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Abstract:  54 

BACKGROUND. Predicting individual vaccine responses is a substantial public health challenge. 55 

We developed immunaut, an open-source, data-driven framework for systems vaccinologists to 56 

analyze and predict immunological outcomes across diverse vaccination settings, beyond 57 

traditional assessments. 58 

METHODS. Using a comprehensive live attenuated influenza vaccine (LAIV) dataset from 244 59 

Gambian children, immunaut integrated pre- and post-vaccination humoral, mucosal, cellular, and 60 

transcriptomic data. Through advanced modeling, our framework provided a holistic, systems-61 

level view of LAIV-induced immunity. 62 

RESULTS. The analysis identified three distinct immunophenotypic profiles driven by baseline 63 

immunity: (1) CD8 T-cell responders with strong pre-existing immunity boosting memory T-cell 64 

responses; (2) Mucosal responders with prior influenza A virus immunity developing robust 65 

mucosal IgA and subsequent influenza B virus seroconversion; and (3) Systemic, broad influenza 66 

A virus responders starting from immune naivety who mounted broad systemic antibody 67 

responses. Pathway analysis revealed how pre-existing immune landscapes and baseline 68 

features, such as mucosal preparedness and cellular support, quantitatively dictate vaccine 69 

outcomes. 70 

CONCLUSION. Our findings emphasize the power of integrative, predictive frameworks for 71 

advancing precision vaccinology. The immunaut framework is a valuable resource for deciphering 72 

vaccine response heterogeneity and can be applied to optimize immunization strategies across 73 

diverse populations and vaccine platforms. 74 

FUNDING. Wellcome Trust (110058/Z/15/Z); Bill & Melinda Gates Foundation (INV-004222); HIC-75 

Vac consortium; NIAID (R21 AI151917); NIAID CEIRR Network (75N93021C00045). 76 
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Introduction 77 

Understanding the ability of a vaccine to elicit an effective immune response, i.e., vaccine 78 

immunogenicity, is fundamental to guiding vaccination programs (1). Traditional evaluation 79 

methods often measure humoral and cellular immunity in isolation, overlooking their intricate 80 

interplay (2-4). Although emerging high-dimensional profiling technologies enable more holistic 81 

assessments (3), comprehensive evaluations that simultaneously capture systemic, mucosal, and 82 

cellular immune responses remain rare. This poses a substantial barrier to predict vaccine-83 

induced immunity, especially for complex vaccines such as live attenuated influenza vaccine 84 

(LAIV), which engages multiple arms of the adaptive immune system (5, 6). 85 

Here, we bridge this gap by leveraging an extensive LAIV immune dataset from a cohort of 244 86 

children aged 24-59 months in The Gambia enrolled in a phase 4 immunogenicity study (7-9). We 87 

integrated humoral, cellular, and mucosal responses with detailed baseline clinical and 88 

immunological measurements. Unlike prior work, our dataset includes multiple serum antibody 89 

and T-cell responses, mucosal IgA, transcriptomic profiles, and microbiological assessments, 90 

providing the statistical power to delineate robust immunogenicity patterns and advance a 91 

systems-level understanding of vaccine response. 92 

Translating such multifaceted data into actionable insights is challenging. Predictive methods 93 

must account for high interindividual variability and incorporate baseline immune features from 94 

limited samples (10-14). Existing analytical tools have begun integrating diverse data types (15-95 

18) but none has yet achieved a comprehensive, predictive framework that can accommodate 96 

outliers with atypical responses, and reliably anticipate who will benefit most from vaccination. 97 

Achieving this predictive capability is essential for personalized vaccination strategies. Identifying 98 

immune markers that predict response heterogeneity can guide tailored interventions to enhance 99 
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vaccine effectiveness, especially in high-risk populations (10). This is crucial for rapid deployment 100 

of immunizations against pathogens with pandemic potential (19, 20). 101 

To meet these challenges, we introduce immunaut, an open-source, data-driven framework for 102 

systems vaccinologists to unravel complex immune responses and predict vaccine outcomes. 103 

Through advanced modeling, immunaut integrates multidimensional immune features to classify 104 

individuals into distinct immunophenotypic responder profiles, revealing how baseline 105 

characteristics shape vaccine responses. Applied here to a comprehensive LAIV datasets, 106 

immunaut delineated responder groups with systemic humoral, mucosal, or T-cell-mediated 107 

biases and uncovered critical biomarkers associated with effective LAIV responses. Beyond this 108 

specific application, immunaut is readily adaptable to other vaccines and datasets, offering a 109 

robust foundation for precision vaccinology. 110 

Results: 111 

Comprehensive immunoprofiling of LAIV responses reveals distinct immunophenotypic 112 

groups 113 

To define responder status to LAIV in 244 Gambian children (7), we focused on adaptive immune 114 

markers with paired baseline (day 0) and post-vaccination (day 21) measurements, expressed as 115 

fold-change values (V21/V0; see Materials and Methods) (Figure 1A). Using fold-change 116 

accounted for interindividual variability in baseline immunity, capturing genuine vaccine-induced 117 

changes. We evaluated a comprehensive panel of antibody-mediated responses., including 118 

hemagglutination inhibition (HAI) titers, an indicator of antibodies that block the binding of the 119 

influenza virus to host cells (21). We used an influenza virus protein microarray (IVPM) to assess 120 

the breadth of antibody responses (22). This high-throughput platform profiles binding antibody 121 

responses across multiple influenza strains, including HA proteins from various influenza A and 122 



7 
 

B viruses. This allowed quantitative evaluation of serum antibody binding profiles before and after 123 

LAIV administration, providing insights into the specificity, magnitude, and breadth of the antibody 124 

responses, including cross-reactive responses. We also examined stalk-specific responses 125 

targeting conserved regions of the hemagglutinin (HA) protein, including antibody-dependent 126 

cellular cytotoxicity (ADCC) activity measured against chimeric HA stalk constructs (e.g., cH6/1 127 

and cH7/3) to assess cross-reactive immunity (23). Neuraminidase (NA) titers in blood and nasal 128 

mucosa offered insights into cross-protective responses (24). Complementing antibody profiles, 129 

we assessed T-cell interferon-gamma (IFN-γ) and interleukin-2 (IL-2) production upon stimulation 130 

with vaccine strain components (HA, NA, and matrix/nucleoprotein (M/NP)) to capture systemic 131 

cellular responses. Collectively, this panel of immunological assays provided a highly granular 132 

view of the magnitude and quality of immune responses elicited by LAIV, allowing us to capture 133 

a detailed immunophenotypic landscape. 134 

This integrated, multimodal dataset served as input for immunaut machine learning framework 135 

(Materials and Methods). To visualize patterns, we projected the high-dimensional data into a 136 

two-dimensional space using t-distributed stochastic neighbor embedding (t-SNE) (Figure 1B). 137 

We then constructed a K-Nearest Neighbors (KNN) graph based on Euclidean distances in this 138 

reduced space. We applied the Louvain community detection algorithm to identify distinct 139 

immunophenotypic groups, which partitions the graph to maximize the modularity score (Q), a 140 

measure of clustering quality where a higher modularity score indicates more distinct and well-141 

separated clusters.. We systematically evaluated clustering stability by applying the algorithm 142 

across a range of resolution values (r), where lower resolutions yield fewer, larger clusters and 143 

higher resolutions produce more, smaller ones. This assessment revealed a resolution range 144 

where modularity reached a high and stable plateau (Q ≈ 0.717, Figure 1C), signifying a robust 145 

and well-defined community structure, and the number of clusters consistently converged to three 146 
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(Figure 1D). This provides quantitative evidence that this partitioning reflects distinct biological 147 

subtypes rather than arbitrary divisions sensitive to parameter tuning. 148 

The final three-cluster partition is visualized on the t-SNE projection (Figure 1E), comprising 149 

Group 1 (green, n=82), Group 2 (orange, n=88), and Group 3 (purple, n=74). The average 150 

silhouette score of 0.4 indicates moderately distinct clusters. We observed no substantial 151 

enrichment of specific genders (Figure 1F) or study years (Figure 1G) within any cluster, 152 

suggesting the clustering captures genuine immunophenotypic differences independent of these 153 

external biases known to affect immune responses to vaccines (25-27).  154 

Individuals in Group 1 (n=82) displayed a distinct profile characterized by CD8 T-cell-mediated 155 

responses and notably low CD4 T-cell IFN-γ activity (Figure 1H). This group showed elevated 156 

