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Introduction
Understanding the ability of  a vaccine to elicit an effective 
immune response (i.e., vaccine immunogenicity), is fundamen-
tal to guiding vaccination programs (1). Traditional evaluation 
methods often measure humoral and cellular immunity in isola-
tion, overlooking their intricate interplay (2–4). Although emerg-
ing high-dimensional profiling technologies enable more holistic 
assessments (3), comprehensive evaluations that simultaneously 
capture systemic, mucosal, and cellular immune responses remain 
rare. This poses a substantial barrier to predict vaccine-induced 

BACKGROUND. Predicting individual vaccine responses is a substantial public health challenge. We developed Immunaut, 
an open-source, data-driven framework for systems vaccinologists to analyze and predict immunological outcomes across 
diverse vaccination settings, beyond traditional assessments.

METHODS. Using a comprehensive live attenuated influenza vaccine (LAIV) dataset from 244 Gambian children, Immunaut 
integrated prevaccination and postvaccination humoral, mucosal, cellular, and transcriptomic data. Through advanced 
modeling, our framework provided a holistic, systems-level view of LAIV-induced immunity.

RESULTS. The analysis identified 3 distinct immunophenotypic profiles driven by baseline immunity: (a) CD8+ T cell 
responders with strong preexisting immunity boosting memory T cell responses; (b) mucosal responders with prior influenza 
A virus immunity developing robust mucosal IgA and subsequent influenza B virus seroconversion; and (c) systemic, broad 
influenza A virus responders starting from immune naivety who mounted broad systemic antibody responses. Pathway 
analysis revealed how preexisting immune landscapes and baseline features, such as mucosal preparedness and cellular 
support, quantitatively dictate vaccine outcomes.

CONCLUSION. Our findings emphasize the power of integrative, predictive frameworks for advancing precision vaccinology. 
The Immunaut framework is a valuable resource for deciphering vaccine response heterogeneity and can be applied to 
optimize immunization strategies across diverse populations and vaccine platforms.
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allowed quantitative evaluation of  serum antibody binding profiles 
before and after LAIV administration, providing insights into the 
specificity, magnitude, and breadth of  the antibody responses, 
including cross-reactive responses. We also examined stalk-specific 
responses targeting conserved regions of  the HA protein, including 
antibody-dependent cellular cytotoxicity activity measured against 
chimeric HA stalk constructs (e.g., cH6/1 and cH7/3) to assess 
cross-reactive immunity (23). Neuraminidase (NA) titers in blood 
and nasal mucosa offered insights into cross-protective responses 
(24). Complementing antibody profiles, we assessed T cell IFN-γ 
and IL-2 production upon stimulation with vaccine strain com-
ponents (HA, NA, and matrix/nucleoprotein) to capture systemic 
cellular responses. Collectively, this panel of  immunological assays 
provided a highly granular view of  the magnitude and quality of  
immune responses elicited by LAIV administration, allowing us to 
capture a detailed immunophenotypic landscape.

This integrated, multimodal dataset served as input for the 
Immunaut machine learning framework (see Methods). To visu-
alize patterns, we projected the high-dimensional data into a 2D 
space using t-distributed stochastic neighbor embedding (t-SNE) 
(Figure 1B). We then constructed a K-nearest neighbors (KNN) 
graph based on Euclidean distances in this reduced space. We 
applied the Louvain community detection algorithm to identify 
distinct immunophenotypic groups, which partitions the graph to 
maximize the modularity score (Q), a measure of  clustering qual-
ity where a higher modularity score indicates more distinct and 
well-separated clusters. We systematically evaluated clustering sta-
bility by applying the algorithm across a range of  resolution values 
(r), where lower resolutions yield fewer, larger clusters and higher 
resolutions produce more, smaller ones. This assessment revealed 
a resolution range where modularity reached a high and stable pla-
teau (Q ≈ 0.717, Figure 1C), signifying a robust and well-defined 
community structure, and the number of  clusters consistently con-
verged to 3 (Figure 1D). This provides quantitative evidence that 
this partitioning reflects distinct biological subtypes rather than 
arbitrary divisions sensitive to parameter tuning.

The final 3-cluster partition is visualized on the t-SNE pro-
jection (Figure 1E), comprising group 1 (green, n = 82), group 
2 (orange, n = 88), and group 3 (purple, n = 74). The average 
silhouette score of  0.4 indicates moderately distinct clusters. We 
observed no substantial enrichment of  specific sexes (Figure 1F) 
or study years (Figure 1G) within any cluster, suggesting the clus-
tering captures genuine immunophenotypic differences indepen-
dent of  these external biases known to affect immune responses 
to vaccines (25–27).

Individuals in group 1 (n = 82) displayed a distinct profile char-
acterized by CD8+ T cell–mediated responses and notably low CD4+ 
T cell IFN-γ activity (Figure 1H). This group showed elevated IFN-γ 
and IL-2 production by CD8+ T cells upon stimulation, with the most 
pronounced responses against influenza B virus HA and matrix/
nucleoprotein antigens (Figure 1H). Influenza B virus–specific CD8+ 
T cell IFN-γ responses were statistically significant compared with 
group 3 (Figure 2A). Conversely, humoral and IgA responses in 
group 1 were minimal or absent (Figure 1H and Figure 2, A and 
D). Although some N1-specific IgA responses were detected (Fig-
ure 1H), these responses were not statistically significant and were 
comparable to those observed in group 2, indicating that the N1 IgA 

immunity, especially for complex vaccines such as the live atten-
uated influenza vaccine (LAIV), which engages multiple arms of  
the adaptive immune system (5, 6).

Here, we bridge this gap by leveraging an extensive LAIV 
immune dataset from a cohort of  244 children aged 24–59 months 
in The Gambia enrolled in a phase 4 immunogenicity study (7–
9). We integrated humoral, cellular, and mucosal responses with 
detailed baseline clinical and immunological measurements. Our 
dataset includes multiple serum antibody and T cell responses, 
mucosal IgA, transcriptomic profiles, and microbiological assess-
ments, providing the statistical power to delineate robust immu-
nogenicity patterns and advance a systems-level understanding 
of  vaccine response.

Translating such multifaceted data into actionable insights is 
challenging. Predictive methods must account for high interindi-
vidual variability and incorporate baseline immune features from 
limited samples (10–14). Existing analytical tools have begun inte-
grating diverse data types (15–18), but to our knowledge, none of  
these tools have achieved a comprehensive, predictive framework 
that can accommodate outliers with atypical responses and reliably 
anticipate who will benefit most from vaccination.

Achieving this predictive capability is essential for personalized 
vaccination strategies. Identifying immune markers that predict 
response heterogeneity can guide tailored interventions to enhance 
vaccine effectiveness, especially in high-risk populations (10). This 
is crucial for rapid deployment of  immunizations against patho-
gens with pandemic potential (19, 20).

To meet these challenges, we developed Immunaut, an open-
source, data-driven framework for systems vaccinologists to unravel 
complex immune responses and predict vaccine outcomes. Through 
advanced modeling, Immunaut integrates multidimensional 
immune features to classify individuals into distinct immunophe-
notypic responder profiles, revealing how baseline characteristics 
shape vaccine responses. Applied here to a comprehensive LAIV 
datasets, Immunaut delineated responder groups with systemic 
humoral, mucosal, or T cell–mediated biases and uncovered crit-
ical biomarkers associated with effective LAIV responses. Beyond 
this specific application, Immunaut is readily adaptable to other 
vaccines and datasets, offering a robust foundation for precision 
vaccinology.

