to the LGR5 receptor on tumor cells, 
subsequently activating the WNT/β-catenin signaling pathway to 
promote lymphatic dissemination. Overall, these findings demon-
strate the central role of  HCAFs in CRC lymphatic metastasis and 
suggest that targeting the CLEC11A-LGR5 axis may represent a 
promising therapeutic strategy.

Figure 1. Construction and validation of the CHPC based on the LLM. (A) Overview of the CHPC based on the LLM. DEGs, differentially expressed genes; 
ssGSEA, single-sample gene set enrichment analysis. (B–E) Differences in accuracy (B) and AUROC (D) between the 2 matrices across varying test set 
sizes, as well as accuracy (C) and AUROC (E) across different machine-learning models. (F and G) Differences in accuracy (F) and AUROC (G) between the 2 
matrices across various machine-learning models and datasets when using 10% of the training data. XGBoost, eXtreme Gradient Boosting; SVM, Support 
Vector Machine; RF, Random Forest; NB, Naive Bayes; MLP, Multilayer Perceptron; LR, Logistic Regression; LightGBM, Light Gradient Boosting Machine; 
GBM, Gradient Boosting Machine; DT, Decision Tree; CatBoost, Categorical Boosting. All data are presented as means ± SEM. *P < 0.05, **P < 0.01, ****P 
< 0.0001; by distribution type, normally distributed data were analyzed using paired t test, whereas non-normally distributed data were examined by 
Wilcoxon’s signed-rank test (B–E).
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Further analysis revealed that HCAFs exhibited biological 
functions in lipid metabolism, immune response, and angiogenesis, 
while normoxic CAFs (NCAFs) primarily retained typical fibroblast 
functions such as collagen contraction (Figure 2J). Cell–cell inter-
action analyses highlighted increased activity in multiple signaling 
pathways in HCAFs, including the IL6 pathway (inflammation 
and immunity), the VEGF pathway (angiogenesis), and pathways 
involved in cellular proliferation and differentiation (GDF, WNT, 
TGF-β, and NOTCH), compared with NCAFs (Figure 2K). At 
the ligand-receptor level, HCAFs showed heightened expression 
of  ligands and receptors involved in WNT and TGF-β pathways 
with tumor cells, VEGF signaling with endothelial cells, and IL6 
signaling with immune cells (Figure 2L). These findings are consis-
tent with previous studies on the roles of  HCAFs in angiogenesis, 
immune responses, ECM modulation, and metabolic reprogram-
ming, further supporting the accuracy of  the classifier in identifying 
hypoxic cells (42–45). Bulk transcriptomic analysis revealed the role 
of  HCAFs in promoting CRC lymphatic metastasis (Supplemental 
Figure 3F). Then, mIHC and spatial transcriptomic analysis revealed 
that HCAFs were spatially adjacent not only to tumor cells but also 
in close proximity to lymphatic endothelial cells (Figure 2M and 
Supplemental Figure 6). In tissues with lymphatic metastasis, the 
abundance of  HIF-1α+α-SMA+ cells was also significantly elevated 
(Figure 2N). The analysis also showed a positive correlation between 
HIF-1α+α-SMA+ cells and the extent of  lymphatic vessel formation 
(Figure 2O; R = 0.46, P = 0.0079), indicating the involvement of  
HCAFs in lymphangiogenesis.

HCAF-secreted CLEC11A is linked to unfavorable prognosis and 
lymphatic metastasis. To elucidate how HCAFs promote CRC pro-
gression, we first compared the differential expression profiles 
between NCAFs and HCAFs. This analysis revealed that HCAFs 
upregulated multiple ECM-related genes (Figure 3A). Consistently, 
differential analyses of  TCGA-CRC transcriptomic and CPTAC 
proteomic datasets confirmed that ECM-related genes were mark-
edly upregulated in tumor tissues (Figure 3B). Next, we applied the 
Mfuzz algorithm (46) to examine the transcriptional dynamics of  
CRC lymphatic metastasis, which identified 6 distinct gene clus-
ters. Notably, expression in cluster 5 increased with advancing node 
stage (Figure 3C). Functional enrichment analysis indicated that 
genes within cluster 5 are predominantly involved in ECM remod-
eling, WNT signaling, cell adhesion and migration, and epithelial 
proliferation (Figure 3C). By integrating upregulated genes from 
single-cell, TCGA, and CPTAC data with those in cluster 5, we 
identified 22 shared genes (Figure 3D). Cox regression analysis 
indicated that CLEC11A exhibited the highest hazard ratio among 

even with only 10% training data, the embedding matrix demon-
strated its high information density by improving mean accuracy by 
0.16 (Figure 1F), AUROC by 0.17, and F1-score by 0.20 (Figure 1G 
and Supplemental Figure 1F), showcasing its superior generalization 
capability in low-sample-size scenarios. As the training set increased, 
performance gains were minimal (Supplemental Figure 2, A and B), 
further highlighting the efficiency of  LLM-generated embeddings in 
capturing cellular features with limited data. Moreover, the LLM-in-
spired framework’s ability to tolerate gene missingness was evident, 
as the embeddings could effectively compensate for missing genes 
based on gene relationships, unlike raw count–based methods that 
fail when genes are absent. Ultimately, cross-validation based on the 
average rankings across all metrics identified the CatBoost model 
as the top performer among the evaluated classifiers (Supplemental 
Figure 1, G–J), and it was subsequently selected for hypoxia state 
classification of  low-confidence cells.

HCAFs exhibit stronger interactions with tumor cells, correlating with 
poor prognosis and increased lymphangiogenesis. Using classical cell 
markers, we identified 9 distinct cell types in single-cell RNA-Seq 
(scRNA-Seq) data (Figure 2A and Supplemental Figure 3A). The 
InferCNV algorithm (39) was applied to distinguish malignant epi-
thelial cells (Supplemental Figure 3, B and C). We then applied the 
classifier to identify cellular hypoxia states, revealing that the propor-
tion of  hypoxic cells was more prevalent in myeloid cells, fibroblasts, 
and mast cells. Additionally, hypoxic cells were enriched in tumor 
tissues compared with adjacent normal tissue (Figure 2, B and C). To 
explore cell–cell interactions, we utilized the CellphoneDB algorithm 
(40), which demonstrated that HCAFs exhibited the highest interac-
tion frequency with malignant epithelial cells (Figure 2D). Addition-
ally, through spatial transcriptomic data and multiplex immunohisto-
chemistry (mIHC) staining using various hypoxic markers (HIF-1α, 
CA9, and GLUT1), we further confirmed that HCAFs are predomi-
nantly enriched in the hypoxic regions of  tumor tissues (Supplemen-
tal Figure 4, A–C, and Supplemental Figure 5, A–C). Furthermore, 
the spatial transcriptomics results revealed that HCAFs are in close 
spatial proximity to malignant epithelial cells (Figure 2E, Supple-
mental Figure 3D, and Supplemental Figure 6, A–C), suggesting 
that HCAFs may play a pivotal role in tumor progression. Next, we 
reclustered CAFs into 4 subgroups: mCAFs, iCAFs, apCAFs, and 
proliferative CAFs (pCAFs) (Figure 2, F and G) (21, 22, 41). Inter-
estingly, there were no differences in the distribution of  these classi-
cal CAF subpopulations between hypoxic and normoxic conditions 
(Figure 2, H and I, and Supplemental Figure 3E), indicating that 
traditional CAF markers may have limited sensitivity for capturing 
hypoxia-induced alterations.