IFN-γ and IL-2 production by CD8 T-cells upon stimulation, with the most pronounced responses 157 

against influenza B virus HA and M/NP antigens (Figure 1H). HA B-specific CD8 T-cell IFN-γ 158 

responses were statistically significant compared to Group 3 (Figure 2A). Conversely, humoral 159 

and IgA responses in Group 1 were minimal or absent (Figure 1H; Figure 2, A and D). Although 160 

some N1-specific IgA responses were detected (Figure 1H), these were not statistically 161 

significant and were comparable to those observed in Group 2, indicating that the N1 IgA 162 

responses were not a distinguishing feature of Group 1 (Supplemental Figure 1A). Based on 163 

these results, we term individuals in Group 1 as ‘CD8 T-cell responders.’  164 

In contrast, Group 2 (n=88) individuals exhibited a profile dominated by mucosal IgA responses 165 

(Figure 1H). This group showed statistically significant induction of mucosal IgA antibodies across 166 

all antigens and strains tested, including against chimeric HA stalk constructs, indicating the 167 

induction of antibodies targeting conserved HA regions (Figure 2B). The consistent IgA increase 168 

was unique to Group 2 and not observed in Groups 1 or 3 (Figure 2, B and D), validating their 169 

classification as ‘Mucosal responders.’ Group 2 also exhibited significant seroconversion to 170 
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influenza B viruses (Figure 1H), evidenced by substantial increases in HAI titers (Figure 2B). 171 

Although antibody binding responses to influenza B viruses measured by IVPM were elevated 172 

(Figure 1H), they were not statistically significant (Supplemental Figure 1B). This suggests 173 

humoral immunity in Group 2 includes both mucosal and systemic antibody responses against 174 

influenza B virus.  175 

Group 3 (n=74) individuals showed robust systemic antibody responses to influenza A viruses 176 

(Figure 1H). This was evidenced by significant increases in HAI titers for both H1N1 and H3N2 177 

strains (Figure 2C). The antibody responses demonstrated breadth, with substantial increases in 178 

binding to HA subtypes from multiple contemporary and historical H1N1 and H3N2 strains not 179 

present in the vaccine (Figure 2C). Elevated responses were also observed against the cH6/1 180 

chimeric HA construct, including increased antibody-dependent cellular cytotoxicity (ADCC) 181 

(Figure 2C). Significantly higher N1 titers were also detected (Supplemental Figure 1C), 182 

supporting a coordinated response targeting conserved epitopes. While some CD4 T-cell 183 

responses were elevated (Supplemental Figure 1C), significant IgA responses were absent, 184 

indicating predominantly systemic immunity (Figure 2B and D). This supports classifying them 185 

as ‘Systemic broad influenza A virus responders.’  186 

Predictive modeling of LAIV response phenotypes based on baseline immune profiles 187 

We next sought to determine if pre-vaccination immune profiles could predict an individual’s 188 

response type. To achieve this, we used comprehensive baseline immunological measurements 189 

before vaccination (Figure 3A), including antibody profiles, T-cell responses, S. pneumoniae load 190 

(pneumococcal carriage density), asymptomatic respiratory viral presence, RNA pathway scores 191 

from nasal samples, and frequencies of various immune cell subsets such as monocytes, 192 

plasmacytoid and myeloid dendritic cells (pDCs/mDCs), and T follicular helper (TFH) cells (28) 193 
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relevant to LAIV, which relies on both innate and adaptive immune pathways to induce protection 194 

(5, 6, 29, 30). 195 

To model the mapped vaccine responses, we applied the Sequential Iterative Modeling OverNight 196 

(SIMON) platform, which is designed for high-dimensional datasets with substantial interindividual 197 

variability (17, 31) (Figure 3B). We systematically tested 141 ML algorithms to ensure the 198 

selection of the most accurate and biologically meaningful model (17, 31-33). We employed 10-199 

fold cross-validation during model training to enhance robustness and mitigate overfitting, and we 200 

assessed performance on a held-out test set to ensure generalizability. Out of the 141 models 201 

tested, 26 achieved a test set area under the receiver operating characteristic curve (AUC) above 202 

0.7, underscoring the predictive strength of our baseline immune profiles (Supplemental Table 203 

1). 204 

Among all models, the gradient boosting machine (gbm) model was the top performer 205 

(Supplemental Table 1). It achieved an accuracy of 59.57% (exceeding the null accuracy of 206 

36.17% (p = 0.0009)), a balanced accuracy of 71.67%, an F1-score of 0.6286, a precision of 207 

0.6902, and a recall of 0.6471, highlighting its capacity to balance false positives and false 208 

negatives and an overall AUC of 0.8. One-vs-all AUCs confirmed robust performance across 209 

individual classes: 0.80 for CD8 T-cell responders, 0.77 for mucosal responders, and 0.73 for 210 

systemic broad influenza A virus responders (Figure 3C). Training gbm models on individual or 211 

pairwise data types showed that removing any primary data modality reduced performance, 212 

demonstrating that integration of diverse features was essential for high accuracy (Supplemental 213 

Table 2).  The gbm model's capacity for feature importance estimation, its ability to manage high-214 

dimensional data, and its robustness to missing data (Supplemental Figure 2) make it a powerful 215 

tool for this classification task. 216 
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Next, we identified the baseline features that were most critical for classification (Figure 3D). The 217 

top predictor was the baseline HAI geometric mean titer against H3N2 (score 100), indicating that 218 

pre-existing systemic immunity drives the response type. However, high baseline mucosal IgA 219 

against various influenza antigens, including influenza B/Victoria/2/87-like lineage HA and NA 220 

(61), pH1N1 HA (48), N1 (20), H3N2 NA (18), and cH7/3 IgA (44) was also pivotal, underscoring 221 

the complementary roles of systemic and mucosal immunity. Key cellular parameters, such as 222 

IFN-γ-producing T-cells (e.g., influenza A virus M/NP CD4 IFN-γ, score 64; H1N1 and H3N2 HA 223 

CD4 IFN-γ, 33 and 36; influenza B HA CD8 IFN-γ, 21) and TFH cell frequencies (34), also 224 

surfaced as prominent predictors. Additionally, innate immune cells, pneumococcal carriage 225 

density (36), and asymptomatic respiratory viral infection (6) emerged as critical modulating 226 

factors. Notably, baseline nasal RNA-derived GO pathways, encompassing metabolism 227 

(GO:0072521, 46), morphogenesis (GO:0060562, 40), and Hedgehog signaling (GO:0008589, 228 

GO:0007224, scores 22 and 6), contributed substantially, pointing to a context-dependent model 229 

of vaccine responsiveness where tissue-level processes shape the immune response. 230 

Collectively, these observations suggest that LAIV response phenotypes arise not from a single 231 

dominant factor but emerge from a finely tuned network of systemic and local immunity, innate 232 

and adaptive cellular components, and underlying tissue-level processes. 233 

Identifying pre-existing immune landscapes that shape LAIV responses 234 

To delineate the pre-existing immune landscapes that define each group, we hypothesized that 235 

specific baseline conditions characterize each responder class. To test this, we combined ML-236 

derived insights with exploratory analyses of baseline seropositivity, viral shedding, and detailed 237 

immunologic profiling. The resulting patterns suggest that historical exposure to influenza strains 238 

plays a pivotal role in shaping the immune response to LAIV (Figure 4). 239 
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Children who became CD8 T-cell responders had a distinctive baseline signature (Figure 4A). 240 

Before vaccination, this group had significantly higher seropositivity for H1N1 (48%) and H3N2 241 

(72%) (p = 0.049 and p < 0.0001) and elevated baseline HAI responses (Figure 4 A,B). They 242 

also had elevated baseline levels of influenza virus-specific IgA in nasal secretions, targeting 243 

multiple LAIV strains and cH7/3 chimeric stalk construct, features identified by the ML model as 244 

important (Figure 4A). Following vaccination, this group showed significantly reduced shedding 245 

of H3N2 by day 7 (17% shedding rate), an association confirmed by logistic regression (β = 1.21, 246 

p = 0.0078) (Figure 4F). Baseline nasal transcriptional analysis identified enrichment of 247 

pathways, including purine metabolism (GO:0072521; score 46) and regulation of defense 248 

response (GO:0031347; score 16) (Figure 4A). These children also had elevated baseline S. 249 

pneumoniae loads (score 36), Hedgehog signaling pathway (GO:0007224, score 6), and 250 

asymptomatic respiratory viruses (predominantly rhinovirus) detected before vaccination (Chi-251 

squared p = 0.57; Supplemental Figure 3). The frequency of circulating classical monocytes and 252 

myeloid dendritic cells (mDCs) was also elevated at baseline (Figure 4A). 253 

Mucosal responders showed high baseline seropositivity to influenza A viruses (H3N2 = 82%, 254 

