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CIADM = Checkpoint inhibitor associated autoimmune diabetes 

CT = Computed tomography 

CXCL = C-X-C motif chemokine ligand 

FDR = false discovery rate 

GAD = glutamic acid decarboxylase 

HLA = human leukocyte antigen 

IAA = islet autoantigen 

ICI = Immune checkpoint inhibitor 

IL = interleukin 

IRAE = immune-related adverse event  

PBMC = peripheral blood mononuclear cell 

PD-1 = programmed cell death protein 1 

PD-L1 = programmed cell death ligand 1 

T1D = Type 1 diabetes 

TGF = Transforming growth factor 

TNF = tumour necrosis factor 
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ABSTRACT 

Background Checkpoint inhibitor-associated autoimmune diabetes (CIADM) is a rare but life-

altering complication of immune checkpoint inhibitor (ICI) therapy. Biomarkers that predict 

type 1 diabetes (T1D) are unreliable for CIADM.  

Aim 

To identify biomarkers for prediction of CIADM. 

Methods 

From our prospective biobank, 14 CIADM patients who had metastatic melanoma treated 

with anti-PD-1 ± anti-CTLA4 were identified. Controls were selected from the same biobank, 

matched 2:1. Pre-treatment, on-ICI and post-CIADM serum and peripheral blood 

mononuclear cells (PBMCs) were analysed. Serum was analysed for T1D autoantibodies, C-

peptide, glucose and cytokines. PBMCs were profiled using flow cytometry. Pancreatic 

volume was measured using CT volumetry. 

Results 

Before treatment, CIADM patients had smaller pancreatic volume (27% reduction, p=0.044) 

and higher anti-GAD antibody titres (median 2.9 versus 0, p=0.01). They had significantly 

higher baseline proportions of Th17 helper cells (p=0.03), higher CD4+ central memory cells 

(p=0.04) and lower naïve CD4+ cells (p=0.01). With ICI treatment, greater declines in 

pancreatic volume were seen in CIADM patients (p<0.0001). Activated CD4+ subsets 

increased significantly in CIADM and controls with immune-related adverse effects (IRAE) 

but not controls without IRAE.  

Using only pre-treatment results, pancreatic volume, anti-GAD antibody titre and baseline 

immune flow profile were highly predictive of CIADM development, with an area under the 

curve (AUC) of >0.96. 
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Conclusions 

People who develop CIADM are immunologically predisposed and have antecedent 

pancreatic and immunological changes that accurately predict disease with excellent 

sensitivity. These biomarkers could be used to guide ICI use, particularly when planning 

treatment for low-risk tumours. 

Funding 

JEG is supported by NHMRC Investigator grant 2033228. AMM by NHMRC Investigator grant 

2009476 and GVL by NHMRC Investigator grant 2007839. 
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Introduction 

Immune checkpoint inhibitors (ICIs) have transformed the treatment for many malignancies 

since their initial introduction in melanoma therapy. Eleven ICIs are now FDA-approved for at 

least 43 indications in a wide range of malignancies (1). Whilst primarily used in the setting 

of metastatic cancer,  recent studies also demonstrate benefits in the adjuvant and 

neoadjuvant settings (2, 3).  

 

As use of ICIs increases, the corresponding incidence of immune-related adverse effects will 

also rise. Amongst these, checkpoint inhibitor related autoimmune diabetes mellitus 

(CIADM; also termed ICI-DM) is of particular interest due to the major, life-long physical and 

psychosocial impacts of insulin requiring diabetes and the propensity for fulminant onset 

with high risk of diabetic ketoacidosis. We have previously demonstrated that CIADM bears 

similarities to its de novo counterpart type 1 diabetes (T1D) with respect to insulin deficiency 

and lifelong insulin dependency. However, there are also distinct differences including a high 

prevalence of T1D antibody negativity and fulminant beta cell failure, thus warranting 

separate diagnostic criteria and evaluation (4). CIADM develops in 0.4-1.9% of people 

treated with therapies directed against programmed death 1 (PD1) or programmed death 

ligand 1 (PDL1) (5–9). 

 

The ability to estimate an individual’s risk of developing serious immune-related adverse 

effects prior to starting ICI would inform treatment decisions, especially in the adjuvant 

setting and where effective alternative treatments are available. Studies show that the 

overall risk of any immune-related adverse effects is associated with higher baseline CD4+ 

counts (10), early T regulatory cell expansion (11), increased CD8+ clonal responses (12), 
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more diverse T cell repertoire (13), higher cytokine levels at baseline and early in treatment 

(11, 14, 15), neutrophil to lymphocyte ratio (16) and genetic variants (17). 

 

In T1D, anti-islet autoantibodies predict risk of disease with high accuracy (18). HLA (human 

leukocyte antigen) haplotypes are also strongly linked to T1D risk with ~95% of people 

having high-risk HLA DR3 and / or DR4, and genetic risk scores are available to further 

delineate risk (19). A decline in pancreatic volume is associated with risk of progression from 

pre-clinical to overt T1D (20). Flow cytometry shows differences in CD4+ T follicular helper 

cells, T regulatory cells, naïve and Th17 cell subsets associated with T1D onset (21–25). Islet-

specific autoreactive T cells are a promising T1D biomarker but assays are subject to HLA 

type restrictions (26, 27). 