Figure 2. HCAFs interact strongly with tumor cells and are linked to lymphangiogenesis. (A) Dimensionality reduction plot showing the distribution 
of 9 major cell types. (B) Dimensionality reduction plot showing the distribution of the hypoxia status. UMAP, uniform manifold approximation and 
projection. (C) Stacked bar charts depicting the distribution of hypoxic and normoxic cells across major cell types, epithelial cells, and different tissues. 
(D) Intercellular communication network between malignant epithelial (EpiT) and other cells. (E) Spatial transcriptomics revealing the spatial proximity 
between HCAFs and EpiT. (F) Dimensionality reduction plot depicting the distribution of 4 CAF subtypes, including mCAFs, iCAFs, apCAFs, and pCAFs. 
(G) Dot plot showing the expression of classical CAF-type markers across identified cell populations. (H) Dimensionality reduction plot showing the dis-
tribution of the hypoxia status in classical CAF types. (I) Stacked bar charts depicting the distribution of hypoxic and normoxic cells across 4 CAF types. 
(J) Functional enrichment analysis of HCAFs and NCAFs. (K) Bar plots displaying the relative information flow of differential signaling pathways between 
HCAFs and NCAFs. (L) Prediction of ligand–receptor interactions between HCAFs, NCAFs, and other cells. (M) mIHC revealing the spatial relationships 
among HIF-1α, α-SMA, LYVE1, and EPCAM. Scale bar: 50 μm. (N) Box plot illustrating the distribution of HCAF proportions across different N stages (n = 
20). (O) Correlation analysis showing a positive correlation between the number of HCAFs and lymphatic vessel density. All data are presented as means 
± SEM. **P < 0.01, by Mann-Whitney U test (N) and Spearman’s rank correlation test (O).
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these shared genes, suggesting a key role in CRC progression and 
lymphatic metastasis (Figure 3E).

Subsequent analyses across multiple transcriptomic datasets 
(Figure 3, F and G, and Supplemental Figure 7C) and a proteomic 
tissue microarray cohort confirmed that high CLEC11A expres-
sion was strongly associated with poor prognosis. Multivariate 
regression analysis demonstrated that elevated CLEC11A expres-
sion exhibited the most significant adverse impact on prognosis 
compared with other clinical parameters (P < 0.001; Supplemen-
tal Figure 8). Moreover, transcriptomic analysis and IHC showed 
CLEC11A was significantly upregulated in tumor tissues (Figure 3, 
H and I, Supplemental Figure 7D, and Supplemental Figure 9) as 
well as in primary tumors exhibiting lymphatic metastasis (Figure 
3, J and K, and Supplemental Figure 9). Finally, experiments using 
CAFs under hypoxic conditions found a substantial upregulation 
of  CLEC11A at the protein level (Western blot, Figure 3L), at the 
mRNA level (reverse transcription quantitative PCR [RT-qPCR], 
Figure 3M), and in its secreted form as detected in the culture 
supernatant by ELISA (Figure 3N).

Hypoxia-activated HIF1A in CAFs and transcriptionally upregulated 
CLEC11A expression. To investigate the transition between NCAFs 
and HCAFs, we employed both the VECTOR (47) and Monocle 
(48) algorithms to reconstruct the differentiation trajectory (Figure 
4, A–C). Monocle analysis revealed a positive correlation between 
pseudotime and the activity of  hypoxia, WNT, and VEGF path-
ways, with gene expression gradually increasing along the differ-
entiation trajectory (Figure 4D). Functional enrichment analysis 
of  pseudotime-associated genes indicated notable involvement in 
hypoxic responses, angiogenesis, epithelial cell proliferation and 
migration, and epithelial-mesenchymal transition (EMT) (Figure 
4, E and F).

To further elucidate the regulatory factors driving the NCAF-
to-HCAF transition, we used the GeneSwitches (49) tool, which 
revealed dynamic changes in the activity of  several transcription 
factors, including IRF1, KLF4, ATF3, NR4A1, and HIF1A (Figure 
4G). Subsequent validation using the single-cell regulatory network 
inference and clustering (SCENIC) algorithm (50) confirmed that 
HIF1A exhibits strong regulatory activity specifically in HCAFs 
(Figure 4H). Moreover, correlation analysis showed a positive asso-
ciation between the regulatory activity and expression levels of  
HIF1A and the differentiated pseudotime (Figure 4I). HIF1A, a key 
transcription factor in the hypoxic response (51), exhibited regula-
tory and expression specificity in HCAFs (31, 52, 53), which was 
further validated by our findings (Figure 4, J and K).

HIF1A has been reported as a transcription factor of  CLE-
C11A (Figure 4L) (54). The expression patterns of  CLEC11A and 
HIF1A during the transition from NCAFs to HCAFs were similar 
(Figure 4M). Both single-cell and multiple bulk transcriptomic 
analyses revealed the positive correlation between HIF1A and 
CLEC11A (Figure 4, N and O). ChIP-qPCR analysis demonstrat-
ed significant enrichment of  HIF1A at the CLEC11A promoter 
region (Figure 4P), and luciferase reporter assays showed that 
HIF1A markedly enhanced CLEC11A promoter activity (Figure 
4Q). Furthermore, CAF cell lines overexpressing HIF1A (CAF-
OE-HIF1A), generated via lentiviral transduction (Supplemental 
Figure 10), exhibited a significant increase in CLEC11A expres-
sion at both the protein level (Western blot, Figure 4R) and 
mRNA level (RT-qPCR, Figure 4S). In contrast, knockdown of  
HIF1A (CAF-si-HIF1A) led to a reduction in CLEC11A expres-
sion (Figure 4, R and S). These findings indicate that HIF1A plays 
a crucial role in driving the transition from NCAFs to HCAFs 
and transcriptionally upregulating CLEC11A.