H1N1 = 45%) but a lower rate against the influenza B virus (27%) (Figure 4, A and D). High 255 

baseline H3N2 HAI titers were prominent, and reactivity extended to multiple H1N1 strains (e.g., 256 

IVPM assay, N1, N2, cH6/1, cH7/3), indicating extensive prior exposures (Figure 4, A and D). 257 

Nasal epithelial signatures related to morphogenesis (GO:0060562), innate immunity 258 

(GO:0045088), mRNA metabolism (GO:0016071), epigenetic regulation (GO:0040029), retinoid 259 

metabolism (GO:0001523), and lymphocyte proliferation (GO:0050671), pointed toward a state 260 

of mucosal readiness. This pre-existing influenza A virus immunity allowed for efficient 261 

containment of LAIV’s influenza A virus strains, with shedding of H1N1 and H3N2 strains 262 

significantly reduced by day 2 (p = 0.043 and p < 0.0001), and minimal shedding observed by day 263 

7 (Figure 4C). Regression analysis confirmed this association with lower shedding of H3N2 at 264 
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day 2 (β = –1.08, p = 0.0047) and H1N1 at day 7 (β = –1.18, p = 0.021) (Figure 4F). In contrast, 265 

shedding of influenza B virus persisted longer, and as per their definition, these children 266 

seroconverted to the influenza B virus post-vaccination. 267 

Systemic, broad influenza A virus responders had significantly lower pre-vaccine seropositivity 268 

for H1N1 (30%) and H3N2 (39%) (p = 0.049 and p < 0.0001, respectively; Figure 4B), further 269 

confirmed by the regression analysis (low baseline H1N1 (β = –1.05, p = 0.010) and H3N2 270 

seropositivity (β = –1.44, p < 0.001) (Figure 4F). Regression analysis confirmed that systemic 271 

responder status was significantly associated with low baseline H1N1 (β = –1.05, p = 0.010) and 272 

H3N2 seropositivity (β = –1.44, p < 0.001), and with persistent H3N2 shedding at day 7 (β = 1.21, 273 

p = 0.0078) (Figure 4F). At baseline, these responders had a higher frequency of circulating 274 

intermediate monocytes, plasmacytoid dendritic cells (pDCs; score 15), and TFH cells (score 34) 275 

that facilitate robust systemic response (Figure 4A). They also display a rich array of T-cell 276 

functional responses to multiple influenza antigens (Figure 4, A and D).  277 

Taken together, these findings show how limited baseline immunity can lead to stronger systemic 278 

responses, while a pre-primed environment streamlines early containment and clears the path for 279 

novel responses. 280 

The integrative machine learning interpretation approach reveals determinants of LAIV 281 

response profiles and predictors of immunogenicity 282 

Interpreting multiclass ML models is challenging due to the complex interplay between features 283 

across outcome classes. Features selected by the model can represent both enriched and 284 

reduced characteristics across groups, complicating direct interpretation. We adopted a 285 

multifaceted framework to extract mechanistic insights, integrating pathway-level analysis, group-286 
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specific feature impact evaluation, and hierarchical examination of feature splits in the model's 287 

decision structure.  288 

First, baseline features were mapped onto predefined biological pathways or functional categories 289 

(Supplemental Table 3). Immune metrics were assigned to ‘Humoral’, ‘Cellular’, or ‘Mucosal’ 290 

immunity compartments, with separate groupings for ‘Microbial load’, ‘APC populations’, and ‘TFH 291 

cells’. GO terms from nasal transcriptomic data were grouped into broader categories, such as 292 

‘Metabolic and Epigenetic Regulation’, ‘Epithelial Barrier Integrity and Tissue Remodeling’,  293 

‘Immune & Inflammatory Regulation’, and others. 294 

Pathway-level scores revealed distinct baseline signatures for each group (Figure 5, A-D). The 295 

dominant signature for CD8 T-cell responders included mucosal immunity and microbial load 296 

pathways (Figure 5, A and D). For mucosal responders, key baseline pathways encompassed 297 

humoral immunity, immune regulation, epithelial barrier integrity, immune modulation, and stress 298 

response (Figure 5, B and D). For systemic, broad influenza A responses, the baseline signature 299 

was marked by enriched cellular immunity, APC function, and TFH cell support (Figure 5, C and 300 

D). 301 

To gain more granular insights, we used SHAP (SHapley Additive exPlanations) analysis to 302 

quantify each predictor's observation-specific contribution (34) (Figure 5E). For CD8 T-cell 303 

responders, elevated H3N2 HAI titers and influenza B virus-directed mucosal and cellular 304 

immunity positively shifted probabilities (Figure 5E). In mucosal responders, influenza B virus NA 305 

IgA was a key local contributor (Figure 5E). For systemic, broad influenza A virus responders, 306 

SHAP revealed how lower pre-existing H3N2 immunity and supportive TFH-APC-metabolic 307 

landscapes, promoted broader antibody repertoires (Figure 5E).  308 
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Finally, decision tree analysis established quantitative thresholds for key features distinguishing 309 

the groups (Figure 5F). Baseline H3N2 HAI was the primary discriminator, with a threshold of 40. 310 

Subsequent splits identified specific feature combinations associated with different responder 311 

likelihoods. Children exceeding this H3N2 HAI threshold (>40) combined with moderate levels of 312 

B/Victoria/2/87-like lineage NA IgA (titer ≥14) but lower cH7/3 titers (<601) had a 59% likelihood 313 

of developing CD8 T-cell responses. Alternatively, a similarly high H3N2 baseline (≥40) combined 314 

with low B/Victoria/2/87-like lineage NA IgA (<14) favored mucosal responder type (70% 315 

likelihood). Low H3N2 HAI (<40) combined with higher baseline influenza B virus HA-specific CD8 316 

T-cell IFN-γ responses associated with a 62% likelihood of the systemic broad influenza A 317 

response profile. These findings provide quantitative thresholds demonstrating how specific 318 

combinations of baseline features relate to distinct LAIV-induced immunophenotypes. 319 

Discussion 320 

In this study, we introduced immunaut, an integrative machine learning approach, to decipher 321 

how the pre-existing immune landscape in children dictates outcomes following LAIV. Moving 322 

beyond traditional analyses, often limited to linear models and single biomarkers, our 323 

methodology synthesized high-dimensional pre-vaccination data to provide a cohesive, systems-324 

level view of LAIV immunogenicity. This approach identified three distinct post-vaccination 325 

immunophenotypes: CD8 T-cell responders, mucosal (and influenza B humoral) responders, and 326 

systemic, broad influenza A responders, each linked to specific baseline signatures. 327 

A key strength of our strategy is its ability to reveal nuanced biological states by capturing non-328 

linear interactions. By employing multiple modelling techniques, immunaut translated complex 329 

profiles into interpretable biological insights, allowing us to understand how combinations of 330 

factors shape the ultimate response. For example, identifying the mucosal responders highlights 331 

this advantage; standard analyses focused on systemic HAI antibodies might misclassify these 332 
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individuals as poor responders, overlooking substantial mucosal immunity. While the achieved 333 

predictive accuracy (AUC 0.80) is statistically significant and highlights the potential of baseline 334 

immunophenotyping, further improvements are needed for direct clinical application. The model's 335 

primary utility is its power to integrate complex datasets, identify responder subgroups, and 336 

pinpoint key baseline features driving response heterogeneity - crucial steps in advancing our 337 

understanding towards personalized vaccinology. 338 

CD8 T-cell responders started with a baseline reflecting extensive prior influenza exposure and 339 

heightened mucosal readiness. They exhibited higher baseline seropositivity for H1N1 and H3N2, 340 

elevated HAI responses, and robust levels of influenza virus-specific IgA in the nasal mucosa. 341 