 

This aim of this study is to identify potential biomarkers for CIADM risk prior to 

commencement of ICI therapy and early during treatment. A secondary aim is to identify 

biomarkers for risk prediction after ICI-commencement but before CIADM onset. We 

compare CIADM cases to controls receiving ICI pre-treatment, early during treatment and 

after CIADM diagnosis. 
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Results 

A summary of the methods is shown in Figure 1 and the flow cytometry gating strategy is 

shown in Supplementary Figure 1. Fourteen patients with CIADM and 28 matched controls 

treated with ICI were included. All patients had metastatic melanoma. Of the total samples 

sought, 2 PBMC samples were not available for CIADM patients at the pre-treatment 

timepoint. Baseline characteristics are shown in Table 1. Prior exposure to other anti-cancer 

treatment was predominantly dabrafenib and trametinib therapy. 

 
Subclinical anti-GAD and anti-IAA antibody levels are associated with CIADM 

Before ICI-treatment, glutamic acid decarboxylase auto-antibody (Anti-GAD) titres were 

significantly higher in CIADM cases than controls (Figure 2A, p=0.002, Mann-Whitney). 

Despite the higher antibody levels with this sensitive assay, only 2 patients (14%) had levels 

above the reference range for anti-GAD before ICI exposure, with 1 on but not above the top 

of the reference range (dotted line) and an additional 6 patients having a level above the 

threshold of detection (dashed line), giving a total of 64% of CIADM patients having 

detectable levels compared to 4 ICI treated controls who did not develop diabetes (14%, 

p<0.001 vs CIADM patients, Chi-square with Yates correction).  

 

Figure 2B shows that anti-insulin autoantibodies (IAA) titres were also significantly higher in 

pre-treatment CIADM patients than in pre-treatment controls (p=0.048, Mann-Whitney). 

Seven CIADM patients were above the threshold of detection for the assay (54%) compared 

to 6 of 28 controls (21%, p=0.038). As insulin exposure is known to provoke IAA 

development, it should be noted that no patients had exposure to insulin prior to ICI 
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treatment. However, the rise of IAA seen in CIADM patients after diagnosis and insulin 

treatment is consistent with this also being common after diagnosis of type 1 diabetes.  

 

Autoantibody positivity above the clinical test threshold was not significantly associated with 

increased risk of presentation with diabetic ketoacidosis or earlier with CIADM diagnosis. 

 
Pancreatic volume is lower in CIADM patients before ICI treatment 

Pancreatic volume was measured using computed tomography (CT) scans. Pancreatic 

volume on CT scans was lower before ICI exposure in people who went on to develop CIADM 

than in controls (median 60 versus 73mls, Figure 2C, p=0.019). All but one patient who went 

on to develop CIADM had baseline pancreatic volume <75mls (92%) compared to 14 of 28 

controls (50%, p=0.0007 by Chi-Square with Yates correction). 

 

Antibody levels and pancreatic volume change with ICI treatment 

After ICI exposure, anti-GAD titres were significantly higher in people who went on develop 

CIADM than in on-treatment controls (p=0.008, Kruskall-Wallis with Dunn’s correction for 

multiple comparisons, Figure 2D). Anti-IAA titres tended to be higher on-ICI in those who 

developed CIADM than controls on-ICI, but this did not remain significant after correction for 

multiple comparisons (p=0.09, Figure 2E).  

Figure 2F shows that anti-insulinoma antigen 2 (IA2) titres were higher on-ICI in CIADM 

patients than in on-ICI controls (p=0.045). In Figure 2G, anti-zinc transporter 8 (ZnT8) titres 

were higher at CIADM-diagnosis than in on-ICI controls (p=0.04) but did not differ before 

diabetes-onset. 
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Pancreatic volume was profoundly reduced at CIADM diagnosis compared to before-ICI 

(p<0.01) and was substantially lower than controls on-ICI (p<0.0001, Figure 2H). Most 

CIADM patients did not have on-treatment scan prior to onset of CIADM. 

 

Pre-treatment and pre-diabetes glucose and C-peptide levels do not predict future CIADM 

Insulin secretion was assessed by measuring C-peptide and concurrent glucose. People who 

went on to develop CIADM did not have lower C-peptide before ICI treatment, or on-ICI 

before CIADM (Figure 2I). 

C-peptide fell from a median of 1.0 (IQR 0.6-1.4) nmol/L pre-ICI and 1.1 (0.6-1.8) on-ICI to 

0.05 (0-0.3) nmol/L post diagnosis for CIADM patients. In controls it remained normal (Figure 

2I).  

Formal blood glucose was not available for all CIADM patients after diagnosis, before 

commencement of insulin, and the available glucose levels did not differ significantly (Figure 

2J). Overall, neither C-peptide nor serum glucose are predictive for future CIADM.  