Results
Comprehensive immunoprofiling of  LAIV responses reveals distinct 
immunophenotypic groups. To define responder status to LAIV 
in 244 Gambian children (7), we focused on adaptive immune 
markers with paired baseline (day 0) and postvaccination (day 
21) measurements, expressed as fold-change values (V21/V0; see 
Methods) (Figure 1A). Using fold-change accounted for interin-
dividual variability in baseline immunity, capturing genuine vac-
cine-induced changes. We evaluated a comprehensive panel of  
antibody-mediated responses, including hemagglutination inhibi-
tion (HAI) titers, an indicator of  antibodies that block the bind-
ing of  the influenza virus to host cells (21). We used an influenza 
virus protein microarray to assess the breadth of  antibody respons-
es (22). This high-throughput platform profiles binding antibody 
responses across multiple influenza strains, including hemagglu-
tinin (HA) proteins from various influenza A and B viruses. This 

https://doi.org/10.1172/JCI189300
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Figure 1. Immune response landscape mapping of LAIV reveals distinct immunophenotypic groups. (A) Cohort overview depicting all features used for 
unsupervised machine learning analysis: 244 children (24–59 months of age) vaccinated with LAIV; mucosal and blood samples collected on day 0 (prevacci-
nation) and day 21 (postvaccination). Vaccine-induced immune responses calculated as fold-change relative to prevaccination levels. (B) Workflow schematic 
for automated clustering pipeline applying t-SNE dimensionality reduction, KNN graph construction, and Louvain community detection to identify distinct 
immunophenotypic clusters. (C and D) Louvain resolution sweep results used to assess cluster stability and select optimal number of clusters. (C) Modularity 
score plotted against Louvain resolution parameter, colored by number of clusters identified (3–6). High modularity indicates well-separated clusters. Red 
diamond indicates selected clustering parameters. (D) Number of clusters identified plotted against Louvain resolution parameter, colored by modularity score. 
Stability of 3-cluster solution (red diamond) is observed across range where modularity is maximal (Q ≈ 0.717). (E) Clustered t-SNE plot of fold-change data 
(post/pre-LAIV) revealing 3 distinct LAIV response phenotypes: group 1 (green, n = 82), group 2 (orange, n = 88), and group 3 (purple, n = 74). (t-SNE parameters: 
perplexity: 30; exaggeration factor: 4; max iterations: 10,000; theta: 0; eta: 500; K: 60 for KNN graph; final silhouette score: 0.40). (F and G) Clustering patterns 
overlaid with demographic factors on t-SNE map. (F) Clustering by sex (female, green; male, orange). (G) Clustering by study year (2017, green; 2018, orange). (H) 
Heatmap and hierarchical clustering display fold-change data for key immune features across 3 clusters (columns: groups 2, 1, and 3 from left to right). Rows 
represent immune features, clustered using Euclidean distance and Ward’s D2 method. Heatmap cells are colored based on scaled FC values from –1 (blue, low 
FC) to 1 (red, high FC). The top color bar indicates responder groups (group 1, green; group 2, orange; group 3, purple). Side color bars indicate qualitative response 
classifications derived from assays: HAI (purple: high, dark; low, light), IgA (orange: high, dark; low, light), CD4+ T cell (blue: high, dark; low, light), and CD8+ T cell 
(green: high, dark; low, light). Column cluster ordering optimized for visual clarity.

https://doi.org/10.1172/JCI189300
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antigens and strains tested, including against chimeric HA stalk con-
structs, indicating the induction of  antibodies targeting conserved 
HA regions (Figure 2B). The consistent IgA increase was unique 
to group 2 and not observed in groups 1 or 3 (Figure 2, B and D), 
validating their classification as mucosal responders. Group 2 also 
exhibited significant seroconversion to influenza B viruses (Figure 
1H), evidenced by substantial increases in HAI titers (Figure 2B). 

responses were not a distinguishing feature of  group 1 (Supplemental 
Figure 1A; supplemental material available online with this article; 
https://doi.org/10.1172/JCI189300DS1). Based on these results, 
we termed individuals in group 1 as “CD8+ T cell responders.”

In contrast, group 2 (n = 88) individuals exhibited a profile domi-
nated by mucosal IgA responses (Figure 1H). This group showed sta-
tistically significant induction of  mucosal IgA antibodies across all 

Figure 2. Vaccine response 
immune signatures defining 
LAIV responder types. (A) Polar 
plot summarizing scaled median 
expression of key immune features 
in CD8+ T cell responders (group 1, 
green). CD8+ T cell responders are 
characterized by robust influenza 
B virus HA–specific CD8+ IFN-γ 
responses and limited humoral 
immunity, with median feature 
values represented in the polar 
plot and fold-change comparisons 
shown in the adjacent box plot. (B) 
Polar plot for mucosal responders 
(group 2, orange) illustrating strong 
mucosal IgA responses, particularly 
stalk-specific (cH7/3 IgA) and H3N2 
virus HA–specific IgA antibodies 
and influenza B virus–specific 
responses. Box plots detail fold 
changes (shown as log10) for various 
immune features, highlighting sys-
temic (influenza B virus HAI) and 
mucosal immune activation (IgA). 
(C) Polar plot depicting systemic, 
broad influenza A virus responders 
(group 3, purple), showing elevated 
systemic antibody responses to 
multiple influenza A virus strains 
(e.g., H1, H3), as well as cross-reac-
tive IgG and antibody-dependent 
cellular cytotoxicity activity. Box 
plots show fold-change values 
(log10) for each immune marker 
across responder groups. (D) 
Integrated radar plot comparing 
scaled median immune expression 
profiles across all responder groups 
(CD8+ T cell responders in green, 
mucosal responders in orange, 
systemic broad influenza A virus 
responders in purple), emphasizing 
distinct immune feature distribu-
tions. This integrative visualization 
highlights the unique baseline and 
postvaccination immune land-
scapes that define each responder 
profile. Box plots denote minimum 
to maximum values, and points are 
all individuals within the group. *P 
< 0.05, **P < 0.01, ***P < 0.001, 
and ****P < 0.0001, by 1-way ANO-
VA Kruskal-Wallis test with Dunn’s 
multiple-comparison test to adjust 
for multiple testing.

https://doi.org/10.1172/JCI189300
https://www.jci.org/articles/view/189300#sd
https://www.jci.org/articles/view/189300#sd
https://doi.org/10.1172/JCI189300DS1
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significant increases in HAI titers for both H1N1 and H3N2 strains 
(Figure 2C). The antibody responses demonstrated breadth, with 
substantial increases in binding to HA subtypes from multiple con-
temporary and historical H1N1 and H3N2 strains not present in the 
vaccine (Figure 2C). Elevated responses were also observed against 
the cH6/1 chimeric HA construct, including increased antibody-de-
pendent cellular cytotoxicity (Figure 2C). Significantly higher N1 

Although antibody binding responses to influenza B viruses mea-
sured by influenza virus protein microarray were elevated (Figure 
1H), they were not statistically significant (Supplemental Figure 1B). 
This suggests humoral immunity in group 2 included both mucosal 
and systemic antibody responses against influenza B virus.