CLEC11A promotes lymphangiogenesis and lymphatic metastasis in 
vivo. To investigate the role of  CLEC11A in CRC lymphatic metas-
tasis, we established the popliteal lymph node metastasis model 
in immunodeficient nude mice. In this model, CAFs with stable 
overexpression (CAF-OE-CLEC11A) or knockdown (CAF-sh-CLE-
C11A) of  CLEC11A were coinjected with SW480 or HCT116 cells 
into the footpad (Figure 5, A and B). In vivo fluorescence imaging 
results showed that the lymph node fluorescence intensity in the 
CAF-OE-CLEC11A and HCT116 cell coinjection group was higher 
than that in the tumor cell–only injection group and the CAF-vec-
tor coinjection group. Meanwhile, the fluorescence intensity in 
the CAF-sh-CLEC11A coinjection group was lower than that in 
the CAF-sh-NC coinjection group (Figure 5, C and D). In both 
the SW480 and HCT116 models, overexpression of  CLEC11A in 
CAFs significantly increased the lymph node volume and metasta-
sis rate compared with other groups. Conversely, the CAF-sh-CLE-
C11A group exhibited significantly smaller lymph node volumes 
and a reduced metastasis rate compared with the CAF-sh-NC 
group, further confirming the role of  CLEC11A in promoting CRC 
lymphatic metastasis (Figure 5, E–G). Additionally, IHC analysis 
demonstrated that CLEC11A overexpression elevated lymph vessel 
density in footpad tumors and enhanced cytokeratin 20 expression 
in popliteal lymph nodes, indicating a higher level of  metastatic 
spread. In contrast, CLEC11A knockdown suppressed these effects 
(Figure 5, H–J). These findings suggest that CLEC11A contributes 
to CRC lymphatic metastasis in vivo.

Figure 3. CLEC11A secreted by HCAFs is associated with poor prognosis and lymphatic metastasis. (A) Volcano plot displaying differentially expressed 
genes (DEGs) between HCAFs and NCAFs. (B) Volcano plot of DEGs between normal and tumor tissues from TCGA-CRC (left) and CPTAC datasets (right). 
(C) Mfuzz analysis revealing different gene expression patterns dependent on lymph node stages. The left panel shows the gene expression heatmap, the 
middle shows gene expression curves, and the right shows the results of pathway enrichment analysis. (D) Venn diagram of upregulated genes in HCAFs, 
tumor upregulated genes, and genes in the cluster 5. (E) Univariate Cox plot of the 22 shared genes. TMA, tissue microarray cohort. (F and G) Kaplan-Mei-
er survival curve from independent CRC transcriptome datasets (F) and proteomic tissue microarray cohorts (n = 90) (G), indicating the poorer overall 
survival in patients with high CLEC11A expression. (H) Representative images of IHC staining for CLEC11A in CRC tissues. (I) Violin plots displaying CLEC11A 
expression levels in CRC tissues from 2 independent transcriptomes. (J) Violin plots displaying CLEC11A expression levels in different lymph node stages 
from 2 independent CRC transcriptomes. (K) IHC staining of CLEC11A in CRC tissues with and without lymph node metastasis. (L) WB analysis showing the 
expression levels of CLEC11A in HCAFs and NCAFs. (M) RT-qPCR analysis of CLEC11A mRNA levels in HCAFs and NCAFs (n = 4 per group). (N) ELISA quanti-
fication of CLEC11A levels in HCAFs and NCAFs (n = 4 per group). Scale bars: 50 μm (H and K). All data are presented as means ± SEM. **P < 0.01, ****P < 
0.0001, by empirical Bayes moderated t test with Benjamini-Hochberg correction (A–C), Wald’s test (E), log-rank test (F and G), Student’s t test (M, N, and 
I; GSE77953), Mann-Whitney U test (I; TCGA-CRC), Kruskal-Wallis test (J; GSE41258), and 1-way ANOVA (J; TCGA-CRC).
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Figure 4. Hypoxia-activated HIF1A in CAFs transcriptionally enhanced the expression of CLEC11A. (A–C) VECTOR (A) and Monocle (B and C) analyses 
of the transition from NCAFs to HCAFs. UMAP, uniform manifold approximation and projection. (D) Changes in gene expression (left) and pathway 
activity correlation (right) along Monocle pseudotime. (E) Gene Ontology Biological Process enrichment analysis of pseudotime-associated genes. 
(F) Gene set enrichment analysis revealed the association of pseudotime-associated genes related to hypoxia and EMT pathways. NES, normalized 
enrichment score. (G) GeneSwitches analysis identifying key transcription factors involved in the transition from NCAFs to HCAFs. TFs, transcription 
factors. (H) Significant (P value < 0.05) differences in transcription factor activity between NCAFs and HCAFs. (I) HIF1A regulon activity, expression, 
and pseudotime correlation. (J and K) Box plot showing differences in HIF1A regulatory specificity (J) and expression (K) between NCAFs and HCAFs. 
(L) The downstream target gene network of HIF1A. (M) Expression dynamics of HIF1A and CLEC11A along Monocle pseudotime. (N and O) Correlation 
of HIF1A and CLEC11A in single-cell (N) and bulk transcriptomic datasets (O). (P) ChIP-qPCR analysis showing significant enrichment of HIF1A at the 
promoter region of CLEC11A (n = 4 per group). (Q) Luciferase assay showing that HIF1A enhances WT over mutant CLEC11A promoter activity (n = 4 per 
group). (R) WB analysis of CLEC11A and HIF1A protein levels in CAFs. (S) RT-qPCR analysis of CLEC11A mRNA levels in CAFs (n = 4 per group). All data 
are presented as means ± SEM. **P < 0.01, ***P < 0.001, ****P < 0.0001, by Spearman’s rank correlation test (D, I, and O), Pearson’s correlation test 
(N), hypergeometric test with Benjamini-Hochberg correction (E), permutation test with Benjamini-Hochberg correction (F), empirical Bayes moderat-
ed t test with Benjamini-Hochberg correction (H), Mann-Whitney U test (J, K, and P), and 1-way ANOVA with Tukey’s post test (Q and S).
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and formation (Figure 7I and Supplemental Figure 12, A–E). In the 
popliteal lymph node metastasis animal model, blocking VEGFC/
VEGFR3 signaling inhibited the effects of  CLEC11A, resulting in 
smaller lymph nodes and reduced lymphatic metastasis (Figure 7, J 
and K, and Supplemental Figure 12, F and G). IHC analysis further 
showed that in the CLEC11A-overexpressing group, VEGFC and 
EMT-related gene expression levels were elevated. However, after 
blocking the VEGFC/VEGFR3 signaling pathway, their expression 
levels decreased (Figure 7L). In conclusion, these in vitro and in 
vivo findings indicate that CLEC11A promotes lymphangiogenesis 
and lymphatic metastasis by enhancing the EMT process in tumor 
cells and upregulating VEGFC expression.