This potent pre-existing antibody profile contributes to rapid viral containment, evidenced by 342 

reduced viral shedding. Their baseline nasal transcriptome showed enrichment in defense and 343 

metabolism pathways, and they had higher S. pneumoniae loads and frequencies of classical 344 

monocytes and mDCs, suggesting a state of immune vigilance (8, 35, 36). We propose that this 345 

combination of strong pre-existing immunity and a primed innate environment leads to efficient 346 

early control of LAIV, limiting the antigenic stimulus and favoring the recall of memory CD8 T-347 

cells, resulting in the observed T-cell-dominant phenotype. 348 

Conversely, the mucosal responders emerged from a different immunological starting point, with 349 

high baseline seropositivity to influenza A viruses but substantially lower immunity against 350 

influenza B. Their nasal transcriptome indicated a well-regulated mucosal interface. We interpret 351 

this as the strong pre-existing influenza A immunity facilitating rapid control of the LAIV A strains, 352 

as evidenced by their significantly reduced H1N1 and H3N2 shedding soon after vaccination. 353 

However, the initial encounter with influenza A viral strains at the mucosal surface appears 354 

sufficient to trigger a local immune response, likely involving recall of existing mucosal memory B 355 

cells. Concurrently, the lower baseline immunity against influenza B virus allows more persistent 356 

replication of this component within the nasal mucosa, providing a sustained antigenic stimulus. 357 
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We propose that this sustained local activation, driven by the persistent influenza B component, 358 

provides the necessary help for a robust de novo response leading to influenza B seroconversion 359 

and boosts the recall IgA response against the influenza A components at the mucosa. The 360 

baseline enrichment in epithelial and regulatory pathways suggests a mucosal environment 361 

capable of orchestrating this complex, temporally staggered, yet ultimately broad local antibody 362 

response. This configuration results in the defining phenotype: rapid systemic containment of 363 

influenza A, seroconversion to influenza B, and robust mucosal IgA responses to all three LAIV 364 

strains 365 

The systemic, broad Influenza A virus responder phenotype was associated with lower pre-366 

vaccine seropositivity to influenza A strains, permitting higher initial viral replication and a strong 367 

antigenic stimulus. Decision tree analysis revealed two distinct pathways to this outcome. One 368 

involved individuals with pre-existing immunity across multiple influenza A domains (high baseline 369 

H3N2 HAI, high B/Victoria NA IgA and cH7/3), suggesting a response dominated by the recall of 370 

pre-existing cross-reactive memory B cells, a mechanism consistent with phenomena like original 371 

antigenic sin (OAS) or back-boosting (37, 38), effectively leveraging prior exposures to generate 372 

breadth (39, 40). The second pathway occurred in naïve individuals (low pre-vaccination level of 373 

H3N2 HAI) with increased frequencies of T-cell, APC, and TFH signatures. Here, the breadth 374 

appears driven by T-cells, which help facilitate de novo B cell activation, potentially involving 375 

cross-reactive T cells (41), likely fueling the germinal center activity (41, 42). Our findings 376 

illuminate two distinct routes to achieving broad systemic influenza A immunity post-LAIV: one 377 

relying on recalling antibody memory, and the other leveraging cellular support to build breadth 378 

from a more naive state. 379 

While demonstrated for LAIV, the immunaut framework is generalizable and can be applied to 380 

other vaccines or infections to accelerate biomarker discovery and rational vaccine design. 381 

Limitations remain, including the need for validation in larger, more diverse cohorts across 382 
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different ages, genetic backgrounds, and geographical locations to confirm the generalizability of 383 

these signatures. Also, targeted mechanistic experiments are needed to establish causality for 384 

the proposed pathways. Future work incorporating expanded multi-omics datasets will further 385 

refine our understanding and predictive capabilities. 386 

In summary, this study leverages an integrative machine learning approach, immunaut, to provide 387 

a high-resolution map of how pre-existing immune landscapes dictate LAIV outcomes in children. 388 

By identifying distinct pre-vaccination signatures and quantitative thresholds that predict divergent 389 

response trajectories, our work offers crucial insights into the complex interplay governing vaccine 390 

immunogenicity. This represents a substantial step towards precision vaccinology, providing a 391 

framework for understanding and predicting vaccine responses. 392 

  393 
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Methods: 394 

Sex as a biological variable 395 

This study included 244 children of both sexes, aged 24-59 months. Sex was considered as a 396 

demographic variable. 397 

Study participants 398 

We complied data from multiple research projects that evaluated immune responses to the 399 

trivalent live attenuated influenza vaccine (LAIV, Nasovac-S, based on the A/Leningrad/134/17/57 400 

master donor strain, which is in use in Russia) among children in The Gambia. The cohort 401 

comprised 244 children aged 24-59 months who received LAIV during 2017 and 2018 as part of 402 

an open-label, prospective, observational, phase 4 immunogenicity study nested within a larger 403 

randomized trial (ClinicalTrials.gov identifier: NCT02972957) (7). Eligible participants were 404 

healthy children with no history of respiratory illness in the preceding 14 days and no prior 405 

influenza vaccination. Exclusion criteria included serious active medical conditions (e.g., chronic 406 

diseases, severe malnutrition, genetic disorders), known immunodeficiency, hypersensitivity to 407 

vaccine components, recent use of immunosuppressive therapies, and contraindications to LAIV 408 

administration. Following community sensitization, recruitment was conducted in Sukuta, a peri-409 

urban area in The Gambia. Participants recruited in 2017 (n=118) received the 2016-2017 410 

Northern Hemisphere formulation, which included strains A/17/California/2009/38 (H1N1)pdm09-411 

like, A/17/Hong Kong/2014/8296 (H3N2)-like, and B/Texas/02/2013-like (B/Victoria/2/87-like 412 

lineage). In 2018 (n=135), participants received the 2017-18 formulation, where the H1N1 413 

component was updated to A/17/New York/15/5364 (H1N1)pdm09-like, while the H3N2 and B 414 

strains remained unchanged. Nine individuals in the 2018 cohort withdrew or missed the final 415 

study visit, leaving 244 children for the final analyses (see Reference (7) for the study profile). 416 

Whole blood and serum were collected pre-vaccination (day 0) and post-vaccination on day 21. 417 

Nasopharyngeal swabs were collected at days 0, 2 and 7 post-LAIV using flocked swabs (Copan 418 
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FLOQSwabs™) and stored in RNAprotect Cell Reagent (QIAGEN) for viral shedding assessment 419 

and microbiome analyses. To evaluate mucosal antibody responses, oral fluid samples were 420 

collected at days 0 and 21 post-LAIV using Oracol Plus swabs (Malvern Medical Development). 421 

Whole blood samples were drawn for serum separation, flow cytometry, and transcriptomic 422 

analyses. All samples were stored at -70°C until processing. 423 

Datasets 424 

The datasets encompass a wide array of immune parameters: 425 

Humoral immune responses: Haemagglutination inhibition (HAI) assays (21) were performed 426 

according to standard protocols on all 244 children using pre-vaccination (day 0) and post-427 

vaccinations (day 21) samples using vaccine strain-matched antigens to assess seroconversion, 428 

defined as a fourfold or greater increase in HAI titers to ≥1:40 from day 0 to day 21 (7). This 429 

allowed for the evaluation of antibody responses against all 3 LAIV-vaccine strains: A(H1N1) 430 

pdm09, A(H3N2), and B/Victoria/2/87-like lineage influenza virus strains. Influenza virus-specific 431 

IgA in oral fluids was quantified using a protein microarray with recombinant haemagglutinin and 432 

neuraminidase proteins and normalized to total IgA in the sample (measured by enzyme-linked 433 

immunosorbent assay (ELISA)) (43). A twofold increase in the proportion of influenza virus-434 

specific IgA was considered a significant mucosal antibody response. An influenza virus protein 435 

microarray (IVPM) was performed on 239 subjects with both timepoints to determine the cross-436 

reactive binding of serum antibodies against a panel of HA proteins from various influenza virus 437 

strains, including both vaccine-matched, drifted, and historical variants (44). Antibody-dependent 438 

cellular cytotoxicity (ADCC) activity was assessed on all subjects using reporter cell lines 439 

expressing Fc gamma receptors in the presence of chimeric H6/1 HA protein (H6 head domain 440 

combined with an H1 stalk domain), measuring the ability of antibodies to bind to group 1 HA stalk 441 

and mediate effector cell functions, exactly as described previously (45). Briefly, we employed a 442 

stable MDCK cell line expressing a chimeric H6/1 hemagglutinin (HA), wherein the H6 head 443 
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domain renders this target largely free of head-specific human antibodies, thereby enabling 444 

focused detection of stalk-directed responses. After seeding these cH6/1 MDCK cells in 96-well 445 

plates, serially diluted serum or monoclonal antibodies were added, followed by Jurkat effector 446 

cells engineered to express human FcγRIIIa (V158 variant). The assay was incubated for six 447 

hours, after which luminescence was measured as an indicator of effector cell activation via the 448 