Group 3 (n = 74) individuals showed robust systemic antibody 
responses to influenza A viruses (Figure 1H). This was evidenced by 

Figure 3. Automated machine learning framework for mapping and predicting LAIV immunogenicity response phenotypes. (A) Overview of the 
automated machine learning framework developed to predict LAIV response phenotypes using baseline immune data from mucosal and blood samples, 
capturing multidimensional immune parameters such as transcriptomics, antibody titers, bacterial load, flu-specific T cell responses, and comprehen-
sive immunophenotyping. (B) Step 1, balanced data partitioning: the dataset is split into training (80%) and testing (20%) sets, ensuring proportional 
representation of each immunophenotypic group (CD8+ T cell; mucosal; and systemic, broad influenza A responders) to maintain predictive accuracy 
across classes. Step 2, model optimization cycle: 10-fold cross-validation and hyperparameter tuning are applied across 141 machine learning models, 
each iteratively trained and validated to identify the best predictors of vaccine response. Step 3, model evaluation and scoring: predictive performance 
metrics, including specificity, sensitivity, and AUC, are calculated on the test set (20%) for model validation. Feature importance scores are computed 
for each baseline variable, providing a ranked analysis of each immune parameter’s contribution to LAIV response prediction. (C) Multiclass ROC plot of 
the gradient boosting machine model evaluated on the test set (20%), displaying predictive accuracy across all 3 classes: CD8+ T cell responders (green); 
mucosal responders (orange); and systemic, broad influenza A responders (purple) in a one-versus-all comparison. (D) Variable importance score table for 
the gradient boosting machine model, showcasing the cumulative importance of the selected baseline features across the 3 predicted classes, highlighting 
the most influential parameters in LAIV immunogenicity prediction.

https://doi.org/10.1172/JCI189300
https://www.jci.org/articles/view/189300#sd
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titers were also detected (Supplemental Figure 1C), supporting a 
coordinated response targeting conserved epitopes. Although some 
CD4+ T cell responses were elevated (Supplemental Figure 1C), sig-
nificant IgA responses were absent, indicating predominantly sys-
temic immunity (Figure 2, B and D). This finding supports classify-
ing them as systemic broad influenza A virus responders.

Predictive modeling of  LAIV response phenotypes based on baseline 
immune profiles. We next sought to determine whether prevaccina-
tion immune profiles could predict an individual’s response type. 
To achieve this, we used comprehensive baseline immunological 
measurements before vaccination (Figure 3A), including antibody 
profiles, T cell responses, Streptococcus pneumoniae load (pneumo-
coccal carriage density), asymptomatic respiratory viral presence, 
RNA pathway scores from nasal samples, and frequencies of  var-
ious immune cell subsets such as monocytes, plasmacytoid and 
myeloid DCs (pDCs and mDCs), and T follicular helper (Tfh) cells 
(28) relevant to LAIV, which relies on both innate and adaptive 
immune pathways to induce protection (5, 6, 29, 30).

To model the mapped vaccine responses, we applied the 
Sequential Iterative Modeling OverNight (SIMON) platform, which 
is designed for high-dimensional datasets with substantial interin-
dividual variability (17, 31) (Figure 3B). We systematically tested 
141 machine learning algorithms to ensure the selection of  the 
most accurate and biologically meaningful model (17, 31–33). We 
employed 10-fold cross-validation during model training to enhance 
robustness and mitigate overfitting, and we assessed performance 
on a held-out test set to ensure generalizability. Out of  the 141 mod-
els tested, 26 achieved a test set area under the receiver operating 
characteristic curve (AUC) above 0.7, underscoring the predictive 
strength of  our baseline immune profiles (Supplemental Table 1).

Among all models, the gradient boosting machine model was 
the top performer (Supplemental Table 1). It achieved an accuracy 
of  59.57% (exceeding the null accuracy of  36.17%; P = 0.0009), a 
balanced accuracy of  71.67%, an F1-score of  0.6286, a precision of  
0.6902, and a recall of  0.6471, highlighting its capacity to balance 
false-positives and false-negatives and an overall AUC of  0.8. One-
versus-all AUCs confirmed robust performance across individual 
classes: 0.80 for CD8+ T cell responders, 0.77 for mucosal respond-
ers, and 0.73 for systemic broad influenza A virus responders (Fig-
ure 3C). Training gradient boosting machine models on individu-
al or pairwise data types showed that removing any primary data 
modality reduced performance, demonstrating that integration 
of  diverse features was essential for high accuracy (Supplemental 
Table 2). The gradient boosting machine model’s capacity for fea-
ture importance estimation, its ability to manage high-dimensional 
data, and its robustness to missing data (Supplemental Figure 2) 
make it a powerful tool for this classification task.

Next, we identified the baseline features that were most critical 
for classification (Figure 3D). The top predictor was the baseline 
HAI geometric mean titer against H3N2 (score 100), indicating that 
preexisting systemic immunity drives the response type. Howev-
er, high baseline mucosal IgA against various influenza antigens, 
including influenza B/Victoria/2/87-like lineage HA and NA (61), 
pH1N1 HA (48), N1 (20), H3N2 NA (18), and cH7/3 IgA (44) was 
also pivotal, underscoring the complementary roles of  systemic and 
mucosal immunity. Key cellular parameters, such as IFN-γ–produc-
ing T cells (e.g., influenza A virus matrix/nucleoprotein CD4 IFN-γ, 

score 64; H1N1 and H3N2 HA CD4 IFN-γ, 33 and 36; influenza B 
HA CD8+ IFN-γ, 21) and Tfh cell frequencies (34), also surfaced 
as prominent predictors. Additionally, innate immune cells, pneu-
mococcal carriage density (36), and asymptomatic respiratory viral 
infection (6) emerged as critical modulating factors. Notably, base-
line nasal RNA-derived Gene Ontology (GO) pathways, encom-
passing metabolism (GO:0072521, variable importance score 46), 
morphogenesis (GO:0060562, score 40), and Hedgehog signaling 
(GO:0008589, GO:0007224, scores 22 and 6), contributed substan-
tially, pointing to a context-dependent model of  vaccine responsive-
ness where tissue-level processes shape the immune response.

Collectively, these observations suggest that LAIV response phe-
notypes arise not from a single dominant factor but emerge from a 
finely tuned network of  systemic and local immunity, innate and 
adaptive cellular components, and underlying tissue-level processes.

Identifying preexisting immune landscapes that shape LAIV respons-
es. To delineate the preexisting immune landscapes that define 
each group, we hypothesized that specific baseline conditions char-
acterize each responder class. To test this, we combined machine 
learning–derived insights with exploratory analyses of  baseline 
seropositivity, viral shedding, and detailed immunological profil-
ing. The resulting patterns suggest that historical exposure to influ-
enza strains plays a pivotal role in shaping the immune response 
to LAIV (Figure 4).