CLEC11A binds to the LGR5 receptor on tumor cells to promote lymph-
angiogenesis and lymphatic metastasis. To investigate how CLEC11A 
secreted by HCAFs acts on tumor cells, we utilized the TimeCCI 
tool based on our previous study (57) to examine the temporal cor-
relation of  potential ligand–receptor interactions in cell–cell com-
munications (Figure 8A). The analysis revealed that the CLEC11A–
LGR5 interaction exhibited the highest Spearman’s correlation 
coefficient within the CLEC11A signaling (Figure 8B), suggesting 
a strong and specific interaction exclusively between HCAFs and 
tumor cells (Figure 8C). Spatial transcriptomic (ST)  data further 
validated the extensive CLEC11A–LGR5 interactions within the 
TME (Figure 8D and Supplemental Figure 13A).

To evaluate the stability and binding affinity of  the CLE-
C11A–LGR5 interaction, we conducted molecular dynamics 
simulations. These simulations indicated that CLEC11A and 
LGR5 interact through hydrogen bonds, contributing to the sta-
bility of  the complex (Figure 8E). Root mean square deviation 
analysis indicated that the complex reached a stable state early in 
the simulation, and additional analyses of  the radius of  gyration 
and buried surface area confirmed a compact and stable inter-
action interface (Supplemental Figure 13B). These results sug-
gest that the CLEC11A-LGR5 complex exhibited strong binding 
affinity and structural integrity. Using mIHC, we observed the 
spatial proximity between LGR5+ tumor cells and CLEC11A+ 
CAFs (Figure 8F). Furthermore, co-IP assays detected the spe-
cific interaction between CLEC11A and LGR5 (Figure 8G). 
Together, these results indicate that CLEC11A binds to LGR5 on 
tumor cells, providing insights into its role in promoting lymph-
angiogenesis and lymphatic metastasis.

CLEC11A activates the WNT/β-catenin pathway via LGR5 on tumor 
cells to promote EMT and VEGFC secretion. To investigate the mecha-
nism underlying the interaction between CLEC11A and LGR5 in 
promoting EMT and VEGFC expression in tumor cells, we per-
formed transcriptomic sequencing on SW480 CRC cells treated with 
PBS or rhCLEC11A. The results revealed that ECM- and WNT 
pathway–related genes were upregulated in rhCLEC11A-treated 
cells (Figure 9A). Enrichment analysis revealed that the WNT sig-
naling pathway was enriched in rhCLEC11A-treated cells (Figure 
9B). Meanwhile, gene set variation analysis using the TCGA-CRC 
dataset showed a positive correlation between CLEC11A expression 
and WNT pathway activity, along with upregulation of  WNT-relat-
ed genes (Figure 9, C and D).

In vitro experiments demonstrated that inhibition of  LGR5 
or treatment with the WNT/β-catenin inhibitor (KYA1797K) 
suppressed the migratory and tube formation abilities of  HLECs 

Tumor cell–dependent CLEC11A promotes lymphatic vessel abnor-
malities and lymphangiogenesis in vitro. Although CLEC11A pro-
motes lymphangiogenesis and lymph node metastasis in vivo, 
its direct impact on human lymphatic endothelial cells (HLECs) 
under in vitro conditions remains unclear. In vitro experiments 
demonstrated that neither treatment of  CAFs with recombinant 
human CLEC11A (rhCLEC11A) protein nor modulation of  CLE-
C11A expression (overexpression/knockdown) in CAFs affected 
the tube formation or migration capabilities of  HLECs (Figure 6, 
A and B). These findings suggest that, while CLEC11A contrib-
utes to lymphangiogenesis and lymph node metastasis in CRC in 
vivo, its direct effect on HLECs is limited under in vitro condi-
tions. To further investigate whether the role of  CLEC11A in pro-
moting lymphangiogenesis and lymph node metastasis in vivo is 
tumor cell dependent, we used the conditioned medium of  rhCLE-
C11A-treated SW480 cell line to culture HLECs. Phalloidin stain-
ing revealed that HLECs in the rhCLEC11A-treated group transi-
tioned from a typical cobblestone morphology to a spindle shape 
(Figure 6C), suggesting potential alterations in their functional 
state. Western blot (WB) analysis further revealed that rhCLE-
C11A treatment reduced VE-cadherin expression in HLECs, indi-
cating weakened intercellular adhesion and enhanced migratory 
capacity (Figure 6D). Functional assays showed that rhCLEC11A 
treatment markedly increased HLEC lymphangiogenic and migra-
tory abilities while disrupting lymphatic vessel integrity (Figure 
6, E and F). These findings suggest that CLEC11A may medi-
ate HLEC dysfunction through tumor cells, promoting aberrant 
lymphangiogenesis and tumor lymphatic metastasis.

CLEC11A targets tumor cells to promote EMT and VEGFC pro-
duction, leading to lymphangiogenesis and lymphatic metastasis. To fur-
ther investigate how CLEC11A promotes lymphangiogenesis and 
lymphatic metastasis through its effects on tumor cells, we first 
analyzed the correlation between CLEC11A and cancer hallmark 
pathways (55). Both single-cell and bulk analyses revealed a sig-
nificant positive correlation between CLEC11A expression and the 
EMT pathway, as well as with EMT-related genes (Figure 7, A 
and B). Immunofluorescence results showed that treatment with 
rhCLEC11A enhanced the expression of  EMT-related genes in the 
SW480 and HCT116 cell lines (Figure 7C), which was further sup-
ported by WB analysis (Figure 7D).

Previous studies have demonstrated that VEGF family mem-
bers, particularly VEGFC and VEGFD, are crucial in promoting 
lymphangiogenesis and lymphatic metastasis in various cancers 
(56). By analyzing the TCGA-CRC dataset, we identified a signif-
icant correlation between CLEC11A expression and that of  VEG-
FC (R = 0.66, P < 2.2e-16; Figure 7E) and VEGFD (R = 0.29, 
P = 1e-13; Figure 7E). Subsequently, RT-qPCR and WB analyses 
revealed that rhCLEC11A treatment upregulated VEGFC expres-
sion in tumor cells, with no significant effect on VEGFD expres-
sion (Figure 7, F and G). Further ELISA analysis confirmed a sig-
nificant increase in VEGFC expression at the protein level (Figure 
7H and Supplemental Figure 11).