Fc-HA interaction. ELISA based on standardized protocols was used to measure IgG levels to 449 

serum NA from N1 and N2, serum group 1 and 2 stalk-specific IgG using chimeric HA constructs 450 

(cH6/1 and cH7/3; H7 head domain on top of an H3 stalk domain), secretory IgA in oral secretions 451 

to N1 NA and group 1 stalk on 242 subjects. 452 

Cellular immune responses: T-cell responses before and on day 21 after LAIV were measured by 453 

stimulating fresh whole blood with overlapping 15-18-mer peptide pools covering vaccine-454 

matched haemagglutinin (H1, H3, and B/Victoria/2/87-like HA), nucleoprotein (NP), and matrix 455 

(M) proteins (219 subjects). Intracellular cytokine staining for interferon-gamma (IFN-γ) and 456 

interleukin-2 (IL-2) was performed, and responses were analyzed using flow cytometry, as 457 

previously described (7). 458 

Viral shedding, density of Streptococcus pneumoniae, and viral load: Nasopharyngeal swabs from 459 

244 participants were assessed for LAIV strain shedding on days 2 and 7 post-LAIV using 460 

reverse-transcription PCR (RT-PCR) assays targeting haemagglutinin genes as previously 461 

described (7). Quantitative RT-PCR provided viral load measurements expressed as log₁₀ egg 462 

infectious dose equivalents per mL. Additionally, the presence and density of nasopharyngeal 463 

Streptococcus pneumoniae before vaccination were quantified as previously described (9). 464 

Baseline samples were tested for the presence of respiratory viruses using a multiplex real-time 465 

PCR method, as detailed in the original publication (28). The assay panel included influenza A 466 

and B viruses, respiratory syncytial virus (RSV) types A and B, human parainfluenza viruses 467 

(HPIV) 1-4, human metapneumovirus, adenovirus, seasonal coronaviruses (229E, OC43, NL63), 468 

and human rhinovirus. 469 
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Immunophenotyping: Multicolor flow cytometry panels were utilized to quantify frequencies of 470 

innate immune cell subsets before vaccination in 130 participants. The cell populations analyzed 471 

included myeloid dendritic cells (mDCs), plasmacytoid dendritic cells (pDCs), monocyte subsets 472 

(classical, intermediate, and non-classical monocytes), and T follicular helper (Tfh) Cells: 473 

Circulating Tfh cells expressing activation markers (CXCR3⁺ICOS⁺PD-1⁺) were quantified at 474 

baseline to assess their role in supporting antibody responses (28). 475 

Transcriptomic profiles: RNA sequencing was conducted on nasal swabs from 121 participants 476 

and blood samples from 93 participants collected before LAIV to generate transcriptomic profiles 477 

following the protocol detailed in our previous work (8). Briefly, Gene Set Enrichment Analysis 478 

(GSEA) was performed using the fgsea Bioconductor package, ranking genes by their Spearman 479 

correlation coefficients between rlog-normalized expression and LAIV viral loads. Enrichment was 480 

assessed separately for Reactome pathways and a cell-subset marker set (50 defining genes per 481 

subset), and single-sample GSEA (ssGSEA) was also conducted using pre-vaccination (baseline) 482 

gene expression values for each participant. Normalized enrichment scores (NES), adjusted p-483 

values, and leading-edge genes were extracted for each pathway. Pathways with an adjusted p 484 

< 0.1 were considered significant, representing a more stringent threshold than the commonly 485 

used p < 0.25. 486 

Demographic and clinical data: Detailed demographic data, including age, sex, nutritional status 487 

(weight-for-height Z-score), and health history, were collected for all 244 subjects to assess 488 

potential correlations with immune responses. Participants were monitored for adverse events, 489 

and any respiratory illnesses occurring during the study period were documented to evaluate 490 

safety and potential confounding factors. 491 

Data integration and preprocessing 492 

The integrated dataset was generated using the standard extract-transform-load (ETL) 493 

procedure, as described previously (17). Briefly, data from six primary datasets, each provided in 494 
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CSV format and encompassing various immunological assays and demographic information, 495 

were integrated using the unique identifier ‘Subject ID’. This integration was facilitated by a 496 

custom ‘combine_data’ function, which merged the datasets into a single comprehensive dataset. 497 

Data were obtained pre-vaccination (day 0) and day 21 post-vaccination for all measured 498 

parameters, including cellular, humoral, and mucosal values. Fold-changes were then calculated 499 

to obtain the LAIV-responsiveness measures, capturing both the pre-existing immune state and 500 

the vaccine-induced responses. Before analyzing the integrated dataset, we performed several 501 

preprocessing steps. The proportion of missing values varied from 1% to 56% across features. 502 

We addressed these missing values using a median-based imputation (medianImpute), in which 503 

the median value of the corresponding feature replaced each missing entry. The data were then 504 

normalized by centering (subtracting the mean) and scaling (dividing by the standard deviation) 505 

of each feature. Features exhibiting zero variance (zv) and near-zero variance (nzv) were 506 

identified and removed to reduce noise and improve computational efficiency. Additionally, 507 

features with pairwise Pearson correlation coefficients greater than 0.85 were considered highly 508 

correlated and were filtered by retaining only one representative feature from each correlated 509 

group. The final dataset included a comprehensive set of immunological and demographic 510 

features representing various aspects of the immune response to LAIV. 511 

Data-driven immunogenicity responders subtyping 512 

In this section, we describe the  methodology used for clustering a dataset based on t-SNE 513 

dimensionality reduction (46), K-Nearest Neighbors (KNN) graph construction, and Louvain 514 

community detection (47, 48). We also outline the optimization steps for selecting the best 515 

clustering result based on multiple clustering evaluation metrics. 516 

t-SNE dimensionality reduction. Let X ∈ Rn×d represent the dataset with n samples and d 517 

features. We first apply t-SNE to project the dataset into a lower-dimensional space Y ∈ Rn×2. 518 
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The t-SNE method aims to minimize the Kullback-Leibler (KL) divergence between probability 519 

distributions of points in high-dimensional and low-dimensional spaces. The objective function 520 

minimized by t-SNE is: 521 

𝐾𝐾𝐾𝐾(𝑃𝑃 ‖ 𝑄𝑄)  =  ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝𝑖𝑖𝑖𝑖
𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 ≠ 𝑖𝑖  , 522 

where pij is the similarity between points i and j in the high-dimensional space, and qij is the 523 

similarity in the low-dimensional space. 524 

K-nearest neighbors (KNN) graph construction. Given the t-SNE projection Y, we construct a 525 

K-Nearest Neighbors (KNN) graph to capture the local structure of the data. For each point i, the 526 

k nearest neighbors are determined based on the Euclidean distance in the 2D space: 527 

𝑑𝑑𝑖𝑖𝑖𝑖 = �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖�2 531 

where yi and yj are the t-SNE coordinates of points i and j, respectively. The graph G = (V, E) is 528 

constructed with V being the set of nodes (samples) and E the set of edges connecting each point 529 

to its k nearest neighbors. The weight of each edge is defined as: 530 

𝑤𝑤𝑖𝑖𝑖𝑖 =
1

1 + 𝑑𝑑𝑖𝑖𝑖𝑖
 532 

where smaller distances lead to higher edge weights, emphasizing closer neighbors. 533 

Louvain clustering for community detection. The Louvain method is applied to the KNN graph 534 

for community detection. The Louvain algorithm optimizes modularity Q, which measures the 535 

density of edges within communities compared to what would be expected in a random graph. 536 

The modularity is defined as: 537 

𝑄𝑄 =
1

2𝑚𝑚
��𝐴𝐴𝑖𝑖𝑖𝑖 −

𝑘𝑘𝑖𝑖𝑘𝑘𝑖𝑖
2𝑚𝑚

�
𝑖𝑖,𝑖𝑖

𝛿𝛿�𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖� 538 
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where: 539 

• Aij is the adjacency matrix of the graph, 540 

• ki is the degree of node i, 541 

• m is the total number of edges, 542 

• ci is the community assignment of node i, 543 

• δ(ci, cj) is the Kronecker delta function that equals 1 if ci = cj and 0 otherwise. 544 