Children who became CD8+ T cell responders had a distinctive 
baseline signature (Figure 4A). Before vaccination, this group had 
significantly higher seropositivity for H1N1 (48%) and H3N2 (72%) 
(P = 0.049 and P < 0.0001) and elevated baseline HAI responses 
(Figure 4, A and B). They also had elevated baseline levels of  influ-
enza virus–specific IgA in nasal secretions, targeting multiple LAIV 
strains and cH7/3 chimeric stalk construct, features identified by the 
machine learning model as important (Figure 4A). After vaccination, 
this group showed significantly reduced shedding of  H3N2 by day 7 
(17% shedding rate), an association confirmed by logistic regression 
(β = 1.21, P = 0.0078) (Figure 4E). Baseline nasal transcriptional 
analysis identified enrichment of  pathways, including purine metab-
olism (GO:0072521; score 46) and regulation of  defense response 
(GO:0031347; score 16) (Figure 4A). These children also had elevat-
ed baseline S. pneumoniae loads (score 36), Hedgehog signaling path-
way (GO:0007224, score 6), and asymptomatic respiratory viruses 
(predominantly rhinovirus) detected before vaccination (χ

2 test P = 
0.57; Supplemental Figure 3). The frequency of  circulating classical 
monocytes and mDCs was also elevated at baseline (Figure 4A).

Mucosal responders showed high baseline seropositivity to 
influenza A viruses (H3N2 = 82%, H1N1 = 45%) but a lower rate 
against the influenza B virus (27%) (Figure 4, A and D). High base-
line H3N2 HAI titers were prominent, and reactivity extended to 
multiple H1N1 strains (e.g., influenza virus protein microarray 
assay, N1, N2, cH6/1, cH7/3), indicating extensive prior exposures 
(Figure 4, A and D). Nasal epithelial signatures related to morpho-
genesis (GO:0060562), innate immunity (GO:0045088), mRNA 
metabolism (GO:0016071), epigenetic regulation (GO:0040029), 
retinoid metabolism (GO:0001523), and lymphocyte proliferation 
(GO:0050671) pointed toward a state of  mucosal readiness. This 
preexisting influenza A virus immunity allowed for efficient con-
tainment of  LAIV’s influenza A virus strains, with shedding of  
H1N1 and H3N2 strains significantly reduced by day 2 (P = 0.043 

https://doi.org/10.1172/JCI189300
https://www.jci.org/articles/view/189300#sd
https://www.jci.org/articles/view/189300#sd
https://www.jci.org/articles/view/189300#sd
https://www.jci.org/articles/view/189300#sd
https://www.jci.org/articles/view/189300#sd
https://www.jci.org/articles/view/189300#sd
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Figure 4. Baseline immune landscape and viral shedding profiles predictive of LAIV response groups. (A) Heatmap of baseline immune features predictive 
of LAIV response groups, organized by hierarchical clustering to show feature relationships and variations across groups (Euclidean distance, Ward’s D2 clus-
tering method). Each cell reflects a scaled expression level, with red representing high expression and blue indicating low expression, revealing the distribution 
of immune features at baseline across the identified immunophenotypic clusters. (B) The proportion of seropositive children (HAI titer ≥10) at baseline (before 
vaccination) within each responder group and across all 3 LAIV-strains, pH1N1, H3N2, and influenza B virus. (C) The proportion of children that shed LAIV 
strains (pH1N1, H3N2, and B) on day 2 and day 7 after vaccination across all 3 responder groups. (D) Box plots showing baseline features, including H3N2 HAI 
geometric mean titer (gmt), titer of antibodies binding H3 HA from A/Switzerland/9715293/2013 analyzed by influenza virus protein microarray (H3 HA SWISS 
IVPM), titer of antibodies binding NA from group 2 (N2) and frequency of influenza B virus HA–specific CD8+ T cells producing IFN-γ across all 3 responder 
groups, CD8+ T cell responders (green); mucosal responders (orange); and systemic, broad influenza A virus responders (purple). Box plots denote minimum 
to maximum values, and points are all individuals within the group. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001, by 1-way ANOVA Kruskal-Wallis 
test with Dunn’s multiple-comparison test to adjust for multiple testing. (E) Forest plots showing log-odds estimates from a logistic regression model. The 
plots illustrate the association of the mucosal responder (orange) and systemic, broad influenza A virus responder (purple) groups with the outcomes of viral 
shedding (day 2 and 7) and HAI seropositivity, relative to the CD8 T-cell responder group which serves as the reference category. The analysis is stratified by 
LAIV strain (H3N2, pH1N1, and B), and the error bars represent the confidence intervals for the log-odds estimates.
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Systemic, broad influenza A virus responders had significantly 
lower prevaccine seropositivity for H1N1 (30%) and H3N2 (39%) 
(P = 0.049 and P < 0.0001, respectively; Figure 4B), further con-
firmed by the regression analysis (low baseline H1N1 (β = –1.05, 
P = 0.010) and H3N2 seropositivity (β = –1.44, P < 0.001) (Figure 
4E). Regression analysis confirmed that systemic responder status 

and P < 0.0001) and minimal shedding observed by day 7 (Figure 
4C). Regression analysis confirmed this association with lower shed-
ding of  H3N2 at day 2 (β = –1.08, P = 0.0047) and H1N1 at day 7 (β 
= –1.18, P = 0.021) (Figure 4E). In contrast, shedding of  influenza 
B virus persisted longer, and as per their definition, these children 
seroconverted to the influenza B virus after vaccination.

Figure 5. Baseline immune features 
and pathway-level determinants 
of LAIV responder profiles. (A–C) 
Polar plots illustrating scaled median 
expression of immune pathways 
across 3 responder groups: (A) CD8+ 
T cell responders (group 1, green); 
(B) mucosal responders (group 2, 
orange); and (C) systemic, broad 
influenza A virus responders (group 
3, purple). (D) Combined radar plot 
showing integrated immune path-
way signatures across the 3 respond-
er groups, highlighting intergroup 
differences in pathway activation. 
(E) SHAP (SHapley Additive exPla-
nations) summary plots showing the 
contribution of baseline features to 
model predictions for each responder 
group (CD8+ T cell responders, group 
1, green; mucosal responders, group 
2, orange; and systemic, broad 
influenza A virus responders, group 
3, purple). The intercept represents 
the baseline prediction before 
feature contributions. All other 
factors include the combined effect 
of features not displayed in the top 
10 contributors. Prediction (purple 
bar) is the final probability derived 
by summing the intercept, top 10 
feature contributions, and all other 
factors. Feature impacts are color 
coded as follows: green (positive, 1) 
increases the likelihood of belonging 
to the group, and red (negative, –1) 
decreases it. The top 10 features 
are ranked by their contribution to 
the prediction, providing insights 
into key drivers of LAIV response 
profiles. (F) The decision tree depicts 
the splits made at each node based 
on immune feature thresholds. 
Splits are chosen to maximize 
class separation, with fitted class 
probabilities displayed as group 1 
(CD8+ T cell responders, green), group 
2 (mucosal responder, orange), and 
group 3 (systemic, broad influenza 
A virus responders, purple) for each 
terminal node. The coverage per-
centage represents the proportion of 
observations falling under each rule. 
Nodes are labeled with thresholds 
and the conditions that define group 
separation, with terminal nodes 
representing the predicted group and 
associated probabilities.
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cH7/3 titers (<601) had a 59% likelihood of  developing CD8+ T 
cell responses. Alternatively, a similarly high H3N2 baseline (≥40) 
combined with low B/Victoria/2/87-like lineage NA IgA (<14) 
favored the mucosal responder type (70% likelihood). Low H3N2 
HAI (<40) combined with higher baseline influenza B virus HA–
specific CD8+ T cell IFN-γ responses associated with a 62% like-
lihood of  the systemic broad influenza A response profile. These 
findings provide quantitative thresholds demonstrating how specif-
ic combinations of  baseline features relate to distinct LAIV-induced 
immunophenotypes.