Next, we investigated whether CLEC11A-induced lymphangio-
genesis and lymphatic metastasis depend on VEGFC. In vitro exper-
iments demonstrated that silencing VEGFC or using the VEGFR3 
inhibitor (SAR131675) to block the VEGFC/VEGFR3 signaling 
pathway reduced CLEC11A-induced lymphatic vessel migration 
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focus in cancer research, which involves immune-inflammatory 
factor secretion to modulate the inflammatory TME (30, 31, 61, 
62), our findings describe the role of  CAFs in promoting lym-
phatic dissemination. By identifying CLEC11A as a key secret-
ed factor that interacts with LGR5 on tumor cells, we describe a 
mechanism through which CAFs influence tumor cell behavior 
and metastatic potential.

CLEC11A, a secreted protein originally recognized for its 
role in hematopoietic progenitor cell growth and bone remodeling 
(63, 64), has recently gained attention in cancer research due to its 
prognostic value in lung and gastric cancers (65, 66). However, its 
role in CRC has not been well characterized. This study identified 
a strong association between CLEC11A secreted by HCAFs and 
poor prognosis in patients with CRC. Given its secretion properties, 
CLEC11A may serve as a viable marker for liquid biopsy, facili-
tating early diagnosis and risk stratification in CRC. Moreover, its 
marked correlation with N stage suggests potential utility in pre-
dicting lymph node metastasis and informing personalized thera-
peutic strategies.

The WNT/β-catenin pathway plays an important role in CRC 
initiation and progression, where its aberrant activation drives tumor 
cell proliferation, invasion, metastasis, and angiogenesis (67). Cur-
rently, several pathway inhibitors (including LGK974, PRI-724, and 
Foxy-5) have entered early-phase clinical trials, though therapeutic 
development remains in its infancy (68). Our study demonstrates 
that targeting the LGR5 receptor on CRC cells effectively inhibits 
CLEC11A-mediated WNT/β-catenin activation and lymphatic 
metastasis, thereby expanding potential intervention strategies for 
this pathway. Furthermore, combining this targeting strategy with 
existing therapies may suppress chemotherapy-induced compensa-
tory activation of  the WNT pathway (69), thereby enhancing con-
ventional treatment efficacy and providing both theoretical founda-
tions and practical approaches for comprehensive CRC therapy.

Another important aspect of  our findings is the role of  the 
hypoxia-induced transcription factor HIF1A in regulating the con-
version of  NCAFs to HCAFs. As a regulator of  the cellular response 
to low oxygen levels, HIF1A has been shown to control gene expres-
sions involved in angiogenesis, metabolism, and cell survival (51). 
Our study further reveals that HIF1A not only regulates the expres-
sion of  CLEC11A but also drives the differentiation of  NCAFs into 
HCAFs, contributing to CRC progression. These findings provide 
information about the molecular mechanisms governing CAF acti-
vation in the hypoxic TME and suggest that targeting HIF1A could 
be an effective strategy for preventing CAF-mediated metastasis.

Despite the promising results, there are several limitations 
to our study that warrant consideration. First, although CHPC 

(Figure 9E and Supplemental Figure 14, A–F). WB analysis fur-
ther demonstrated that LGR5 inhibition or KYA1797K treatment 
reversed the rhCLEC11A-induced upregulation of  β-catenin, VEG-
FC, N-cadherin, ZEB1, and Vimentin expression in tumor cells, 
while restoring E-cadherin expression levels (Figure 9F). In the 
lymph node metastasis model, both the LGR5 knockdown group 
and the KYA1797K treatment group exhibited reduced lymph 
node volume and lower incidence of  lymphatic metastasis (Figure 
9, G and H). IHC analysis further showed that the LGR5 knock-
down group and KYA1797K treatment group exhibited reduced 
expression of  β-catenin, VEGFC, N-cadherin, ZEB1, and Vimen-
tin, along with increased E-cadherin expression, compared with the 
control and CLEC11A overexpression groups (Figure 9I).

Overall, these findings suggested that CLEC11A promotes lym-
phatic metastasis in CRC by activating the WNT/β-catenin path-
way via LGR5, thereby enhancing EMT and VEGFC secretion.

Discussion
In this study, we developed a CHPC based on an LLM to identi-
fy HCAFs in CRC and explore their role in lymphatic metastasis. 
By leveraging this approach, we found that HCAFs promote CRC 
lymphatic metastasis through the secretion of  CLEC11A, which 
interacts with the LGR5 receptor on tumor cells to activate the 
WNT/β-catenin pathway. These findings illustrate the intricate 
interplay between the TME, cellular states, and metastasis, provid-
ing potential insights into CRC progression and therapeutic targets.

Although traditional machine-learning methods such as Sup-
port Vector Machines and Random Forests have been applied in 
scRNA-Seq data analysis, particularly for immune and neural 
cell type classification (58, 59), challenges including data sparsity, 
high noise, zero inflation, and gene dropout often result in unsta-
ble model performance and limited applicability (32). In contrast, 
LLMs leveraging pretraining and transfer learning can compensate 
for data scarcity through prior knowledge integration and extract 
meaningful signals from noisy data (60). The CHPC model pro-
posed in this study can accurately identify cellular hypoxic states 
without requiring extensive labeled data, demonstrating strong 
robustness across multiple platforms and multiscale datasets, 
thereby providing a more efficient and stable solution for hypoxia 
state identification.

Recent research indicated that hypoxia promotes tumor lym-
phatic metastasis by altering various cellular states (27–29), yet the 
specific role of  CAFs in this process remains largely unexplored. 
This study demonstrates that HCAFs can enhance CRC lymphat-
ic metastasis by secreting CLEC11A. While hypoxia-driven con-
version of  CAFs to inflammatory phenotypes has been a major 

Figure 5. CLEC11A promotes lymphangiogenesis and metastasis in vivo. (A) Schematic diagram of popliteal lymph node metastasis model establishment 
in nude mice. (B) Representative images of popliteal lymph node metastasis in a nude mouse model. (C and D) Representative bioluminescence images 
(C) and bioluminescence quantification (D) of popliteal lymph node metastasis in the mouse model (n = 5 per group). (E and F) Representative images of 
the mouse popliteal lymph node metastasis model generated using specific CAFs and SW480 (E) or HCT116 (F) cell treatment. Histograms quantifying 
lymph node volumes (mm³) in nude mice (n = 5 per group). (G) Lymph node metastasis rates in nude mice inoculated with specific CAFs and SW480 (left) 
or HCT116 (right) cells (n = 15 per group). (H and I) Representative images (H) of anti-LYVE1 staining in plantar tumor tissues. and histogram (I) showing 
the ratio of LYVE1-positive lymphatic vessels (n = 3 per group). (J) IHC with anti–cytokeratin 20 (CK20) antibody and H&E staining was performed on the 
CLEC11A overexpression group and CLEC11A knockdown group, showing representative images of the popliteal lymph nodes. Scale bars: 100 μm (H), 50 μm 
(J, right), 500 μm (J, left and middle). All data are presented as means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, by 1-way ANOVA with 
Tukey’s post test (D–F and I) and χ2 test (G).
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scription factors cannot be excluded. Furthermore, our analysis 
was focused on CRC, and further research is needed to validate 
the role of  CLEC11A and HCAFs in lymphatic metastasis across 
other cancer types. Given the heterogeneity of  the TME in differ-
ent cancers, it will be important to explore whether similar mech-
anisms are at play in other cancers, such as breast, lung, or gastric 
cancers. Moreover, the broader biological functions of  CLEC11A 

demonstrates high accuracy in hypoxic cell recognition, its reli-
ance on large-scale pretrained data may limit its generalizabili-
ty in specific biological contexts. Furthermore, LLMs consume 
substantial computational resources when processing high-di-
mensional single-cell data, which may limit their applicability in 
certain settings. Mechanistically, we identified HIF1A as a driver 
of  NCAF-to-HCAF transition, but the involvement of  other tran-

