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Salicylic acid: an old dog, new tricks, 
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Aspirin has been shown to cause a reduction in the virulence of Staphylo-
coccus aureus–associated endocarditis. A new study (see the related article
beginning on page 222) reveals that salicylic acid, the major metabolite of
aspirin, acts at the level of transcription to downregulate the production of
fibrinogen, fibronectin, and α-hemolysin — virulence factors necessary for
bacterial replication in host tissues and, now, potential therapeutic targets.
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One hundred and twenty years after its
initial description as the pathogen that
causes sepsis and abscesses (1), Staphylo-
coccus aureus remains a dangerous organ-
ism. Staphylococcal endocarditis is on
the rise (2) and still causes significant
mortality (3). The methicillin-resistant
S. aureus (MRSA) epidemic has entered a
new era due to the spread of MRSA into
the community (4) and acquisition of
new resistance cassettes with the poten-
tial for genetic transfer (5). The advent
of fully vancomycin-resistant, methi-
cillin-resistant clinical isolates (6) has
further weakened the available arma-
mentarium against this pathogen.

Importance of staphylococcal
attachment and invasion in
endovascular disease
S. aureus is a nonmotile microorganism
with a particular propensity to colonize
biologic or artificial substrates using a

battery of pathogenicity factors (7),
allowing for specific bacterial attach-
ment. This can be followed by cellular
invasion and subsequent tissue degra-
dation. Several lines of evidence clearly
indicate that the interaction with host
proteins and platelets is instrumental in
the development of disease. A plethora
of bacterial factors — either wall bound
(8) or secreted (9, 10) — mediate binding
of and attachment to ECM molecules
such as fibronectin, fibrinogen, colla-
gen, and vWF. Work with deletion
mutants and complemented heterolo-
gous hosts has demonstrated the par-
ticular role of adhesins that recognize
fibronectin (such as fibronectin-binding
protein A) and fibrinogen (such as
clumping factor A, ClfA), allowing for
cellular invasion and production of
experimental endocarditis (11, 12), and
gfp reporter assays from endocarditis
models clearly indicate that activation
of global regulators that coordinate
adhesin and toxin expression, such as
agr and sar, occurs in vivo (13, 14).

Distinctive effects of acetylsalicylic
acid and salicylic acid on platelets 
and bacteria
A particular role of platelets in the
pathogenesis of staphylococcal endo-
carditis has been suggested since the
early observation by Durack of bacterial
interaction with fibrin-platelet matrices

at sites of nonbacterial thrombotic
endocarditis (15) and the series of
reports by Clawson et al. on the interac-
tion of S. aureus with purified platelets
(16). In the early 1990s, experiments
with surface-activated platelets suggest-
ed to our group the importance of fib-
rinogen and S. aureus clumping factor in
the bacteria-platelet interaction (17).
These observations were subsequently
confirmed and extended by use of a low-
platelet-binding mutant expressing a
mutated ClfA protein (18) that displays
diminished virulence in an endocarditis
model (19), and by identification of the
secreted fibrinogen-binding proteins
Coa and Efb in phage-display panning
assays (20) (Figure 1).

While these observations pointed
toward complex but, according to their
adhesive function, rather propatho-
genic events at the bacteria-endocardi-
um interface, the role of platelets had
to be reevaluated after the discovery
that they function as specialized
inflammatory cells (21) in response to
secretion of antimicrobial peptides. In
fact, paradoxically, hyperexpression of
α-toxin by S. aureus results in dimin-
ished virulence in experimental endo-
carditis, possibly because of the release
of platelet microbicidal proteins (22).

The attributed role of platelets in the
disease process that results in endovas-
cular infection has prompted a number
of researchers to interfere with platelet
function for prevention or treatment of
endocarditis. Acetylsalicylic acid (ASA,
aspirin) has been used in vitro and in a
number of experimental models to
reduce vegetation sizes and to mitigate
the course of disease (23–25). Similar
effects have also been observed by
Kupferwasser et al. (26). However, when
they studied its metabolite, salicylic acid
(SAL), in parallel to ASA, they made the
interesting observation that pretreat-
ment of bacteria with SAL reduced
attachment to the valvular epithelium
to an even greater extent than adminis-
tration of ASA. This observation was
accompanied by the in vitro finding that
SAL-pretreated S. aureus cells bound to
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a lesser degree to platelets and to fibrin-
platelet and fibrin matrices than did
untreated bacteria and elicited platelet
aggregation in a prolonged reaction
time. Since SAL lacks the key effect of
ASA on platelet function consisting of
acetylation of the platelet COX-1, the
observed in vivo attenuation and in
vitro adherence studies delineated dis-
tinct effects of ASA and SAL on platelets
and microorganisms, respectively.

SAL modulates key regulatory 
steps in pathogenesis
In this issue of the JCI, Kupferwasser
and colleagues (27) extend these excit-
ing findings. In a careful approach
using a number of strains with func-
tional gene regulator deletions and
complementations in various genetic
backgrounds, they demonstrated an
acid stress–independent, SAL-mediated
activation of the alternative staphylo-
coccal stress response gene sigB, and con-
sequently a downregulation of the sarA
and agr regulons with a concomitant
decrease in the expression of hla and
fnbA (Figure 2). These effects resulted in
decreased bacterial adherence, and
reduced toxin-mediated hemolysis and
thrombolysis. Most importantly, SAL
pretreatment attenuated the course of
disease by decreasing the vegetation
weight, the vegetation bacterial density,
and the renal bacterial density.