 

Changes in antibody titres with ICI-treatment within individuals were examined to assess 

whether this may be an independent predictor of CIADM (Figure 3). No pattern of antibody 

change during treatment significantly predicted CIADM. 

 
Altered circulating cytokine levels are associated with CIADM  

Figure 4 depicts circulating cytokine concentrations at the different timepoints in CIADM 

patients and controls. No cytokines showed differential expression before ICI therapy. 

Interferon-γ (IFNγ), interleukin 1β (IL-1β), and tumor necrosis factor-α (TNFα) are the 

cytokines most classically associated with T1D. IFNγ was elevated at CIADM diagnosis 
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compared to before or on-ICI (Figure 4A, p<0.05). IL-1β did not show any significant 

differences (Figure 4B). Figure 4C shows that TNFα also rose significantly at the time of 

CIADM diagnosis compared to baseline or to on-ICI in CIADM patients.  

 

Interleukin 2 (IL-2) and IL-4 were both also significantly higher at CIADM diagnosis than at 

baseline (Figures 4D and 4E, p<0.05). Interleukins 6, 8 (also called CXCL8), 10, 12, and 17A 

did not differ between groups (Figures 4E-J), nor did CCL2 (chemokine C-C motif ligand 2), 

free TGFβ (transforming growth factor) or C-X-C motif chemokine ligand 10 (CXCL10), 

(Figures 4K-M). 

 

Cytokine levels predict immune related adverse effects (IRAE) 

The 9 controls who did not develop any known immune related adverse event were 

compared to people who developed CIADM plus controls who developed an IRAE to test 

whether circulating cytokine levels may be predictive of developing any IRAE (Figure 5). 

When compared to controls without IRAE, before ICI treatment, IRAE patients had 

significantly higher levels of IL-2, IL-6, IL-17A, CCL2, and free TGFβ before commencing ICI 

therapy (all p<0.05; Figures 5E, 5F, 5J, 55K and 5L, all Kruskall-Wallis with Dunn’s correction 

for multiple comparisons).  

IRAE patients after ICI exposure had higher IL-6 (Figure 5F), IL-17A (Figure 5J) and CXCL10 

(Figure 5M) than on-ICI levels in people with no IRAE.  

 

People who developed CIADM have a more activated immune system at baseline 

Immuno-phenotyping of circulating PBMCs reveals significant differences at baseline 

between patients who developed CIADM and controls. CIADM patients, before ICI-exposure, 
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had fewer naïve CD4+ T-cells (Figure 6A, p<0.05), more Th17 cells (Figure 6B, p=0.001) and 

more CD4+ central memory cells (CM, p<0.01, Figure 6C). Pre-ICI CIADM patients also had 

fewer activated CD8+ CD38+ HLADR+ T cells (Figure 6D, p<0.05).  

Interestingly, given the fulminant phenotype of diabetes in many CIADM patients, there 

were also differences in baseline natural killer (NK) cells, with more CD56hi NK cells (Figure  

6E, p<0.01). These are an NK cell subtype more strongly associated with cytokine and 

chemokine production (Figure 6F, p<0.05). 

After ICI treatment, there were no further significant changes in these cells (Figures 6G-L). 

Other cell subsets including Treg cells were not significantly altered (Figure 6). Figure 8 

shows other flow cytometry results for cell types which were not significantly altered. 

 

Immune cell phenotypes also differ with IRAE  

Flow cytometry parameters were compared in people with IRAE were compared to those 

with no IRAE (Figure 88). At baseline, people who went on to develop an IRAE also had fewer 

naïve CD4 cells at baseline, more Th17 cells, and more CD4+ central memory cells.  

After ICI treatment, people with IRAE showed increased CD8+ CD38+ HLADR+ cells (Figure 

8D). 

 

Differential gene expression in CD8+ T cells in CIADM 

CD8+ T-cells are thought to be the major mediator of beta-cell death in T1D. Circulating 

CD8+ T-cells were collected and RNA expression was profiled with RNA-sequencing. 

Surprisingly, before ICI therapy, there were no differentially expressed genes that passed a 

false discovery rate (FDR) of <0.05 comparing CIADM and control patients. Comparing on-ICI 

controls to on-ICI CIADM patients pre diagnosis, only 2 genes passed FDR; RNF220 and BCR 
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(both p=0.044). Comparing on-ICI controls to after-diagnosis CIADM patients, no genes 

passed FDR testing. This data will be available at GEO INSERT HERE – currently cannot 

upload with the shutdown. 

  

Receiver Operated Characteristic (ROC) curve analyses of key predictors 

The baseline variables that were significantly associated with CIADM development (anti-

GAD, anti-IAA, pancreatic volume, CD4+ central memory, CD4+ naïve, Th17 cells, CD8+ HLA-

DR+CD38+, and NK CD56hi) are shown in Supplementary Table 1. They were combined in a 

multiple logistic regression model. Figure 9 shows that this gave a receiver operated 

characteristic (ROC) curve with an area under the curve (AUC) of 0.968 (95% CI 0.919-1.0, 

p<0.0001). This was associated with positive predictive value of 92.6% and a negative 

predictive value of 90.91%. 