Figure 6. CLEC11A promotes lymphatic vessel abnormalities and lymphangiogenesis in vitro in a tumor cell–dependent manner. (A and B) Represen-
tative images (left) and quantification (right) of HLEC migration (A) and tube formation assays (B) (n = 3 per group). (C) Experimental grouping under 
different conditions and representative phalloidin/DAPI staining images of HLECs. (D) WB analysis of VE-cadherin in HLECs cultured in conditioned medi-
um of CRC cell line with different treatments. (E and F) Representative images (E) and quantitative analysis (F) of HLEC migration (top), tube formation 
(middle), and SW480/HCT116 cell transendothelial migration (bottom) in coculture with HLECs using CRC cell line–conditioned media under different 
treatment conditions (n = 3 per group). Scale bars: 100 μm (A, B, and E), 50 μm (C). All data are presented as means ± SEM. *P < 0.05, **P < 0.01, by 1-way 
ANOVA (A and B) and Student’s t test (F).
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with 5% CO2 for 24 hours. After the initial culture, the medium for CRC 

cells was replaced with complete medium containing 200 ng/mL rhCLE-

C11A. Subsequent experiments followed the study protocol.

Lentiviral construction and stable cell line generation. The human sh-CLE-

C11A sequence was introduced into the lentiviral vector pLKO.1-EG-

FP-Puro, and lentiviral particles were generated. For control purposes, 

the empty vector (sh-NC) was used. Cells were transduced with these 

lentiviral particles and subjected to puromycin selection for 14 days to 

establish stable CLEC11A knockdown cell lines (CAF-sh-CLEC11A). 

These stable knockdown cell lines were cultured up to passage 20 for 

experimental use. The same methodology was applied to generate con-

trol cell lines (sh-NC). Additionally, the full-length human CLEC11A 

gene was subcloned into the lentiviral vector pLent-EF1a-FH-CMV-RFP-

Puro and packaged into pLent-CLEC11A lentiviral particles. An empty 

vector (pLent-empty) was used as a control. Cells were infected with 

either pLent-CLEC11A or pLent-empty lentiviral particles, followed by 

puromycin selection for 14 days, leading to the creation of  stable CLE-

C11A-overexpressing CAF cell lines (CAF-OE-CLEC11A). These stable 

CAF-CLEC11A cell lines were used for experimental purposes alongside 

the control (CAF-NC) cells, with all cells maintained up to passage 20.

Primary human CAF isolation. Fresh CRC tissues were obtained from 

patients at The First Affiliated Hospital of Zhengzhou University, with eth-

ical approval granted by the Zhengzhou University Ethics Committee. The 

tissues were washed multiple times with 5× PBS containing trypsin until 

the PBS was clear, with fat and necrotic material removed. The tissues were 

then minced into 1 mm³ sections and treated with 1 mg/mL type IV col-

lagenase (Thermo Fisher Scientific) at 37°C for 2 hours. After centrifuga-

tion and filtration through a 200-mesh filter to remove the supernatant, the 

tissue fragments were resuspended in DMEM (high glucose) containing 

10% FBS and seeded into 6 cm culture dishes. After 72 hours, the culture 

medium was changed to discard nonadherent cells.

Generation of  HCAFs. Normal CAFs were cultured under normoxic 

conditions (21% O2, 5% CO2, 37°C) until 70%–80% confluence. For 

hypoxic induction, CAFs were incubated in a CO2 tri-gas incubator 

(Thermo Fisher Scientific) set to 1% O2, 5% CO2, and balanced N2 for 

48 hours to generate HCAFs. NCAFs (21% O2) served as controls. The 

hypoxic response was verified using reverse transcription qPCR to ana-

lyze HIF-1α and VEGF expression.

Collection and analysis of  scRNA-Seq data. In this study, we collect-

ed and analyzed 4 scRNA-Seq datasets (GSE132465, GSE144735, 

GSE166555, and GSE200997) from the Gene Expression Omnibus 

database. These datasets comprised 177,202 cells obtained from sam-

ples of  57 CRC patients. The R package Seurat was used for scRNA-

Seq data preprocessing (70), and DoubletFinder was employed to 

identify and remove potential doublets (71). Cells with fewer than 500 

within the TME, such as its potential effects on immune cell infil-
tration, endothelial function, and ECM remodeling, require fur-
ther investigation. The possibility that other signaling pathways 
may collaborate with the WNT/β-catenin pathway to mediate the 
metastasis-promoting function of  CLEC11A cannot be excluded 
and warrants further investigation. Finally, while our study estab-
lishes CLEC11A as a mediator of  lymphatic metastasis, the clin-
ical application of  targeting this pathway needs to be explored 
further. In particular, the development of  specific inhibitors or 
monoclonal antibodies that can block CLEC11A–LGR5 inter-
actions or inhibit the WNT/β-catenin signaling pathway could 
provide a promising strategy for treating CRC patients with high 
metastatic potential. Further preclinical and clinical studies will 
be necessary to evaluate the efficacy and safety of  such therapeu-
tic interventions.

In conclusion, our study provides evidence for the role of  
HCAFs in promoting CRC lymphatic metastasis via the CLE-
C11A–LGR5 interaction and the activation of  the WNT/β-catenin 
pathway. The identification of  HIF1A as a key regulator of  HCAF 
differentiation in the hypoxic TME adds another layer of  com-
plexity to our understanding of  CAF biology. Targeting the CLE-
C11A-LGR5 axis and HIF1A offers promising strategies for inhibit-
ing CRC metastasis. These findings warrant future research aimed 
at translating these insights into clinical applications, potentially 
improving the prognosis and treatment outcomes for CRC patients.

Methods
Sex as a biological variable. Sex was not considered as a biological vari-

able in this study. Patient samples and mice of  both sexes were used.