Discussion
In this study, we introduced Immunaut, an integrative machine 
learning approach, to decipher how the preexisting immune land-
scape in children dictates outcomes after LAIV administration. 
Moving beyond traditional analyses, often limited to linear models 
and single biomarkers, our methodology synthesized high-dimen-
sional prevaccination data to provide a cohesive, systems-level view 
of  LAIV immunogenicity. This approach identified 3 distinct post-
vaccination immunophenotypes: CD8+ T cell responders; mucosal 
(and influenza B humoral) responders; and systemic, broad influen-
za A responders, each linked to specific baseline signatures.

A key strength of  our strategy is its ability to reveal nuanced 
biological states by capturing nonlinear interactions. By employ-
ing multiple modeling techniques, Immunaut translated complex 
profiles into interpretable biological insights, allowing us to under-
stand how combinations of  factors shape the ultimate response. 
For example, identifying the mucosal responders highlights this 
advantage; standard analyses focused on systemic HAI antibodies 
might misclassify these individuals as poor responders, overlooking 
substantial mucosal immunity. Although the achieved predictive 
accuracy (AUC 0.80) is statistically significant and highlights the 
potential of  baseline immunophenotyping, further improvements 
are needed for direct clinical application. The model’s primary util-
ity is its power to integrate complex datasets, identify responder 
subgroups, and pinpoint key baseline features driving response het-
erogeneity — crucial steps in advancing our understanding toward 
personalized vaccinology.

CD8+ T cell responders started with a baseline reflecting exten-
sive prior influenza exposure and heightened mucosal readiness. 
They exhibited higher baseline seropositivity for H1N1 and H3N2, 
elevated HAI responses, and robust levels of  influenza virus–specif-
ic IgA in the nasal mucosa. This potent preexisting antibody profile 
contributes to rapid viral containment, evidenced by reduced viral 
shedding. Their baseline nasal transcriptome showed enrichment in 
defense and metabolism pathways, and they had higher S. pneumo-
niae loads and frequencies of  classical monocytes and mDCs, sug-
gesting a state of  immune vigilance (8, 35, 36). We propose that this 
combination of  strong preexisting immunity and a primed innate 
environment leads to efficient early control of  LAIV, limiting the 
antigenic stimulus and favoring the recall of  memory CD8+ T cells, 
resulting in the observed T cell–dominant phenotype.

Conversely, the mucosal responders emerged from a different 
immunological starting point, with high baseline seropositivity to 
influenza A viruses but substantially lower immunity against influ-
enza B. Their nasal transcriptome indicated a well-regulated muco-
sal interface. We interpret this as the strong preexisting influenza A 

was significantly associated with low baseline H1N1 (β = –1.05, P = 
0.010) and H3N2 seropositivity (β = –1.44, P < 0.001), and with per-
sistent H3N2 shedding at day 7 (β = 1.21, P = 0.0078) (Figure 4E). 
At baseline, these responders had a higher frequency of  circulating 
intermediate monocytes, pDCs (score 15), and Tfh cells (score 34) 
that facilitated a robust systemic response (Figure 4A). They also 
displayed a rich array of  T cell functional responses to multiple 
influenza antigens (Figure 4, A and D).

Taken together, these findings show how limited baseline 
immunity can lead to stronger systemic responses, while a pre-
primed environment streamlines early containment and clears the 
path for novel responses.

The integrative machine learning interpretation approach reveals 
determinants of  LAIV response profiles and predictors of  immunogenicity. 
Interpreting multiclass machine learning models is challenging due 
to the complex interplay between features across outcome classes. 
Features selected by the model can represent both enriched and 
reduced characteristics across groups, complicating direct inter-
pretation. We adopted a multifaceted framework to extract mech-
anistic insights, integrating pathway-level analysis, group-specific 
feature impact evaluation, and hierarchical examination of  feature 
splits in the model’s decision structure.

First, baseline features were mapped onto predefined biological 
pathways or functional categories (Supplemental Table 3). Immune 
metrics were assigned to humoral, cellular, or mucosal immunity 
compartments, with separate groupings for microbial load, anti-
gen presenting cell (APC) populations, and Tfh cells. GO terms 
from nasal transcriptomic data were grouped into broader catego-
ries, such as metabolic and epigenetic regulation, epithelial barrier 
integrity and tissue remodeling, immune and inflammatory regula-
tion, and others.

Pathway-level scores revealed distinct baseline signatures for 
each group (Figure 5, A–D). The dominant signature for CD8+ 
T cell responders included mucosal immunity and microbial load 
pathways (Figure 5, A and D). For mucosal responders, key base-
line pathways encompassed humoral immunity, immune regula-
tion, epithelial barrier integrity, immune modulation, and stress 
response (Figure 5, B and D). For systemic, broad influenza A 
responses, the baseline signature was marked by enriched cellular 
immunity, APC function, and Tfh cell support (Figure 5, C and D).

To gain more granular insights, we used SHAP (SHapley 
Additive exPlanations) analysis to quantify each predictor’s obser-
vation-specific contribution (34) (Figure 5E). For CD8+ T cell 
responders, elevated H3N2 HAI titers and influenza B virus-direct-
ed mucosal and cellular immunity positively shifted probabilities 
(Figure 5E). In mucosal responders, influenza B virus NA IgA was 
a key local contributor (Figure 5E). For systemic, broad influenza 
A virus responders, SHAP revealed how lower preexisting H3N2 
immunity and supportive Tfh-APC-metabolic landscapes promot-
ed broader antibody repertoires (Figure 5E).

Finally, decision-tree analysis established quantitative thresh-
olds for key features distinguishing the groups (Figure 5F). Base-
line H3N2 HAI was the primary discriminator, with a threshold 
of  40. Subsequent splits identified specific feature combinations 
associated with different responder likelihoods. Children exceed-
ing this H3N2 HAI threshold (>40) combined with moderate lev-
els of  B/Victoria/2/87-like lineage NA IgA (titer ≥14) but lower 

https://doi.org/10.1172/JCI189300
https://www.jci.org/articles/view/189300#sd


The Journal of Clinical Investigation   C L I N I C A L  R E S E A R C H  A N D  P U B L I C  H E A L T H

1 0 J Clin Invest. 2025;135(18):e189300  https://doi.org/10.1172/JCI189300

Methods

Sex as a biological variable
This study included 244 children of  both sexes, aged 24–59 months. Sex 

was considered as a demographic variable.

Study participants
We compiled data from multiple research projects that evaluated 

immune responses to a trivalent LAIV (Nasovac-S, based on the 

A/Leningrad/134/17/57 master donor strain, which is in use in 

Russia) among children in The Gambia. The cohort comprised 244 

children aged 24–59 months who received the LAIV during 2017 

and 2018 as part of  an open-label, prospective, observational, phase 

4 immunogenicity study nested within a larger randomized trial 

(ClinicalTrials.gov NCT02972957) (7). Eligible participants were 

healthy children with no history of  respiratory illness in the preced-

ing 14 days and no prior influenza vaccination. Exclusion criteria 

included serious active medical conditions (e.g., chronic diseases, 

severe malnutrition, genetic disorders), known immunodeficiency, 

hypersensitivity to vaccine components, recent use of  immunosup-

pressive therapies, and contraindications to LAIV administration. 