 
The data were separately analysed using only antibodies and pancreatic volume, as clinical 

flow-cytometry testing may not be available in all centres in a clinically meaningful 

timeframe. Including only anti-GAD, anti-IAA and pancreatic volume in the model gave an 

ROC curve with AUC of 0.891 (p=0.0001), with negative predictive value of 77.8% and 

positive predictive value of 82.8%.  

 

Discussion 

Here we report a number of baseline predictors of CIADM. Using serial samples, patients 

and controls were evaluated using a combination of flow cytometry, cytokine expression, 

autoantibody analysis, RNA-Seq and CT imaging analysis. We identify that CIADM patients 

have higher levels of anti-GAD and anti-IAA at baseline and lower baseline pancreatic 
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volume compared to matched controls. CIADM patients had higher baseline Th17+, higher 

CD4+ central memory cells and lower naïve CD4+ cells than controls. CIADM patients also 

exhibited differences in lymphocyte expansion early on treatment with higher activated 

CD4+ CD38+ HLA-DR+ subsets and lower naïve CD4+ subsets compared to controls. 

 

In humans, limited data are available regarding the immunophenotype of CIADM. Hughes et 

al reported a case series of five patients with CIADM and amongst the four patients that had 

HLA-A2+ haplotyping, two had increased diabetes antigen specific T cells, which were 

predominantly effector or memory cells (28). A mass cytometry based study of 28 patients 

with melanoma treated with ICI included two patients with new onset T1DM, which we 

would term CIADM. This study identified higher activated CD4+ cells in those with severe 

IRAE of all types on treatment similar to our study, but conversely to our findings found 

higher naïve CD4+ T cells to be associated with more severe IRAE (29). However, of the two 

CIADM patients included, no significant differences in comparison to controls were found.  

 

When looking at IRAE studies in general, Lozano et al’s study of T cell phenotyping in 

patients treated with ICIs for melanoma, using single cell RNA-Seq revealed baseline and 

early on treatment expansion in  CD4+ T effector memory subsets to be associated with 

severe IRAE of all types, whereas in our study CD4+ central memory subsets defined by flow 

cytometry had the strongest association with CIADM at baseline (30). Bukhari et al 

previously identified on single cell sequencing of PBMCs from patients with thyroiditis was 

associated with higher baseline Th17 subsets (31). Kim et al similarly found higher baseline 

Th17 subsets to be associated with development of severe immune-related adverse effects 
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of all types in a cohort of patients treated for non-small cell lung cancer and thymic 

epithelial tumours with ICIs (32).  

 

In type 1 diabetes, both Th1 and Th17 pathways are acknowledged as direct drivers of 

disease pathogenesis in human and animal studies (33–35). A recent study found that 

Ustekinumab which binds IL-12 and IL-23 to target Th1 and Th17 cells was able to preserve 

pancreatic β-cell function in adolescents with recent onset type 1 diabetes (36). We find 

increased baseline Th17 cell numbers in CIADM patients and associated significant increases 

of cytokines associated with the Th17 pathway including IL-6, TGF, TNF- and IFN- in 

CIADM patients compared to controls. Interestingly, the majority of changes in circulating 

immune cells were in CD4+ cells. Consistent with this, there were essentially no changes in 

gene expression in circulating CD8+ T cells in CIADM patients. The lack of changes in 

circulating CD8+ T cells is surprising and suggests either that CD8+ cells are not important in 

CIADM, or more probably that the cells of relevance were not in circulation. In T1D, the 

pathogenic CD8+ T cells are highly concentrated in the pancreas and pancreatic lymph node 

(37). 

 

In comparison to other IRAE, one of the unique aspects of CIADM is that its de novo 

counterpart T1D has well established biomarkers in the form of islet autoantibodies, 

especially anti-GAD, anti-IA2, anti-IAA and anti-ZnT8. It is known that CIADM patients at 

diagnosis have lower prevalence of those autoantibodies than in T1D (4). We and others 

have reported pre-treatment anti-GAD positivity in a small proportion of CIADM patients but 

this has not been extensively tested or compared with controls (38–41). Anti-GAD positivity 

is present in a small proportion of the general population, with a median specificity of anti-
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GAD in the Islet Autoantibody Accreditation Program of 98.9% (42). A Norwegian study of 

over 4000 individuals found anti-GAD has a prevalence of 1.7% in the non-diabetic 

Norwegian adult population (43) where it was associated with thyroid autoimmunity. Anti-

GAD titre was higher in individuals with prediabetes than those with normal metabolic 

parameters. Our study used the highly sensitive agglutination PCR assay to detect subclinical 

levels of anti-GAD which were significantly higher than controls and were associated with 

progression to CIADM. It is plausible that patients with CIADM have a subclinical degree of 

anti-islet autoimmunity as evidenced by low titres of anti-GAD and anti-IAA reflecting 

subclinical islet autoimmunity that places them at risk once exposed to ICIs. 