The Louvain method iteratively maximizes Q by merging nodes and communities to achieve an 545 

optimal partitioning. 546 

Iterative optimization of clustering resolution. To explore different clustering resolutions, we 547 

apply the Louvain algorithm over a range of resolutions r. The resolution r controls the granularity 548 

of the clustering, with lower resolutions favoring fewer, larger clusters, and higher resolutions 549 

producing more, smaller clusters. We define a sequence of resolutions �𝑟𝑟1 , 𝑟𝑟2, … , 𝑟𝑟𝑘𝑘� such that: 550 

𝑟𝑟𝑖𝑖+1 = 𝑟𝑟𝑖𝑖 + ∆𝑟𝑟,∆𝑟𝑟 = 0.1 for each iteration i. For each resolution ri, we compute the modularity Q(ri) 551 

and the number of clusters C(ri). We keep the clustering results that fall within the desired range 552 

of cluster counts: Cmin ≤ C(ri) ≤ Cmax. 553 

Evaluation metrics for best clustering selection. Once we obtain multiple clustering results 554 

across different resolutions, we select the best result based on a combination of metrics: 555 

Modularity Q: We aim to maximize the modularity score, which indicates better separation of 556 

communities. 557 

Silhouette score S: The silhouette score measures the cohesion and separation of clusters. For 558 

each point i, the silhouette score is defined as:  559 

𝑆𝑆 (𝑖𝑖) =  
𝑏𝑏(𝑖𝑖) − 𝑎𝑎(𝑖𝑖)

max (𝑎𝑎(𝑖𝑖), 𝑏𝑏(𝑖𝑖))
 560 
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where 𝑎𝑎(𝑖𝑖) is the average distance between 𝑖𝑖 and all other points in the same cluster, and 𝑏𝑏(𝑖𝑖) is 561 

the average distance between 𝑖𝑖 and all points in the nearest cluster. We maximize the average 562 

silhouette score across all points. 563 

Davies-Bouldin index (DBI): The DBI is computed as: 564 

𝐷𝐷𝐷𝐷𝐷𝐷 =
1
𝐶𝐶
�max

𝑖𝑖≠𝑖𝑖

𝑠𝑠𝑖𝑖 + 𝑠𝑠𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖

𝐶𝐶

𝑖𝑖=1

 567 

where 𝑠𝑠𝑖𝑖  is the average distance within cluster 𝑖𝑖, and 𝑑𝑑𝑖𝑖𝑖𝑖  is the distance between cluster centroids 565 

𝑖𝑖 and 𝑗𝑗.  A lower DBI indicates better clustering. 566 

Calinski-Harabasz index (CH): The CH index is given by: 568 

𝐶𝐶𝐶𝐶 =
𝐷𝐷𝑘𝑘 (𝐶𝐶 − 1)⁄
𝑊𝑊𝑘𝑘 (𝑛𝑛 − 𝐶𝐶)⁄  571 

where 𝐷𝐷𝑘𝑘  is the between-cluster dispersion and 𝑊𝑊𝑘𝑘  is the within-cluster dispersion. Higher CH 569 

values indicate better clustering. 570 

Combined score for clustering selection. For each clustering result, we normalize the metrics 572 

and compute a combined score M to select the best clustering: 573 

M = α1 · normalize(Q) + α2 · normalize(S) + α3 · (1 - normalize(DBI)) + α4 · normalize(CH), 574 

where α1, α2, α3, α4 are weights assigned to each metric, and the normalization function scales 575 

each metric to the range [0, 1]. The clustering result with the highest score, M, is selected as the 576 

final optimal clustering. 577 

Predictive modeling of immunophenotypic clusters. Following clustering, the 578 

immunophenotypic groups identified in immunaut’s first step were treated as categorical 579 

outcomes in a predictive modeling framework. In this second step, the Sequential Iterative 580 

Modeling OverNight (SIMON) platform (17, 31) was employed to systematically evaluate 141 581 
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machine learning (ML) algorithms, aiming to discover a minimal set of baseline features capable 582 

of accurately predicting immunophenotypic group membership. Predictors were baseline 583 

measurements of immune and molecular features, with immunophenotypic groups from clustering 584 

serving as the outcome variable. Data preprocessing procedures included centering and scaling, 585 

median imputation for missing values, removal of highly correlated features, and zero- and near-586 

zero-variance filtering to ensure data quality. The dataset was divided into 80% training and 20% 587 

testing sets for model development, allowing for independent model validation. Parallel 588 

computation was implemented to expedite the training and selection process, with the number of 589 

cores for parallel processing set to the number of available CPU cores minus one. Model 590 

evaluation during training utilized a 10-fold cross-validation approach, repeated three times to 591 

enhance robustness and mitigate overfitting. The performance of each model was assessed on 592 

the independent test set, using a confusion matrix and area under the curve (AUC) metrics to 593 

provide unbiased evaluations of predictive accuracy across the three response classes. One-vs-594 

all receiver operating characteristic (ROC) curves were generated for each class using the pROC 595 

package in R, allowing for a detailed assessment of model sensitivity and specificity. To gain 596 

insights into feature significance, variable importance scores were calculated for each model 597 

within each response class. These scores were aggregated across classes to highlight baseline 598 

features with the highest predictive power, providing a comprehensive view of the immune and 599 

molecular markers most strongly associated with specific immunophenotypic group 600 

memberships. 601 

Model interpretability 602 

SHAP (SHapley Additive exPlanations) analysis was conducted using the DALEX (moDel 603 

Agnostic Language for Exploration and eXplanation) package in R 604 

(https://github.com/ModelOriented/DALEX/) to interpret the contribution of individual features to 605 

the gbm model’s predictions for each LAIV responder group (49, 50). SHAP values were 606 

https://github.com/ModelOriented/DALEX/
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computed to quantify the local, observation-specific impact of each feature on the model’s output, 607 

providing an additive decomposition of predictions into contributions from individual features and 608 

an intercept term. For each observation, SHAP values reflect how much each feature increases 609 

or decreases the predicted probability of belonging to a specific cluster (Group 1: CD8 T-cell 610 

responders, Group 2: mucosal responders, Group 3: systemic, broad influenza A responders) 611 

relative to the baseline prediction (intercept). The analysis was implemented by linking the trained 612 

gbm model with the DALEX explainer function, generating SHAP values for features prioritized 613 

by global variable importance scores. Feature contributions were visualized for each cluster using 614 

horizontal bar plots, where the magnitude and direction of SHAP values indicate the relative 615 

importance and influence (positive or negative) of each feature on the prediction. This approach 616 

provided granular insights into how baseline immune features drive LAIV immunogenicity across 617 

different responder groups.  618 

Tree-based analysis. All analyses were conducted in R using the rpart and rpart.plot packages. 619 

Data were loaded from a CSV file and merged with feature mapping information to restore original 620 

feature names. Missing values were replaced by column medians to ensure complete datasets 621 

for model fitting. Categorical variables were converted to factors, and continuous variables were 622 

discretized into meaningful bins based on predefined cutoffs. After discarding redundant 623 

variables, a decision tree model was fitted using rpart with parameters set to ensure appropriate 624 

pruning (cp=0.01) and sufficient sample sizes for splits (minsplit=70, minbucket=10). The tree was 625 

visualized with rpart.plot, and its full rule set was extracted using rpart.rules and saved for 626 

downstream interpretation. 627 

Data analysis 628 

Statistical analysis was performed using R (https://www.r-project.org/) package ggpubr version 629 

0.4.0. Integrative and machine learning analysis, including hierarchical clustering, t-SNE, KNN, 630 

and Louvain clustering, and supervised ML approach SIMON, were performed using PANDORA 631 
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software version 0.2.1. All data visualizations were conducted in R version 4.3.1 with the tidyverse 632 

package (version 2.0.0) for data wrangling. Heatmaps were created using the pheatmap package 633 

(version 1.0.12), polar plots were produced with ggplot2 (version 3.5.1) and the Wes Anderson 634 

color palette (version 0.3.7), and radar plots were generated with fmsb (version 0.7.6). Scaled 635 

median pathway expression values were calculated by grouping genes by pathway, omitting any 636 

missing values, and computing the median for each pathway-group pair. These scaled median 637 

values were used in all visualization techniques for consistent metric comparison across clusters 638 

in each plot type. Feature-specific polar plot values were further transformed using log10 to control 639 

significant variances, ensuring a more balanced visualization of expression levels across features. 640 