After community sensitization, recruitment was conducted in Suku-

ta, a periurban area in The Gambia. Participants recruited in 2017 

(n = 118) received the 2016–2017 northern hemisphere formulation, 

which included strains A/17/California/2009/38 (H1N1)pdm09-

like, A/17/Hong Kong/2014/8296 (H3N2)-like, and B/Texas

/02/2013-like (B/Victoria/2/87-like lineage). In 2018 (n = 135), 

participants received the 2017–18 formulation in which the H1N1 

component was updated to A/17/New York/15/5364 (H1N1)

pdm09-like; the H3N2 and B strains remained unchanged. Nine indi-

viduals in the 2018 cohort withdrew or missed the final study visit, 

leaving 244 children for the final analyses (see ref. 7 for the study 

profile). Whole blood and serum were collected before vaccination 

(day 0) and on day 21 after vaccination. Nasopharyngeal swabs were 

collected at days 0, 2, and 7 after LAIV administration using flocked 

swabs (Copan FLOQSwabs) and stored in RNAprotect Cell Reagent 

(QIAGEN) for viral shedding assessment and microbiome analyses. 

To evaluate mucosal antibody responses, oral fluid samples were col-

lected at days 0 and 21 after LAIV administration using Oracol Plus 

swabs (Malvern Medical Development). Whole blood samples were 

drawn for serum separation, flow cytometry, and transcriptomic 

analyses. All samples were stored at –70°C until processing.

Datasets encompassing a wide array of immune parameters
Humoral immune responses. HAI assays (21) were performed according 

to standard protocols on all 244 children using prevaccination (day 0) 

and postvaccination (day 21) samples using vaccine strain-matched 

antigens to assess seroconversion, defined as a 4-fold or greater increase 

in HAI titers to 1:40 or greater from day 0 to day 21 (7). This allowed 

for the evaluation of  antibody responses against all 3 LAIV-vaccine 

strains: A(H1N1) pdm09, A(H3N2), and B/Victoria/2/87-like lineage 

influenza virus strains. Influenza virus–specific IgA in oral fluids was 

quantified using a protein microarray with recombinant HA and neur-

aminidase proteins and normalized to total IgA in the sample (mea-

sured by ELISA) (43). A 2-fold increase in the proportion of  influen-

za virus–specific IgA was considered a significant mucosal antibody 

response. An influenza virus protein microarray was performed on 239 

immunity facilitating rapid control of  the LAIV A strains, as evi-
denced by the participants’ significantly reduced H1N1 and H3N2 
shedding soon after vaccination. However, the initial encounter 
with influenza A viral strains at the mucosal surface appears suffi-
cient to trigger a local immune response, likely involving recall of  
existing mucosal memory B cells. Concurrently, the lower baseline 
immunity against influenza B virus allows more persistent replica-
tion of  this component within the nasal mucosa, providing a sus-
tained antigenic stimulus. We propose that this sustained local acti-
vation, driven by the persistent influenza B component, provides 
the necessary help for a robust de novo response leading to influen-
za B seroconversion and boosts the recall IgA response against the 
influenza A components at the mucosa. The baseline enrichment 
in epithelial and regulatory pathways suggests a mucosal environ-
ment capable of  orchestrating this complex, temporally staggered, 
yet ultimately broad local antibody response. This configuration 
results in the defining phenotype: rapid systemic containment of  
influenza A, seroconversion to influenza B, and robust mucosal 
IgA responses to all 3 LAIV strains.

The systemic, broad influenza A virus responder phenotype 
was associated with lower prevaccine seropositivity to influenza A 
strains, permitting higher initial viral replication and a strong anti-
genic stimulus. Decision-tree analysis revealed 2 distinct pathways 
to this outcome. One involved individuals with preexisting immunity 
across multiple influenza A domains (high baseline H3N2 HAI, high 
B/Victoria NA IgA and cH7/3), suggesting a response dominated by 
the recall of  preexisting cross-reactive memory B cells, a mechanism 
consistent with phenomena like original antigenic sin or back-boost-
ing (37, 38), effectively leveraging prior exposures to generate breadth 
(39, 40). The second pathway occurred in naive individuals (low pre-
vaccination level of  H3N2 HAI) with increased frequencies of  T cell, 
APC, and Tfh signatures. Here, the breadth appears driven by T cells, 
which help facilitate de novo B cell activation, potentially involving 
cross-reactive T cells (41), likely fueling the germinal center activity 
(41, 42). Our findings identified 2 distinct routes to achieving broad 
systemic influenza A immunity after LAIV administration: one rely-
ing on recalling antibody memory, and the other leveraging cellular 
support to build breadth from a more naive state.

Although demonstrated for LAIV, the Immunaut framework is 
generalizable and can be applied to other vaccines or infections to 
accelerate biomarker discovery and rational vaccine design. Lim-
itations remain, including the need for validation in larger, more 
diverse cohorts across different ages, genetic backgrounds, and geo-
graphical locations to confirm the generalizability of  these signa-
tures. Also, targeted mechanistic experiments are needed to estab-
lish causality for the proposed pathways. Future work incorporating 
expanded multiomics datasets will further refine our understanding 
and predictive capabilities.

In summary, this study leverages an integrative machine learn-
ing approach, Immunaut, to provide a high-resolution map of  how 
preexisting immune landscapes dictate LAIV outcomes in children. 
By identifying distinct prevaccination signatures and quantitative 
thresholds that predict divergent response trajectories, our work 
offers crucial insights into the complex interplay governing vaccine 
immunogenicity. This represents a substantial step toward precision 
vaccinology, providing a framework for understanding and predict-
ing vaccine responses.
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for Reactome pathways and a cell-subset marker set (50 defining genes 

per subset), and single-sample GSEA was also conducted using prevac-

cination (baseline) gene expression values for each participant. Normal-

ized enrichment scores, adjusted P values, and leading-edge genes were 

extracted for each pathway. Pathways with an adjusted P value less than 

0.1 were considered significant, representing a more stringent threshold 

than the commonly used P value less than 0.25.

Demographic and clinical data. Detailed demographic data, including 

age, sex, nutritional status (weight-for-height z score), and health history, 

were collected for all 244 study participants to assess potential correla-

tions with immune responses. Participants were monitored for adverse 

events, and any respiratory illnesses occurring during the study period 

were documented to evaluate safety and potential confounding factors.

Data integration and preprocessing
The integrated dataset was generated using the standard extract-trans-

form-load procedure, as described previously (17). Briefly, data from 6 

primary datasets, each provided in CSV format and encompassing var-

ious immunological assays and demographic information, were inte-

grated using the unique identifier Subject ID. This integration was facil-

itated by a custom combine_data function, which merged the datasets 

into a single comprehensive dataset. Data were obtained before vacci-

nation (day 0) and on day 21 after vaccination for all measured param-

eters, including cellular, humoral, and mucosal values. Fold-changes 

were then calculated to obtain the LAIV-responsiveness measures, 

capturing both the preexisting immune state and the vaccine-induced 

responses. Before analyzing the integrated dataset, we performed sev-

eral preprocessing steps. The proportion of  missing values varied from 

1% to 56% across features. We addressed these missing values using a 

median-based imputation (medianImpute), in which the median value of  

the corresponding feature replaced each missing entry. The data were 

then normalized by centering (subtracting the mean) and scaling (divid-

ing by the standard deviation) of  each feature. Features exhibiting zero 

variance (zv) and near-zero variance (nzv) were identified and removed 

to reduce noise and improve computational efficiency. Additionally, 

features with pairwise Pearson correlation coefficients greater than 0.85 

were considered highly correlated and were filtered by retaining only 

1 representative feature from each correlated group. The final dataset 

included a comprehensive set of  immunological and demographic fea-

tures representing various aspects of  the immune response to LAIV.