Our population of patients with CIADM had a 66% rate of T1D risk HLA-haplotypes among 

those who were tested. This is not substantially different to the background population rates 

of HLA risk-alleles and is substantially less than the 90-95% rate of high-risk alleles in people 

with T1D. It is worth noting that there is variability between frequency and composition of 

risk alleles in different series worldwide. This may relate, at least in part, to differences in 

HLA-types and T1D risk alleles between people of different ethnicity.  

 

The use of pancreatic volumetry as a biomarker for prevalent type 1 diabetes and CIADM is 

established. Previous studies (20, 44, 45) in individuals at high risk of T1D have shown 

reduced pancreatic volume with progression to diabetes. Several studies have corroborated 

that CIADM is associated with a decline in pancreatic volume, however baseline, pre-ICI 

pancreatic volumes have not previously been reported in cases compared to controls (6, 46–

48).  
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The strengths of this paper lie in the inclusion of longitudinal case control matched samples 

obtained and use of a diverse range of biomarker methodology. The biomarkers we have 

used in our final prediction model are all non-invasive, scalable, and easily accessible 

clinically through peripheral blood collection and CT scans that are already being conducted 

as part of routine care. Automated pancreatic volumetry methodology has previously been 

validated (49). 

 

The limitations of this study include relatively low sample size, due to the relatively low 

incidence of CIADM at 0.4-1.9% of PD1/ PD-L1 ICI treated patients (5–9). Even so, this is the 

largest series of CIADM patients with longitudinal sample analyses. The lack of significant 

differentially expressed genes by RNA-sequencing of CD8+ cells was surprising. However, 

most of the flow cytometry identified differences were in CD4+ cells. After the CD8+ results 

were analysed, the CD4+ cells were no longer available to sequence, which is a limitation of 

this study. Inclusion of a Type 1 diabetes Genetic Risk Score (17) may further improve the 

ability to predict CIADM but this test is not routinely available.  

A future validation study would allow testing of the robustness of the predictive variables 

identified in this study. Expanding the patient population to include other primary tumor 

types would be of interest. The sensitive auto-antibody detection assay used in this report 

(agglutination PCR assay (50)) found that 64% of CIADM patients have assay-detectable anti-

GAD levels vs 14% of controls (p<0.001) and 54% have anti-insulin antibodies vs 21% of 

controls (p=0.038). Use of this assay, or another similarly sensitive assay and combining 

those results with CT or MRI examination of pancreatic volume is the most easily testable 

hypothesis. Although the circulating immune cell phenotypes added substantially to the 

predictive value, they will not be available in all centers.  
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The detection of subclinical anti-GAD titres and lower baseline pancreatic volume in our 

CIADM cohort suggests that CIADM patients have prior anti-islet immune responses that are 

poised under permissive conditions (i.e. immune checkpoint inhibition) to cause disease. 

That these patients have not developed T1D prior to the introduction of an anti-PD1 or anti-

PDL1 inhibitor indicates that this immune pathway plays an important role in suppressing 

islet autoimmunity. The findings of higher Th17 helper cells, CD4+ central memory cells and 

lower CD4+ naïve cells at baseline with more activation on ICI introduction gives the 

impression of a more experienced and autoreactive immune system in CIADM patients 

compared to controls without immune-related adverse effects. Combined, these findings 

suggest that CIADM patients have a distinct immune profile that can be detected prior to ICI 

use.  

The ability to predict IRAE has unique potential when the clinical indication for ICI is not 

definitively superior to alternatives. For example, in stage III melanoma, ICIs are currently 

considered alongside targeted therapy such as dabrafenib plus trametinib as effective 

adjuvant therapy and specific contraindications to ICIs such as autoimmune disease, 

immunosuppressive treatment guide choice of therapy (51). In this scenario, the ability to 

identify individuals at high risk of severe IRAE could further guide therapeutic choices in this 

area and reduce IRAE related morbidity.  In people who have high likelihood of therapeutic 

benefit from ICIs but also a high risk of CIADM, knowledge of this risk would facilitate closer 

monitoring and thereby potentially prevent late diabetes diagnosis when ketoacidosis is 

present. 

 

Conclusions 
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Immune-related adverse events are common in those treated with immune checkpoint 

inhibitors and vary in severity from mild to fatal. Prediction of immune-related adverse 

effects prior to therapy has the potential to inform clinical decisions, allow for earlier 

detection and open a potential window for prevention. Combining biomarkers from the 

fields of type 1 diabetes and immune-related adverse effects research, we have identified 

biomarkers that have potential to predict checkpoint inhibitor related autoimmune diabetes 

from baseline and on treatment characteristics. Prospective validation of these biomarkers is 

a crucial next step but a challenging prospect due to the relative low incidence of CIADM.  
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Methods 

Sex as a biological variable 

Of the patients studied, 11 people with CIADM were male and 3 female, and 22 ICI treated 

controls were male and 6 female. Melanoma has higher incidence in males. 

Sample selection 

Fourteen patients with CIADM and 28 ICI treated controls that had longitudinal 

biospecimens were identified from the prospectively collected Melanoma Institute of 

Australia medical record database (MRD2) and biospecimen bank.  