The role of sarA and agr in the course
of experimental endocarditis has
already been studied previously by this
group (28). What is novel in this
approach is delineation of the effect of
SAL on the global regulators, which

induces a downregulated status of func-
tional sarA and agr. The nature of agr as
a two-component signal transduc-
tion–dependent regulator may allow for
autoinduction and bacterial interfer-
ence (29). Another approach to the
attenuation of virulence is inhibition of
the electron transport (30) that drives
microorganisms in a small-colony vari-
ant phenotype, as seen in a more chron-
ic-persistent course of disease such as in
cystic fibrosis (31). Yet, the establishing

of a straightforward, unequivocal strat-
egy to downregulate staphylococcal vir-
ulence using a cheap, simple, relatively
nontoxic, resorbable compound such as
SAL may be seen as major progress in
the development of intervening strate-
gies in addition to antimicrobial drugs.

Potential directions 
of future research
The study by Kupferwasser et al. (27)
leaves a number of open questions.

Figure 1
Pathogenic events resulting in endovascular
disease. Local inflammation activates the
binding of fibronectin by ECs through vas-
cular cell adhesion molecules; platelet acti-
vation is triggered by cytokines and tissue
factor (TF) secreted by monocytes and ECs.
Fibronectin also mediates invasion of ECs by
S. aureus, allowing for persistence and intra-
cellular growth shielded from host defense.
The inflammatory response mediated by T
cells and polymorphonuclear neutrophils
(PMNs) may be mitigated by the effect of
Eap (39, 40). MO, monocyte.

Figure 2
Potential roles of salicylic acid (SAL) in the pathogenesis of S. aureus endovascular infection. (I)
SAL pretreatment of S. aureus results in overexpression of SigB-dependent genes in both an rsbU-
positive and an rsbU-negative background, suggesting SigB activation independent of the anti–
σ-factor RsbU. (II) Activation of the sarAP3 promotor appears to contribute to decreased expres-
sion of active SarA protein, putatively via inhibitory activity of the sarAP3 gene product. Again,
SAL appears to contribute to SarA reduction in a sarAP3-additive fashion. (III) As SarA controls
expression of RNAII and RNAIII, the net effect of SAL is a mitigation of the agr response. Since
α-toxin (hla) expression depends on both sar and agr, and expression of wall-bound adhesins is
also in part controlled by sar, the mitigation of both adhesin and toxin expression in SAL-treat-
ed microorganisms appears to depend on a combined sar/agr effect; yet other regulators may
also be involved. (IV) In addition to hla, the expression of other secreted molecules such as the
extracellular adhesive protein Eap depends on agr and sarA and may be downregulated under
the influence of SAL. Expression of the polysaccharide intracellular adhesin (PIA) is suggested to
depend on sigB, which may positively control expression of icaADBC, with consequences not yet
fully understood in S. aureus endovascular infection. The S. aureus adhesins (FnBPA, FnBPB, ClfA,
and ClfB) recognize fibronectin and fibrinogen, which are presented on ECs and platelets.



Firstly, is there any role of SAL in estab-
lished endocarditis? As downregulation
of attachment factors may be of prime
importance to prevent initial steps of
pathogenesis, SAL may come too late for
a salutary effect in treatment. In fact, the
above-mentioned “paradoxic” effect due
to hyperexpression of α-hemolysin may
be abrogated, resulting in diminished
release of platelet microbicidal proteins.
Secondly, how do the findings regard-
ing agr suppression relate to the find-
ings of others, that in a serum milieu
(32) or in established infection (33), agr
expression is already largely diminished,
and other regulators such as sae may
play a more prominent role in the in
vivo infection? Lastly, what is the mech-
anism of the effect of SAL on S. aureus
regulation? SAL is known to exert a
plethora of effects on various eukaryot-
ic and prokaryotic cells. More specifical-
ly, SAL treatment enhances resistance of
S. aureus to fluoroquinolones and fusidic
acid. Even more interesting, SAL inhibits
biofilm production in Staphylococcus epi-
dermidis (34), apparently because of mul-
tiple effects on proteinaceous and non-
proteinaceous cell wall and cell surface
components (35). Biofilm production
in S. aureus (36) and S. epidermidis (37)
has been demonstrated to depend on
the icaADBC gene cluster that confers
production of the polysaccharide inter-
cellular adhesin (PIA, also known as
PS/A). Expression of the icaADBC gene
cluster is environmentally controlled
and, at least in part, regulated by sigB.
sigB expression, on the other hand, is
controlled by a cascade of sigB activators
and inhibitors (38).

The observations by Kupferwasser et
al. (27) shed substantially more light
onto the patchwork of information
concerning the effect of SAL on staphy-
lococci, and they relate it to its poten-
tial as a therapeutic compound. Given
this exciting new prospect for a widely
used and established drug, additional
research into the molecular events that
result from staphylococcal exposure to
SAL is now warranted.
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