Mouse popliteal lymphatic metastasis model. Ethical approval for all 

procedures in this study was granted by Zhengzhou University’s Ani-

mal Care and Use Committee. Both male and female BALB/c nude 

mice, aged 4–6 weeks, were obtained from Vital River Laboratory Ani-

mal Technology. Lentivirally transduced CRC cells (5 × 106 per mouse) 

were mixed with lentivirally transduced CAF cells (5 × 106 per mouse) 

and injected into the footpads of  the mice. After 8 weeks, the research 

team euthanized the mice and excised the footpad tumors and poplite-

al lymph nodes. Lymph node volumes were measured, and the tissues 

were subsequently fixed in formalin and paraffin embedded.

Cell culture and treatments. The human CRC cell lines SW480 and 

HCT116 (Pricella) were cultured in DMEM supplemented with 10% FBS 

(Biochannel) and 1% penicillin-streptomycin (Servicebio). CAF-vector, 

CAF-OE-CLEC11A, CAF-sh-CLEC11A, and CAF-sh-NC cells were cul-

tured under the same conditions. HLECs (Fuhengbio) were cultured in 

HLEC-specific medium (Fuhengbio). All cells were incubated at 37°C 

Figure 7. CLEC11A promotes EMT and VEGFC production in tumor cells, leading to lymphangiogenesis and lymphatic metastasis. (A) CLEC11A showing 
a strong association with EMT pathway activity in both single-cell and bulk datasets. (B) CLEC11A expression showing the significant correlation with 
EMT-related genes (P < 0.05) in the TCGA-CRC dataset. (C and D) Immunofluorescence (C) and WB (D) analysis of EMT-related genes in CRC cell lines 
treated with rhCLEC11A. (E) Correlation plot showing positive associations between CLEC11A and VEGFC/VEGFD gene expression in the TCGA-CRC dataset. 
(F) RT-qPCR analysis of VEGFC and VEGFD expression in SW480 and HCT116 cells treated with rhCLEC11A (n = 4 per group). (G) WB analysis of VEGFC 
expression in SW480 and HCT116 cells treated with rhCLEC11A. (H) ELISA quantification of VEGFC levels in HCT116 cells treated with rhCLEC11A (n = 4 per 
group). (I) Representative images of HLEC migration (top) and tube formation (bottom) assays cultured in conditioned media under specific treatments. (J) 
Representative images of popliteal lymph nodes from the mouse metastasis model established using HCT116 cells coinjected with CAFs subjected to spe-
cific treatments. Histograms quantify lymph node volumes (mm³) in nude mice (n = 6 per group). (K) Ratio of metastasis to total dissected lymph nodes in 
mice inoculated with specific CAFs and HCT116 cells (n = 15 per group). (L) IHC staining of E-cadherin, N-cadherin, Vimentin, ZEB1, and VEGFC. Scale bars: 
20 μm (C), 100 μm (I), 200 μm (L). All data are presented as means ± SEM. *P < 0.05, ***P < 0.001, ****P < 0.0001, by Spearman’s rank correlation test (A, 
B, and E), Welch’s t test (F and H), 1-way ANOVA with Tukey’s post test (J), and χ2 test (K).
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phase of  annotations: T cells (CD2, CD3D, CD3E, TRBC1, CD8A, and 

CD8B), NK cells (PRF1, KLRF1, KLRD1, FGFBP2, and NKG7), B cells 

(CD19, CD79A, CD79B, and MS4A1), plasma cells (TNFRSF17, MZB1, 

IGHG1, and IGHA1), myeloid cells (CD14, CD68, CD163, LYZ, S100A8, 

and FCGR3A), mast cells (TPSAB1, TPSB2, and MS4A2), fibroblasts 

(COL1A1, COL1A2, COL3A1, DCN, MYH11, and ACTA2), epithelial 

cells (EPCAM, CD24, KRT18, KRT8, and CEACAM5), and endothelial 

cells (VWF, PECAM1, CDH5, ENG, CLDN5, and ACKR1). Large-scale 

chromosomal copy-number variations were inferred from single-cell 

transcriptome profiles using the InferCNV R package to distinguish 

malignant from nonmalignant epithelial cells (39).

detected genes, over 20% mitochondrial content, and high dropout 

genes were removed to prevent analysis interference. The SCTrans-

form method was employed to normalize and scale the scRNA-Seq 

data. A principal component analysis matrix with 30 components was 

performed to achieve dimensionality reduction. The Harmony algo-

rithm was applied for batch correction prior to clustering analysis to 

remove batch effects (72). Using the Seurat functions FindNeighbors 

and FindClusters, we identified distinct cell clusters. These clusters 

were subsequently visualized through the t-distributed stochastic neigh-

bor embedding technique. Markers previously identified in published 

literature were utilized to distinguish each cluster during the initial 

Figure 8. CLEC11A promotes lymphangiogenesis and lymphatic metastasis through its interaction with LGR5 on tumor cells. (A) Identification of 
ligand-receptor pairs and a schematic of the TimeCCI pipeline, illustrating the calculation of Spearman’s correlation coefficients (SCC) for covarying 
ligand-receptor pairs between HCAFs and tumor cells. (B) CLEC11A-LGR5 is the top ligand-receptor pair, with the highest SCC among CLEC11A interactions. 
(C) Normalized interaction probabilities between CLEC11A and its receptors across different cell types. (D) ST data showing CLEC11A-LGR5 interactions. (E) 
Molecular dynamics simulation of the CLEC11A-LGR5 complex, with structural visualization of key interacting residues. (F) mIHC revealing spatial colocal-
ization between CLEC11A and LGR5. Scale bar: 50 μm. (G) Co-IP confirmed the physical interaction between CLEC11A and LGR5 in SW480 cells.
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ing and test sets in a high-confidence single-cell cohort and 4 hypoxic 

cell line real-world independent validation cohorts. Accuracy, AUROC, 

and F1 score were then evaluated across 10 machine-learning models. 

Algorithms ranked in the top 3 across all metrics on average were inter-

sected to identify CatBoost as the optimal classifier.

Application of  the optimal classifier: The best-performing Cat-

Boost model was used to classify hypoxic states in low-confidence cells.

Statistics. All data analysis, including processing, statistical evalu-

ation, and plotting, was conducted using R software (version 4.3.1). 

Data normality and homogeneity of  variance were assessed using 

Shapiro-Wilk and Levene’s tests, respectively, guiding the selection of  

either parametric tests (2-tailed paired t test, 2-tailed Student’s t test, 

Welch’s t test, 1-way ANOVA, 1-way ANOVA with Tukey’s post test) 

or nonparametric alternatives (Wilcoxon’s signed-rank, Mann-Whitney 

U, and Kruskal-Wallis tests). Categorical variables were analyzed using 

χ2 tests, while correlation analyses employed Pearson’s or Spearman’s 

methods as appropriate. Cox regression and Kaplan-Meier analysis 

were performed using the survival R package. All statistical tests were 2 

sided. P value < 0.05 was regarded as statistically significant.