  

The diagnosis of CIADM was based on new onset diabetes (HbA1c 6.5% and/or blood 

glucose 11mmol/L) in the setting of ICI therapy, with evidence of insulin deficiency (either 

presence of diabetic ketoacidosis or low C-peptide 0.4nmol/L with elevated glucose). No 

patients had previous diabetes. 

 

Two controls were selected for each CIADM patient, matched as closely as possibly for age 

(±5 years), sex, type of immune checkpoint inhibitor therapy (single agent anti-PD1 versus 

combined anti-CTLA4 plus anti-PD1), time on therapy, treatment response and concurrent 

other IRAEs. If CIADM patients had no other IRAE, they were matched to controls without 

IRAE. If CIADM patients had other IRAE, they were matched to controls with those same 

IRAEs or if no such controls could be found, then a control with no IRAE.  

 

Control patients had prospectively collected pre-ICI and on-ICI PBMC (~3 months after 

treatment initiation) and serum samples analysed. CIADM patients similarly had pre-ICI and 

on-treatment bloods collected at approximately 3 months. CIADM patients additionally had 
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samples taken approximately 3 months after CIADM diagnosis. A subgroup of control 

patients did not develop any immune-related adverse effects and they were also separately 

compared to assess the effect of general ICI related immune changes on various parameters. 

A summary of the methods is depicted in Figure 1.  

 
Autoantibody analysis  

Type 1 diabetes autoantibodies (anti-GAD, anti-IA2, anti-ZnT8 and anti-IA2) in serum 

samples were determined using agglutination PCR assay which has been previously 

described (50). Clinical thresholds for each autoantibody are set at the 98th percentile of 

results from 60-84 negative serum samples included in the 2023 International Islet 

Autoantibody Standardization Program (52). 

 

Cytokine expression 

Serum cytokine expression was measured using the Biolegend LEGENDplexTM  Human 

Essential Immune Response Multiplex Assay (Catalogue. No. 740930). This measures 

interleukins IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12p70, IL17A, interferon (IFN), tumor necrosis 

factor α (TNFα), CCL2, CXCL8 (IL-8), CXCL10 and free transforming growth factor β1 (TGFβ1). 

The assay was conducted in accordance with manufacturer’s instructions with samples run 

in duplicate. 

 

C-peptide assay 

Serum C-peptide was measured using human C-peptide ELISA assay (CrystalChem, Catalog 

#80954) as per manufacturer’s instructions.  
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Glucose levels 

Serum glucose was measured directly from serum samples using Abbott Freestyle Libre 

glucometer and glucose test strips. 

 

CT pancreatic volumetry 

CT pancreatic volumetry was conducted by 1 investigator (L.W.) as previously published using 

Vitrea software (Figure 1B). CT scans were obtained within 6 months of each blood 

collection timepoint. CT scans from CIADM cases were compared to the control cohort. 

Some of these pancreatic volumetry results have previously been published (53) and the 

expanded cohort is presented. CT scans were not available for one patient with CIADM and 

two controls. Most CIADM patients did not have protocol CT scans on-ICI before CIADM, so 

data is not available for that timepoint. 

 

Flow cytometry 

Cryopreserved PBMCs were thawed in media and washed in FACS buffer prior to staining. 

Samples were stained first with FVS700 Viability Dye (Cat no. 564997) in dark for 10 minutes, 

followed by human AB serum for 10 minutes. Antibodies were all purchased from BD 

Biosciences except CXCR5 PE-Cy7 which was from Biolegend. Cells were then stained with 

CCR6 BV480 (Cat no. 556130), CXCR3 PE-CF596 (Cat no. 562451), CCR7 BB700 (Cat no. 

566438), and CXCR5 PE-Cy7 (Cat no. 356923) at 37C for 15 minutes. Surface staining was 

then performed with CD45RA APC-H7 (Cat no. 560674), CD8 BUV496 (Cat no. 612943), 

CD127 BV786 (Cat no. 563324), CD3 BUV661 (Cat no. 612965), CD25 BB515 (Cat no. 

564467), CD56 BUV737 (Cat no. 612767), CD16 BUV563 (Cat no. 741449), CD4 BUV805 (Cat 

no. 612887), CD38 BV421 (Cat no. 562445), HLA-DR BUV395 (Cat no. 565972) at 4C for 30 
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minutes. Cells were analysed using the BD Symphony Analyser with gating strategy as shown 

in Supplementary Figure 1. A minimum of 30,000 cells were analysed per sample. 

 

Cell sorting 

Cryopreserved PBMCs were thawed and washed in FACS buffer prior to staining with FC 

block, CD45+, CD3+ CD8+, CD4+ and DAPI. CD8+ cells were identified via gating for CD45+ 

CD3+ CD8+ CD4- and DAPI negative subsets via the BD Influx cell sorter. 1000 CD8+ cells per 

samples were sorted per well into a 96 well plate and frozen down as per manufacturer’s 

instructions.  

 

RNA extraction and sequencing 

Total RNA was extracted using Ultra Low Input Takarabio kit. RNA was extracted and 

sequenced using a NovaSeq X with approximately 10 million 150bp paired end reads. 