Data-driven immunogenicity responders subtyping
In this section, we describe the methodology used for clustering a data-

set based on t-SNE dimensionality reduction (46), KNN graph con-

struction, and Louvain community detection (47, 48). We also outline 

the optimization steps for selecting the best clustering result based on 

multiple clustering evaluation metrics.

t-SNE dimensionality reduction. X ε Rn × d represents the dataset 

with n samples and d features. We first applied t-SNE to project the 

dataset into a lower-dimensional space, Y ε Rn × 2. The t-SNE method 

aims to minimize the Kullback-Leibler (KL) divergence between proba-

bility distributions of  points in high-dimensional and low-dimensional 

spaces. The objective function minimized by t-SNE is:

(Equation 1)

study participants with both time points to determine the cross-reactive 

binding of  serum antibodies against a panel of  HA proteins from var-

ious influenza virus strains, including both vaccine-matched, drifted, 

and historical variants (44). Antibody-dependent cellular cytotoxicity 

activity was assessed on all study participants using reporter cell lines 

expressing Fc gamma receptors in the presence of  chimeric H6/1 HA 

protein (H6 head domain combined with an H1 stalk domain), mea-

suring the ability of  antibodies to bind to group 1 HA stalk and medi-

ate effector cell functions, exactly as described previously (45). Briefly, 

we employed a stable Madin-Darby canine kidney (MDCK) cell line 

expressing a chimeric H6/1 HA, wherein the H6 head domain ren-

ders this target largely free of  head-specific human antibodies, thereby 

enabling focused detection of  stalk-directed responses. After seeding 

these cH6/1 MDCK cells in 96-well plates, serially diluted serum or 

monoclonal antibodies were added, followed by Jurkat effector cells 

engineered to express human FcγRIIIa (V158 variant). The assay was 

incubated for 6 hours, after which luminescence was measured as an 

indicator of  effector cell activation via the Fc-HA interaction. ELISA 

based on standardized protocols was used to measure IgG levels to 

serum NA from N1 and N2, serum group 1 and 2 stalk-specific IgG 

using chimeric HA constructs (cH6/1 and cH7/3; H7 head domain on 

top of  an H3 stalk domain), secretory IgA in oral secretions to N1 NA, 

and group 1 stalk in 242 study participants.

Cellular immune responses. T cell responses before and on day 21 after 

LAIV administration were measured by stimulating fresh whole blood 

with overlapping 15–18-mer peptide pools covering vaccine-matched 

HA (H1, H3, and B/Victoria/2/87-like HA), nucleoprotein, and 

matrix proteins (219 study participants). Intracellular cytokine staining 

for IFN-γ and IL-2 was performed, and responses were analyzed using 

flow cytometry, as previously described (7).

Viral shedding, density of  S. pneumoniae, and viral load. Nasopharyngeal 

swabs from 244 participants were assessed for LAIV strain shedding on 

days 2 and 7 after LAIV administration using reverse-transcription PCR 

(RT-PCR) assays targeting HA genes as previously described (7). Quan-

titative RT-PCR provided viral load measurements expressed as log10 egg 

infectious dose equivalents per milliliter. Additionally, the presence and 

density of nasopharyngeal S. pneumoniae before vaccination were quan-

tified as previously described (9). Baseline samples were tested for the 

presence of respiratory viruses using a multiplex real-time PCR method, 

as detailed in the original publication (28). The assay panel included influ-

enza A and B viruses, respiratory syncytial virus types A and B, human 

parainfluenza viruses 1–4, human metapneumovirus, adenovirus, season-

al coronaviruses (229E, OC43, NL63), and human rhinovirus.

Immunophenotyping. Multicolor flow cytometry panels were uti-

lized to quantify frequencies of  innate immune cell subsets before vac-

cination in 130 participants. The cell populations analyzed included 

mDCs, pDCs, monocyte subsets (classical, intermediate, and nonclas-

sical monocytes), and Tfh cells. Circulating Tfh cells expressing acti-

vation markers (CXCR3+ICOS+PD-1+) were quantified at baseline to 

assess their role in supporting antibody responses (28).

Transcriptomic profiles. RNA-Seq was conducted on nasal swabs from 

121 participants and blood samples from 93 participants collected before 

LAIV to generate transcriptomic profiles following the protocol detailed 

in our previous work (8). Briefly, Gene Set Enrichment Analysis (GSEA) 

was performed using the fgsea Bioconductor package, ranking genes 

by their Spearman’s correlation coefficients between rlog-normalized 

expression and LAIV viral loads. Enrichment was assessed separately 
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where a(i) is the average distance between i and all other points in the 

same cluster, and b(i) is the average distance between i and all points in 

the nearest cluster. We maximized the average silhouette score across 

all points.

The Davies-Bouldin index (DBI) is computed as:

(Equation 6)

where si is the average distance within cluster i, and dij is the distance 

between cluster centroids i and j. A lower DBI indicates better cluster-

ing. A lower DBI indicates better clustering.

The Calinski-Harabasz index (CH) is given by:

(Equation 7)

where Bk is the between-cluster dispersion and Wk is the within-cluster 

dispersion. Higher CH values indicate better clustering.

Combined score for clustering selection. For each clustering result, we 

normalized the metrics and computed a combined score M to select 

the best clustering: M = α1 × normalize(Q) + α2 × normalize(S) + α3 

× (1 – normalize[DBI]) + α4 × normalize(CH), where α1, α2, α3, and α4 

are weights assigned to each metric, and the normalization function scales 

each metric to the range [0, 1]. The clustering result with the highest score, 

M, was selected as the final optimal clustering.

Predictive modeling of  immunophenotypic clusters. After clustering, 

the immunophenotypic groups identified in Immunaut’s first step were 

treated as categorical outcomes in a predictive modeling framework. 

In this second step, the SIMON platform (17, 31) was employed to 

systematically evaluate 141 machine learning algorithms, aiming to 

discover a minimal set of  baseline features capable of  accurately pre-

dicting immunophenotypic group membership. Predictors were base-

line measurements of  immune and molecular features, with immuno-

phenotypic groups from clustering serving as the outcome variable. 

Data preprocessing procedures included centering and scaling, median 

imputation for missing values, removal of  highly correlated features, 

and zero- and near-zero-variance filtering to ensure data quality. The 

dataset was divided into 80% training and 20% testing sets for mod-

el development, allowing for independent model validation. Parallel 

computation was implemented to expedite the training and selection 

process, with the number of  cores for parallel processing set to the 

number of  available CPU cores minus 1. Model evaluation during 

training utilized a 10-fold cross-validation approach, repeated 3 times 

to enhance robustness and mitigate overfitting. The performance of  

each model was assessed on the independent test set, using a confu-

sion matrix and AUC metrics to provide unbiased evaluations of  pre-

dictive accuracy across the 3 response classes. One-versus-all receiver 

operating characteristic curves were generated for each class using the 

pROC package in R, allowing for a detailed assessment of  model sen-

sitivity and specificity. To gain insights into feature significance, vari-

able importance scores were calculated for each model within each 

response class. These scores were aggregated across classes to highlight 

baseline features with the highest predictive power, providing a com-

where pij is the similarity between points i and j in the high-dimensional 

space, and qij is the similarity in the low-dimensional space.