Data availability 641 

Data values reported in this manuscript are provided in the Supporting Data Values file. The 642 

complete integrated and de-identified dataset supporting the findings in this study is available on 643 

Zenodo (51): Comprehensive Multimodal Immune Response Dataset for LAIV Vaccination in 644 

Pediatric Cohorts. This dataset includes all baseline and post-vaccination measurements required 645 

to reproduce the analyses presented in this study. In addition, de-identified, processed/normalized 646 

gene expression data for baseline nasal and blood RNA-seq for all participants are also available 647 

on Zenodo (52). Researchers requiring access specifically to raw data should contact the 648 

corresponding author (Thushan de Silva) to initiate a request. Access will be facilitated through a 649 

formal Data Transfer Agreement managed by LSHTM to ensure compliance with ethical 650 

approvals. The immunaut platform, used for mapping immune profiles and predicting vaccine 651 

responses, is accessible via the PANDORA AI platform (https://pandora.atomic-lab.org/) and as 652 

an R package on CRAN (https://cran.r-project.org/web/packages/immunaut/index.html). General 653 

documentation for the immunaut package is hosted on GitHub 654 

(https://github.com/atomiclaboratory/immunaut). Furthermore, to ensure reproducibility of our 655 

specific findings, the exact code used for figure generation and modeling presented in this paper 656 

https://doi.org/10.5281/zenodo.14719593
https://doi.org/10.5281/zenodo.14719593
https://pandora.atomic-lab.org/
https://cran.r-project.org/web/packages/immunaut/index.html
https://www.google.com/url?sa=E&q=https%3A%2F%2Fgithub.com%2Fatomiclaboratory%2Fimmunaut
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has been deposited on GitHub at https://github.com/atomiclaboratory/immunaut/tree/master/R-657 

package#example-5-using-immune-response-dataset-for-laiv-vaccination-in-pediatric-cohorts-658 

dataset. 659 

Study approval 660 

Written informed consent was obtained from parents or guardians, and the study was approved 661 

by The Gambia Government, the UK Medical Research Council Joint Ethics Committee, and the 662 

Medicines Control Agency of The Gambia, adhering to the International Conference on 663 

Harmonisation Good Clinical Practice standards. 664 
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Figures: 834 

 835 

Figure 1. Immune response landscape mapping of LAIV reveals distinct 836 

immunophenotypic groups. (A) Cohort overview depicting all features used for unsupervised 837 

ML analysis: 244 children (24-59 months of age) vaccinated with LAIV, with mucosal and blood 838 
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samples collected on day 0 (pre-vaccination) and day 21 (post-vaccination). Vaccine-induced 839 

immune responses were calculated as fold-change relative to pre-vaccination levels. (B) 840 

Workflow schematic for the automated clustering pipeline applying t-SNE dimensionality 841 

reduction, K-nearest neighbors (KNN) graph construction, and Louvain community detection to 842 

identify distinct immunophenotypic clusters. (C, D) Louvain resolution sweep results used to 843 

assess cluster stability and select the optimal number of clusters. (C) Modularity score plotted 844 

against the Louvain resolution parameter, colored by the number of clusters identified (ranging 845 

from 3 to 6). High modularity indicates well-separated clusters. The red diamond indicates the 846 

selected clustering parameters. (D) Number of clusters identified plotted against the Louvain 847 

resolution parameter, colored by the modularity score. The stability of the three-cluster solution 848 

(red diamond) is observed across the range where modularity is maximal (Q ≈ 0.717). (E) 849 

Clustered t-SNE plot of fold-change data (post/pre-LAIV) revealing three distinct LAIV response 850 

phenotypes: Group 1 (green, n=82), Group 2 (orange, n=88), and Group 3 (purple, n=74). (t-SNE 851 

parameters: perplexity: 30; exaggeration factor: 4; max iterations: 10,000; theta: 0; eta: 500; K: 852 

60 for KNN graph; final silhouette score: 0.40). (F, G) Clustering patterns overlaid with 853 

demographic factors on the t-SNE map. (F) Clustering by sex (female in green, male in orange). 854 

(G) Clustering by study year (2017 in green, 2018 in orange). (H) Heatmap and hierarchical 855 

clustering display fold-change data for key immune features across the three identified clusters 856 

(columns: Group 2, 1, 3 from left to right). Rows represent immune features, clustered using 857 

Euclidean distance and Ward’s D2 method. Heatmap cells are colored based on scaled FC values 858 

from -1 (blue, low FC) to 1 (red, high FC). The top color bar indicates responder groups (Group 1 859 

green, Group 2 orange, Group 3 purple). Side color bars indicate qualitative response 860 

classifications derived from specific assays: HAI responder (purple: High, dark; Low, light), IgA 861 

responder (orange: High, dark; Low, light), CD4 T-cell responder (blue: High, dark; Low, light) and 862 

CD8 T-cell responder (green: High, dark; Low, light). Column cluster ordering is optimized for 863 

visual clarity.  864 
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 865 

Figure 2. Vaccine response immune signatures defining LAIV responder types. (A) Polar 866 

plot summarizing scaled median expression of key immune features in CD8 T-cell responders 867 
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(Group 1, green). CD8 T-cell responders are characterized by robust influenza B virus HA-specific 868 

CD8+ IFNγ responses and limited humoral immunity, with median feature values represented in 869 

the polar plot and fold-change comparisons shown in the adjacent box plot. (B) Polar plot for 870 

mucosal responders (Group 2, orange), illustrating strong mucosal IgA responses, particularly 871 

stalk-specific (cH7/3 IgA) and H3N2 virus HA-specific IgA antibodies and influenza B virus-872 

specific responses. Box plots detail fold changes (shown as log10) for various immune features, 873 

highlighting systemic (influenza B virus HAI) and mucosal immune activation (IgA). (C) Polar plot 874 

depicting systemic, broad influenza A virus responders (Group 3, purple), showing elevated 875 

systemic antibody responses to multiple influenza A virus strains (e.g., H1, H3), as well as cross-876 

reactive IgG and ADCC (antibody-dependent cellular cytotoxicity) activity. Box plots show fold-877 

change values (log10) for each immune marker across responder groups. (D) Integrated radar 878 

plot comparing scaled median immune expression profiles across all responder groups (CD8 T-879 

cell responders in green, mucosal responders in orange, systemic broad influenza A virus 880 

responders in purple), emphasizing distinct immune feature distributions. This integrative 881 

visualization highlights the unique baseline and post-vaccination immune landscapes that define 882 

each responder profile. Box plots denote min to max values, points are all individuals within the 883 

group, with significance levels calculated using one-way ANOVA Kruskal-Wallis test with Dunn’s 884 

multiple comparison test to adjust for multiple testing. Significance is indicated as follows: ns = 885 

not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 886 

 887 

  888 
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 889 

Figure 3. Automated machine learning framework for mapping and predicting LAIV 890 

immunogenicity response phenotypes. (A) Overview of the automated ML framework 891 

developed to predict LAIV response phenotypes using baseline immune data from mucosal and 892 

blood samples, capturing multi-dimensional immune parameters such as transcriptomics, 893 

antibody titers, bacterial load, flu-specific T-cell responses, and comprehensive 894 

immunophenotyping. (B) Step 1. Balanced data partitioning: the dataset is split into training (80%) 895 

and testing (20%) sets, ensuring proportional representation of each immunophenotypic group 896 
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(CD8 T-cell, mucosal, and systemic, broad influenza A responders) to maintain predictive 897 

accuracy across classes. Step 2. Model optimization cycle: 10-fold cross-validation and 898 

hyperparameter tuning are applied across 141 machine learning models, each iteratively trained 899 

and validated to identify the best predictors of vaccine response. Step 3. Model evaluation and 900 

scoring: predictive performance metrics, including specificity, sensitivity, and area under the curve 901 

(AUC), are calculated on the test set (20%) for model validation. Feature importance scores are 902 

computed for each baseline variable, providing a ranked analysis of each immune parameter’s 903 

contribution to LAIV response prediction. (C) Multi-class ROC plot of the gbm model evaluated 904 

on the test set (20%), displaying predictive accuracy across all three classes: CD8 T-cell 905 

responders (green), mucosal responders (orange), and systemic, broad influenza A responders 906 

(purple) in a one-vs-all comparison. (D) Variable importance score table for the gbm model, 907 

showcasing the cumulative importance of the selected baseline features across the three 908 

predicted classes, highlighting the most influential parameters in LAIV immunogenicity prediction.  909 
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 910 