RNA-Sequencing analysis was performed using R, using edgeR for differential gene analysis 

and STAR, RSEM, Tximport and DESeq2 with a Gencode 45 (latest) annotation for isoform 

analysis. Flow cytometry data were analysed using FlowJo. 

  

Statistics 

Statistical analysis was performed using SPSS version 21, or GraphPad Prism version 10.  

Most serum, cytokine and flow cytometry data were not normally distributed, and were 

compared with Mann-Whitney where only 2 datasets were compared, or Kruskall-Wallis 

testing with Dunn’s correction for multiple comparisons where >2 sets were examined. In 

the case of matching samples, e.g. pre-ICI, on-ICI and CIADM in the same people, Wilcoxon 

signed-rank test was used, again, corrected for multiple comparisons. Normally distributed 
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data were compared using one-way ANOVA with correction for multiple comparisons. 

Multiple-comparison adjusted p-values of <0.05 were considered statistically significant.  

When comparing paired data across time-courses, Wilcoxon signed-rank test was used with 

manual addition of the correction for the number of comparisons with Bonferroni. 

IBM SPSS Statistics version 28 was used to analyse the variables demonstrating univariate 

association with diabetes status. These were candidates for inclusion in multivariate binary 

logistic regression models. Backward stepwise variable selection was used to identify the 

independent predictors of diabetes status in the best fitting multivariate logistic regression 

model. The area under the receiver operating curve (ROC) was utilized to evaluate the 

performance of the fitted model from the best multivariate logistic regression model to 

correctly classifying a patient’s diabetes status.  

P values of <0.05 after any corrections for multiple comparisons were taken as significant. 

Illustrations were made using Adobe Illustrator or GraphPad Prism. 

 

Study approval 

All patients gave written informed consent. The study was approved by Royal Prince Alfred 

Hospital Research Ethics Committee, Sydney on Protocol No. X10-0305 and HREC/10/RPAH. 

 

Data availability 

Data other than original sequencing files will be able to be accessed from FigShare using doi 

10.6084/m9.figshare.29453093 from the date of online publication. Normalized RNA 

sequencing data is available at the same FigShare location. Please email the corresponding 

author for access to the original sequencing files. 
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Figure 1.A.  Summary of methodology. B. Representative CT scans of a patient with CIADM 

prior to ICI therapy and at time of CIADM diagnosis (red = pancreatic area). 
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Supplementary Figure 1. Gating strategy for T and NKT phenotyping in PBMC. Cells were 
gated on A) Lymphocytes, B) single cells, C) Live cells, D) CD56+ cells were distinguished 
from CD3+ cells. E) CD56+ cells were gated on CD3 and CD16+ status to identify CD3+ NKT 
and CD3- NK cells. F)  CD3+ cells were gated by CD4+ or CD8+. G) CD4+ and CD8+ T-cells 
were separately gated on CD45RA versus CCR7 to identify central memory (CM), naïve T 
cells, T effector memory (TEM) and terminally differentiated effector (TDE) cells. H) 
Activation markers HLA-DR and CD38 were used to gate % activated T cells in the CD4+ and 
CD8+ subsets. I) CD4+Cd25+ CD127- T regulatory cells were gated. J) CD4+ cells were gated 
with CXCR3 and CCR6 to identify Th1, Th2 and Th17 status.  
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Table 1. Baseline characteristics.  

 CIADM (n=14) Control (n=28) 

Mean age (years; +/- SD) 71.2 (12.3) 67.2 (12.1) 

Sex (M/F) 11 (78%) / 3 (22%) 22 (78%) / 6 

(22%) 

Prior autoimmune disease 1 1 

Type of ICI therapy 

Anti-PD1 7 (50%) 14 (50%) 

Anti-PD1 plus anti-CTLA4 7 (50%) 14 (50%) 

Metastatic disease 14 (100%) 28 (100%) 

Prior exposure to other anti-cancer 

therapy (e.g. TKI, chemotherapy) 

7 (50%) 14 (50%) 

Response to ICI therapy 

Complete response 7 (50%) 14 (50%) 

Partial response 4 (29%) 8 (29%) 

Stable disease 0 0 

Progressive disease 3 (21%) 6 (21%) 

Immune-related adverse effects 14 (100%) 17 (60%) 

Thyroiditis 8 6 

Skin 4 4 

Colitis 3 2 

Pancreatitis 3 0 

Hepatitis 2 2 
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Type 1 diabetes high-risk HLA 

DR/DQ haplotypes 

6 of 9 tested (66.7%). N=3 

DR3, N=1 DR4, N=1 

DR3/4, N=1 DR13  

N/A 

Type 1 resistant HLA haplotypes  2 (22.2%, 1 patient with 

DR3 haplotype and 1 with 

no risk haplotypes) 

N/A 

Time to CIADM (weeks, median 

(IQR)) 

32 (7-65) N/A 

TKI = tyrosine kinase inhibitor. IQR = interquartile range. 
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Supplementary Table 1. Significant variables for pre-ICI comparisons. These variables were 

input into multiple logistic regression. 