Study approval. All animal and human studies were approved 

by Zhengzhou University Life Science Institutional Review Board 

(ZZUIRB 2023-320). Animal procedures adhered to institutional 

guidelines, using 4- to 6-week-old BALB/c nude mice (both sexes; Vital 

River Laboratory Animal Technology). Human CRC tissues were col-

lected from The First Affiliated Hospital of  Zhengzhou University with 

patients’ informed consent.

Data availability. The scRNA-Seq and bulk RNA-Seq datasets 

used in this study are publicly accessible through the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/) and the TCGA (https://

www.cancer.gov/ccg/research/genome-sequencing/tcga). The GEO 

accession numbers are as follows: scRNA-Seq data GSE132465, 

GSE144735, GSE166555, and GSE200997;  bulk RNA-Seq data: 

GSE35896, GSE92921, GSE143985, GSE75316, GSE18088, 

GSE26682, GSE13067, GSE4554, GSE17537, GSE17536, GSE77953, 

GSE41258, GSE18105, GSE21510, GSE71187, GSE25071, and 

GSE39582). Additionally, the ST datasets were retrieved from the 

scCRLM atlas (http://www.cancerdiversity.asia/scCRLM/), 10X 

Genomics (https://www.10xgenomics.com/), and the National Cen-

ter for Biotechnology Information (https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE225857). The transcriptomic data are 

available at https://doi.org/10.7303/syn62787929. The source code 

for the TimeCCI tool is available on GitHub at https://github.com/

Zaoqu-Liu/TimeCCI (commit ID: 183306c and commit URL: https://

CHPC based on the LLM. To identify hypoxic cells from single-cell 

data, we designed a workflow as follows.

Selection of  hypoxia-related pathways: We screened hypoxia-asso-

ciated pathways from the Molecular Signatures Database based on the 

following criteria: (a) pathways supported by human data and upregu-

lated under hypoxic conditions and (b) exclusion of  pathways involving 

knockout experiments or chemical synthesis. After removing redundant 

gene sets, 7 hypoxia-related gene sets were retained (34).

High-confidence hypoxic and normoxic cell classification: Using 

single-sample gene set enrichment analysis, we calculated activity 

scores for each cell across the 7 hypoxia-related gene sets. A GMM 

was applied to classify cells into high- and low-scoring groups for each 

gene set. Cells consistently assigned to high-scoring groups across all 7 

gene sets were classified as high-confidence hypoxic cells, while those 

consistently assigned to low-scoring groups were classified as high-con-

fidence normoxic cells. The remaining cells were categorized as low 

confidence.

Classification of  hypoxic states in low-confidence cells: To fur-

ther differentiate hypoxic states in low-confidence cells, we devel-

oped a machine-learning classifier embedded with the LLM based on 

high-confidence cells. (a) Differential gene expression analysis: Wilcox-

on’s rank-sum test was used to identify differentially expressed genes 

between high-confidence hypoxic and normoxic cells (P value < 0.05, 

LogFC > 0.25), retaining protein-coding genes, which resulted in 573 

hypoxia signature genes. (b) To address the issue of  gene loss, we uti-

lized the LLM scGPT, specifically designed for single-cell transcriptom-

ic data, to construct the embedding matrix. This model is based on the 

Transformer architecture, integrating a multihead attention mechanism 

and a custom attention masking strategy. During the pretraining phase, 

the model learns the regulatory relationships and coexpression patterns 

between genes. After the input data are provided, the model, based on 

the pretraining results, captures the associations between known genes 

through the attention mechanism and transfers them to the missing 

genes. Simultaneously, the attention masking strategy blocks irrele-

vant information, ultimately compressing the high-dimensional sparse 

matrix into a dense, gene-agnostic embedding matrix, effectively com-

pensating for the missing data (35). (c) Classifier modeling and perfor-

mance evaluation: We utilized 10 machine-learning algorithms, includ-

ing Logistic Regression, eXtreme Gradient Boosting, Support Vector 

Machine, Random Forest, Light Gradient Boosting Machine, Naive 

Bayes, Decision Tree, Categorical Boosting, Multilayer Perceptron 

neural network, and Gradient Boosting Machine. Subsequently, we 

employed a 10%–100% stratified sampling strategy to partition train-

Figure 9. CLEC11A promotes EMT and VEGFC secretion of tumor cells through the interaction with LGR5 to activate the WNT/β-catenin pathway. (A) 
Volcano plot displaying differentially expressed genes (DEGs) between SW480 CRC cells treated with either PBS or rhCLEC11A. (B) Gene Ontology enrichment 
analysis of DEGs highlighting significant enrichment in the WNT signaling pathway. (C) Correlation analysis showing a positive association between CLEC11A 
expression and WNT pathway scores in the TCGA-CRC cohort. (D) Bar plots depicting correlations between CLEC11A expression and WNT-related genes in 
the TCGA-CRC cohort. (E) Representative images of HLEC migration (top) and tube formation (bottom) after culture with HCT116 cell line–conditioned media 
under different treatments. (F) WB analysis of LGR5, β-catenin, VEGFC, ZEB1, N-cadherin, E-cadherin, and Vimentin protein expression in HCT116 or SW480 
cells treated with rhCLEC11A, sh-LGR5, or KYA1797K. (G) Representative images (top) and quantification (bottom left) (n = 6 per group) of popliteal metastatic 
lymph node volume in mice models generated using HCT116 cells and CAFs subjected to specific treatments. Metastasis rates and the ratio of metastatic to 
total dissected lymph nodes are shown (bottom right) (n = 15 per group). (H) Representative images (top) and quantification (bottom left) (n = 6 per group) of 
popliteal metastatic lymph node volume in mice models generated using SW480 cells and CAFs subjected to specific treatments. Metastasis rates and the 
ratio of metastatic to total dissected lymph nodes are shown (bottom right) (n = 15 per group). (I) IHC staining for protein expression of E-cadherin, N-cadher-
in, Vimentin, ZEB1, VEGFC, and β-catenin. Scale bars: 100 μm (E), 20 μm (I). All data are presented as means ± SEM. ***P < 0.001, ****P < 0.0001, by empiri-
cal Bayes moderated t test with Benjamini-Hochberg correction (A), hypergeometric test with Benjamini-Hochberg correction (B), Spearman’s rank correlation 
test (C and D), 1-way ANOVA with Tukey’s post test (G and H, bottom left), and χ2 test (G and H, bottom right).
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