Figure 4. Baseline immune landscape and viral shedding profiles predictive of LAIV 911 

response groups. (A) Heatmap of baseline immune features predictive of LAIV response groups, 912 



44 
 

organized by hierarchical clustering to show feature relationships and variations across groups 913 

(Euclidean distance, Ward’s D2 clustering method). Each cell reflects a scaled expression level, 914 

with red representing high expression and blue indicating low expression, revealing the 915 

distribution of immune features at baseline across the identified immunophenotypic clusters. (B) 916 

The proportion of seropositive children (HAI titer ≥10) at baseline (before vaccination) within each 917 

responder group and across all three LAIV-strains, pH1N1, H3N2, and influenza B virus (B). (C) 918 

The proportion of children that shed LAIV-strains (pH1N1, H3N2 and B) on day 2 and day 7 post-919 

vaccination across all three responder groups. (D) Box plots showing baseline features, including 920 

H3N2 HAI geometric mean titer (gmt), titer of antibodies binding H3 HA from 921 

A/Switzerland/9715293/2013 analyzed by influenza virus protein microarray (H3 HA SWISS 922 

IVPM), titer of antibodies binding NA from group 2 (N2) and frequency of influenza B virus HA-923 

specific CD8 T-cells producing IFNγ across all three responder groups. CD8 T-cell responders 924 

(green), mucosal responders (orange) and systemic, broad influenza A virus responders (purple). 925 

Box plots denote min to max values, and points are all individuals within the group, with 926 

significance levels calculated using one-way ANOVA Kruskal-Wallis test with Dunn’s multiple 927 

comparison test to adjust for multiple testing. Significance is indicated as follows: ns = not 928 

significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.  929 
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 930 

Figure 5. Baseline immune features and pathway-level determinants of LAIV responder 931 

profiles. (A-C) Polar plots illustrating scaled median expression of immune pathways across 932 
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three responder groups: (A) CD8 T-cell responders (Group 1, green); (B) mucosal responders 933 

(Group 2, orange); and (C) systemic, broad influenza A virus responders (Group 3, purple). (D) 934 

Combined radar plot showing integrated immune pathway signatures across the three responder 935 

groups, highlighting inter-group differences in pathway activation. (E) SHAP (SHapley Additive 936 

exPlanations) summary plots showing the contribution of baseline features to model predictions 937 

for each responder group (CD8 T-cell responders, group 1, green; mucosal responders, group 2, 938 

orange; and systemic, broad influenza A virus responders, group 3, purple). The intercept 939 

represents the baseline prediction before feature contributions. All other factors include the 940 

combined effect of features not displayed in the top 10 contributors. Prediction (purple bar) is the 941 

final probability derived by summing the intercept, top 10 feature contributions, and all other 942 

factors. Feature impacts are color-coded: green (positive, 1) increases the likelihood of belonging 943 

to the group, and red (negative, -1) decreases it. The top 10 features are ranked by their 944 

contribution to the prediction, providing insights into key drivers of LAIV response profiles.  945 

(F) The decision tree depicts the splits made at each node based on immune feature thresholds. 946 

Splits are chosen to maximize class separation, with fitted class probabilities displayed as group 947 

1 (CD8 T-cell responders, green), group 2 (mucosal responder, orange) and group 3 (systemic, 948 

broad influenza A virus responders, purple) for each terminal node. The coverage percentage 949 

represents the proportion of observations falling under each rule. Nodes are labeled with 950 

thresholds and the conditions that define group separation, with terminal nodes representing the 951 

predicted group and associated probabilities.  952 
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 953 

Graphical abstract. Immunaut, an automated framework for mapping and predicting vaccine 954 

response immunotypes. Step 1 outlines the identification of vaccine response outcomes using 955 

pre- and post-vaccination data integration across immune features, including antibodies, flu-956 

specific T-cells, and immunophenotyping at mucosal and systemic sites. Clustering methods 957 

define the vaccine response landscape, stability, and validation through t-SNE-based 958 

visualization. Step 2 leverages an automated machine learning modeling approach, to enhance 959 

the accuracy and interpretability of vaccine response predictions, enabling stratification and 960 

targeted intervention strategies for personalized vaccine immunogenicity.  961 
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Supplemental figures 962 

 963 

Supplemental Figure 1. Differential immune responses across LAIV-induced responder 964 

groups. (A) Group 1: CD8 T-cell responders (green) distinctive feature shown as box plot fold-965 

change in N1-specific IgA levels (log10). (B) Group 2: Mucosal responders (orange) show fold-966 

changes in influenza B virus-specific IgG levels (log10) (B/Phuket/3073/2013, 967 

B/Washington/02/2019) across groups. (C) Group 3: Systemic, broad influenza A virus 968 

responders demonstrate fold-changes (log10) in titers of antibodies binding to N1 and N2, and 969 

fold-change CD4 T-cell cytokine responses (IFNγ and IL2) to influenza A virus hemagglutinin (H1 970 

and H3) and matrix/nucleoprotein antigens (M/NP). Box plots denote min to max values, and 971 

points are all individuals within the group, with significance levels calculated using one-way 972 

ANOVA Kruskal-Wallis test with Dunn’s multiple comparison test to adjust for multiple testing. 973 

Significance is indicated as follows: ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p 974 

< 0.0001. 975 

 976 
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 977 

Supplemental Figure 2. Robustness of the multi-omics integration model to missing values 978 

in individual data layers. Assessment of Gradient Boosting Machine (gbm) model performance 979 

sensitivity to missing data introduced systematically into individual input layers. Multiclass Area 980 

Under the Curve (AUC) is plotted against the percentage of features randomly set to missing 981 

within a specific data layer (Antibodies - red, T-cells - green, Transcriptomics - blue), ranging from 982 

0% to 50%. The horizontal dashed line indicates the baseline multiclass AUC achieved by the 983 

gbm model trained on the original data (0% additional missing values). The analysis compares 984 

two preprocessing strategies: (A) gbm model performance when no imputation step is applied to 985 

handle the introduced missing values prior to model training. (B) gbm model performance when 986 

missing values introduced within the affected layer are imputed using the median value of the 987 

respective feature (across samples) prior to model training.  988 
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 989 

Supplemental Figure 3. Proportion of children positive for asymptomatic respiratory 990 

viruses before vaccination, stratified by post-vaccination response phenotype. Bars 991 

represent the percentage of children testing positive within the CD8 T-cell responders group 992 

(green bar, 38%), Mucosal responders group (orange bar, 30%), and Systemic, broad influenza 993 

A virus responders group (purple bar, 35%). Differences in these pre-vaccination positivity rates 994 

among the defined response groups were not statistically significant (ns; p = 0.57, Chi-squared 995 

test).  996 
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Tables 997 

Supplemental Table 1. Available online. 998 

Supplemental Table 2. Performance comparison of the gbm model using different input 999 

data modalities. This table presents the performance metrics of the Gradient Boosting Machine 1000 

(gbm) model when trained and evaluated using different subsets of the data. Performance is 1001 

shown for models trained on individual data modalities (Antibodies only, T-cells only, 1002 

Transcriptome only), combinations of modalities, and the fully integrated dataset. Metrics reported 1003 

include Accuracy, AUC, Kappa, F1 Score, Negative Predictive Value, Positive Predictive Value, 1004 

Specificity, and Sensitivity, allowing for comparison of the predictive power contributed by each 1005 

data type.  1006 

Model input data Accuracy AUC Kappa 
F1 

Score 

Neg Pred 

Value 

Pos Pred 

Value 
Specificity Sensitivity 

Antibodies only (HAI + 

IVPM) 
0.5319 0.6662 0.298 0.442 0.7211 0.4466 0.7186 0.438 

T-cells only 0.4468 0.6467 0.1596 0.3539 0.6738 0.34 0.6723 0.3403 

Transcriptome only 0.4255 0.5889 0.112 0.3958 0.6904 0.4063 0.6892 0.3772 

Transcriptome + 

Antibodies 
0.5319 0.6229 0.2985 0.4197 0.7084 0.4145 0.7047 0.4066 

Transcriptome + T-cells 0.5106 0.6706 0.2529 0.3612 0.6678 0.3077 0.6664 0.3278 

Integrated data 0.6383 0.8182 0.4594 0.7097 0.9 0.6471 0.8333 0.7857 

 1007 

Supplemental Table 3. Available online. 1008 
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