 CIADM 

 

Control 

 

Test, p-value 

Baseline pancreatic volume (mls) 56±8 77±5 T-test p=0.023 

Anti-GAD 2.9 (0-6.1) 0 (0-0.8) M-W p=0.0021 

Anti-IAA 2.0 (1.4-2.4) 1.0 (0-1.78) M-W p=0.048  

% CD4+ central memory 4.3 (2.4-11.8) 1.7 (0.7-3.7) M-W p=0.01 

% CD4+ naïve  38.5 (32.7-
44.2) 

50.8 (39.9-
60) 

M-W p=0.03 

% Th17 cells 11 (8.5-13.2) 6.6 (5.6-7.9) M-W p=0.001 

% CD8+HLA-DR+CD38+ 0.8 (0.6-2.0) 2 (1.3-3.1) M-W p=0.014 

% NK CD56hi 1.6 (0.8-2.6) 0.5 (0.3-1.1) M-W p=0.0065 

Data which is normally distributed is presented as mean±SEM and non-parametric data is 
shown with median and interquartile range (IQR). M-W = Mann Whitney  
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Figure 2. Antibody levels, pancreatic volume, C-peptide and glucose. A) Anti-GAD antibodies 
before ICI in control and CIADM. B) Anti-IAA pre-ICI. C) Pancreatic volume pre-ICI. D) Anti-
GAD before and on-ICI. E) Anti-IAA before and on-ICI. F) Anti-IA2 before and on-ICI. G) Anti-
ZnT8 before and on-ICI. H) Pancreatic volumes before and on-ICI. I) C-peptide before and on-
ICI. J) Blood glucose before and on-ICI. Lines indicate median. Dotted lines at A, B, and D-G 
indicate thresholds for positive. *p<0.05, **p<0.01. ***p<0.0001 for indicated comparison. 
For A-C, Mann-Whitney tests. For D-J Kruskall-Wallis corrected for multiple comparison with 
Dunn’s test. 
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Figure 3. Changes in antibody titre with time. A) and B) Anti-GAD antibodies. C) and D) Anti-
IAA antibodies. E) and F) Anti-IA2 antibodies. G) and H) Anti-ZnT8 antibodies. Note the 
majority of people who did not develop CIADM (Controls) were 0 to 0 titres for all antibodies 
except IA2, so their results align across the x-axis. We note that developing insulin auto-
antibodies after commencing insulin therapy is common, as was observed in the CIADM 
group after starting insulin. 
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Figure 4. Circulating cytokines. A) IFNγ, B) IL1β, C) TNFα, D) IL2, E) IL4, F) IL6, G) IL8, H) IL10, 
I) IL12, J) IL17A, K) CCL2, L) Free TGFβ1, M) CXCL10. * p<0.05, **p<0.01 for the indicated 
comparison, Kruskall-Wallis with Dunn’s correction for multiple comparisons. Lines indicate 
median. 
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Figure 5. Cytokine levels in patients without immune related adverse effects (IRAE) pre and 
on-ICI and in people with IRAE pre and post-ICI. A) IFNγ, B) IL1β, C) TNFα, D) IL2, E) IL4, F) 
IL6, G) IL8, H) IL10, I) IL12, J) IL17A, K) CCL2, L) Free TGFβ1, M) CXCL10. *p<0.05 and ** 
p<0.01 for indicated comparison by Kruskal-Wallis testing with Dunn’s correction for multiple 
comparisons. 
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Figure 6. Flow cytometry immune cell subsets. Figures A-F depict pre-ICI differences 
between CIADM and control patients, Figures G-L depict data across all time points. * 
p<0.05, **p<0.01 for the indicated comparison, Kruskall-Wallis with Dunn’s correction for 
multiple comparisons. Lines indicate median. 
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Figure 7. Additional flow cytometry results. A) All CD4+ cells, as a percentage of T-cells. B) 
Th1 T-cells. C) Th2 T-cells. D) CD4+ terminally differentiated effector cells (TDE). E) CD4+ T-
effector memory (TEM). F) Regulatory T cells (Treg). G) CD*+ naïve cells. H) Innate-like 
bystander activated T-cells (CD8+ CD38+ HLADR+ cells). I) CD8+ central memory (CM) cells. J) 
CD8+ TDE cells. K) CD8+ TDE cells. K) CD3+ NK cells. The grey shaded areas show control ICI-
treated patients. No differences were statistically significant after correction for multiple 
comparisons. 
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Figure 8. Immune cell subtypes in people with and without IRAE (immune related adverse 

effects). A) CD4+ naïve T cells. B) Th17 cells. C) CD4+ central memory cells. D) CD8+ CD38+ 

HLADR+ cells. * p<0.05, ** p<0.01, *** p<0.001 for indicated comparison by Kruskal-Wallis 

testing with correction for multiple comparisons. 
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Figure 9. ROC curve for multiple logistic regression predicting CIADM diagnosis from 

combining baseline anti-GAD, anti-IAA, pancreatic volume, CD4+ central memory, CD4+ 

naïve, Th17 cells, CD8+ HLA-DR+CD38+, and NK CD56hi.  
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