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SUPPLEMENTAL FIGURES 

 

Supplemental Figure 1 

 



 

 

Supplemental Figure 1. Loss of Tbx3 protects against WD induced MASLD. 

A. qPCR for fibrosis markers in Tbx3 WT or KO mice fed WD for 3 months. 

B. Representative Sirius Red staining in mice from A. 

C. qPCR for fibrosis genes in Tbx3 WT or KO mice fed WD for 6 months. 

D. Representative Sirius Red staining in mice from C. 

E. Plasma ALT in mice from C. 

F. Western blot for cleaved PARP in Tbx3 KO or WT mice fed WD for 3 (left) and 6 (right) 

months. 

G. Liver weight (left), body weight (middle) and liver:body weight ratio from female Tbx3 KO 

or WT mice fed WD for 3 months. 

H. Representative H&E image from mice in G. 

  



 

 

 

Supplemental Figure 2 

 

 

Supplemental Figure 2. Loss of Tbx3 protects against MASLD induced liver tumors. 

A. Liver weight (left), body weight (middle), and LW:BW ratio (right) of Tbx3 WT or KO mice 

fed a WD for 48 weeks. 

B. Surface tumors from mice in A. 

C. Example of large surface tumor from mice in A.  



 

 

Supplemental Figure 3 

 

Supplemental Figure 3. MASLD exerts negative selective pressures on Tbx3 expressing 

hepatocytes. 

A. Tbx3 expression in TBX3-V5 or GFP-V5 injected mice after 3 months of WD feeding. 

B. Tbx3 expression in Tbx3-V5 or GFP-V5 injected mice after 3 months of NC feeding. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplemental Figure 4 

 

 

Supplemental Figure 4. Tbx3 deletion is protective against MASLD associated with aging. 

A. Liver weight (left), body weight (middle), and liver:body weight ratio (right) of Tbx3 WT or 

KO mice fed NC diet for 6 months. 

B. Representative H&E image from mice in A. 

C. Plasma ALT from mice in A. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplemental Figure 5 

 

Supplemental Figure 5. Tbx3 does not alter de novo lipogenesis or free fatty acid uptake. 

A. LW:BW ratio of Tbx3 KO or WT mice fed a WD for 4 weeks. 

B. Representative H&E images from mice in A.  

C. Fractional enrichment of M+16 palmitate in the plasma of Tbx3 KO or WT mice infused 

with 13C potassium palmitate after 2 weeks of WD feeding. 

D. Fractional enrichment of M+16 palmitate in the liver from mice in C. 

  



 

 

Supplemental Figure 6 

 

Supplemental Figure 6. Loss of Tbx3 protects from MASLD by increasing VLDL 

secretion. 

A. Plasma ALT in Tbx3 KO or WT mice fed a CDAHFD for 3 months. 

B. Plasma AST from mice in A. 

C. qPCR for fibrosis marker genes from mice in A.  

D. Representative sirius red staining from mice in A. 

E. Liver triglyceride measurements from mice in A. 

F. Volcano plot of MOSAICS screen (11) showing depletion of Mttp and Tm6sf2 KO clones 

in WD vs. NC fed mice. 

G. Relative secretion of Gaussia luciferase after TBX3 knockdown in HEK293T cells. 

H. qPCR of cholesterol biosynthesis genes in Tbx3 KO or WT mice 1 week after AAV 

injection. 

I. Liver triglyceride measurements from mice overexpressing GFP-V5, WT TBX3-V5, 

TBX3-V5 containing a point mutation after 12 weeks of WD feeding. 

Relative secretion in G was calculated using a One-way ANOVA corrected for multiple 

comparisons.  
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