KNN graph construction. Given the t-SNE projection Y, we construct-

ed a KNN graph to capture the local structure of  the data. For each 

point i, the k nearest neighbors are determined based on the Euclidean 

distance in the 2D space:

(Equation 2)

where yi and yj are the t-SNE coordinates of  points i and j, respective-

ly. The graph G = (V, E) is constructed with V being the set of  nodes 

(samples) and E the set of  edges connecting each point to its k nearest 

neighbors. The weight of  each edge is defined as:

(Equation 3)

where smaller distances lead to higher edge weights, emphasizing closer 

neighbors.

Louvain clustering for community detection. The Louvain method is 

applied to the KNN graph for community detection. The Louvain 

algorithm optimizes modularity Q, which measures the density of  edges 

within communities compared with what would be expected in a ran-

dom graph. The modularity is defined as:

(Equation 4)

where: Aij is the adjacency matrix of the graph, ki is the degree of node i, m 

is the total number of edges, ci is the community assignment of node i, and 

δ(ci, cj) is the Kronecker delta function that equals 1 if ci = cj and 0 otherwise.

The Louvain method iteratively maximizes Q by merging nodes 

and communities to achieve an optimal partitioning.

Iterative optimization of  clustering resolution. To explore differ-

ent clustering resolutions, we applied the Louvain algorithm over 

a range of  resolutions r. The resolution r controls the granulari-

ty of  the clustering, with lower resolutions favoring fewer, larger 

clusters, and higher resolutions producing more, smaller clusters. 

We define a sequence of resolutions {r1, r2..., rk} such that ri+1 = ri + Δr,  

Δr = 0.1 for each iteration i. For each resolution ri, we computed the mod-

ularity Q(ri) and the number of clusters C(ri). We kept the clustering results 

that fell within the desired range of cluster counts: Cmin ≤ C(ri) ≤ Cmax.

Evaluation metrics for best clustering selection. After obtaining mul-

tiple clustering results across different resolutions, we selected the 

best result based on a combination of  metrics. Modularity Q — we 

aim to maximize the modularity score, which indicates better sep-

aration of  communities. Silhouette score S — the silhouette score 

measures the cohesion and separation of  clusters. For each point i, 

the silhouette score is defined as:

(Equation 5)
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Data availability
Data values reported in this manuscript are provided in the Support-

ing Data Values file. The complete, integrated, and deidentified data-

set supporting the findings in this study is available on Zenodo (51): 

Comprehensive Multimodal Immune Response Dataset for LAIV 

Vaccination in Pediatric Cohorts. This dataset includes all baseline 

and postvaccination measurements required to reproduce the analy-

ses presented in this study. In addition, deidentified, processed/nor-

malized gene expression data for baseline nasal and blood RNA-Seq 

for all participants are available on Zenodo (52). Researchers requir-

ing access specifically to raw data should contact the corresponding 

author to initiate a request. Access will be facilitated through a formal 

data transfer agreement managed by London School of  Hygiene and 

Tropical Medicine to ensure compliance with ethical approvals. The 

Immunaut platform, used for mapping immune profiles and predict-

ing vaccine responses, is accessible via the PANDORA AI platform  

(https://pandora.atomic-lab.org/) and as an R package on CRAN 

(https://cran.r-project.org/web/packages/Immunaut/index.html). 

General documentation for the Immunaut package is hosted on 

GitHub (https://github.com/atomiclaboratory/Immunaut). Further-

more, to ensure reproducibility of  our specific findings, the exact code 

used for figure generation and modeling presented in this work has 

been deposited on GitHub (https://github.com/atomiclaboratory/ 

Immunaut/tree/master/R-package#example-5-using-immune-

response-dataset-for-laiv-vaccination-in-pediatric-cohorts-dataset).

Study approval
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the study was approved by The Gambia Government, the UK Medical 

Research Council Joint Ethics Committee, and the Medicines Control 
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Harmonisation Good Clinical Practice standards.
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prehensive view of  the immune and molecular markers most strongly 

associated with specific immunophenotypic group memberships.

Model interpretability
SHAP analysis was conducted using the DALEX (moDel Agnostic 

Language for Exploration and eXplanation) package in R (https://

github.com/ModelOriented/DALEX/) to interpret the contribution 

of  individual features to the gradient boosting machine model’s pre-

dictions for each LAIV responder group (49, 50). SHAP values were 

computed to quantify the local, observation-specific impact of  each 

feature on the model’s output, providing an additive decomposition 

of  predictions into contributions from individual features and an inter-

cept term. For each observation, SHAP values reflect how much each 

feature increases or decreases the predicted probability of  belonging to 

a specific cluster (group 1: CD8+ T cell responders, group 2: mucosal 

responders, group 3: systemic, broad influenza A responders) relative 

to the baseline prediction (intercept). The analysis was implemented by 

linking the trained gradient boosting machine model with the DALEX 

explainer function, generating SHAP values for features prioritized by 

global variable importance scores. Feature contributions were visual-

ized for each cluster using horizontal bar plots, where the magnitude 

and direction of  SHAP values indicate the relative importance and 

influence (positive or negative) of  each feature on the prediction. This 

approach provided granular insights into how baseline immune features 

drive LAIV immunogenicity across different responder groups.

Tree-based analysis. All analyses were conducted in R using the rpart 

and rpart.plot packages. Data were loaded from a CSV file and merged 

with feature mapping information to restore original feature names. 

Missing values were replaced by column medians to ensure complete 

datasets for model fitting. Categorical variables were converted to fac-

tors, and continuous variables were discretized into meaningful bins 

based on predefined cutoffs. After discarding redundant variables, a 

decision-tree model was fitted using rpart with parameters set to ensure 

appropriate pruning (cp = 0.01) and sufficient sample sizes for splits 

(minsplit = 70, minbucket = 10). The tree was visualized with rpart.

plot, and its full rule set was extracted using rpart.rules and saved for 

downstream interpretation.

Data analysis
Statistical analysis was performed using R (https://www.r-project.

org/) package ggpubr version 0.4.0. Integrative and machine learn-

ing analysis, including hierarchical clustering, t-SNE, KNN, and 

Louvain clustering, and supervised machine learning approach 

SIMON, were performed using PANDORA software version 0.2.1. 

All data visualizations were conducted in R version 4.3.1 with the 

tidyverse package (version 2.0.0) for data wrangling. Heatmaps were 

created using the pheatmap package (version 1.0.12), polar plots 

were produced with ggplot2 (version 3.5.1) and the Wes Anderson 

color palette (version 0.3.7), and radar plots were generated with 

fmsb (version 0.7.6). Scaled median pathway expression values were 

calculated by grouping genes by pathway, omitting any missing val-

ues, and computing the median for each pathway-group pair. These 

scaled median values were used in all visualization techniques for 

consistent metric comparison across clusters in each plot type. Fea-

ture-specific polar plot values were further transformed using log10 to 

control significant variances, ensuring a more balanced visualization 

of  expression levels across features.
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