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Infiltration of T cell acute lymphoblastic leukemia (T-ALL) into the meninges worsens prognosis, underscoring the need to
understand mechanisms driving meningeal involvement. Here, we show that T-ALL cells expressing CXCR3 exploit normal

T cell function to infiltrate the inflamed meninges. CXCR3 deletion hampered disease progression and extramedullary
dissemination by reducing leukemic cell proliferation and migration. Conversely, forced expression of CXCR3 facilitated T-ALL
trafficking to the meninges. We identified the ubiquitin-specific protease 7 as a key regulator of CXCR3 protein stability

in T-ALL. Furthermore, we discovered elevated levels of CXCL10, a CXCR3 ligand, in the cerebrospinal fluid from patients

with T-ALL and leukemia-bearing mice. Our studies demonstrate that meningeal stromal cells, specifically pericytes and
fibroblasts, induce CXCL10 expression in response to leukemia and that loss of CXCL10 attenuated T-ALL influx into the
meninges. Moreover, we report that leukemia-derived proinflammatory cytokines, TNF-a, IL-27, and IFN-y, induced CXCL10 in
the meningeal stroma. Pharmacological inhibition or deletion of CXCR3 or CXCL10 reduced T-ALL cell migration and adhesion
to meningeal stromal cells. Finally, we reveal that CXCR3 and CXCL10 upregulated VLA-4/VCAM-1 signaling, promoting cell-
cell adhesion and thus T-ALL retention in the meninges. Our findings highlight the pivotal role of CXCR3-CXCL10 signaling in

T-ALL progression and meningeal colonization.

Introduction

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hema-
tologic cancer that arises from the malignant transformation of T cell
progenitors (1). It comprises 15% of pediatric and 25% of adult cas-
es with ALL. Patients with T-ALL present with hyperleukocytosis,
infiltration of the BM and extramedullary sites, including the CNS
(2). Intensified chemotherapy has improved cure rates in T-ALL (3—
5). However, survival outcomes remain poor among refractory and
relapsed patients, including those with CNS involvement (3, 4, 6-8).
In CNS-involved ALL, leukemic blasts invade the meninges and cir-
culate in the cerebrospinal fluid (CSF) (9). CNS infiltration is routine-
ly detected using cytomorphology-based analyses of CSF (10-12).
However, growing evidence questions the accuracy of cytospin-based
cytology to detect individuals with occult CNS leukemia (9, 12-14).
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The implementation of modern risk-adapted CNS-directed
therapies combining systemic treatment with intrathecal chemo-
therapy has resulted in lower rates of CNS relapse (3, 5, 6). How-
ever, the optimal treatment strategies for treating CNS disease or
CNS relapse while minimizing therapy toxicities have not been
identified thus far. Therefore, identifying mechanisms underlying
leukemic cell colonization and retention in the CNS is necessary
for the development of future targeted therapies.

In CNS leukemia, leukemic cells infiltrate the meninges, which
are a specialized set of membranes that enclose the brain and spinal
cord, providing essential mechanical support and protection. The
meningeal microenvironment is heterogeneous and exhibits a diverse
repertoire of immune cell populations and stromal cells, including
endothelial cells, pericytes, and fibroblasts (15, 16). Furthermore,
the meningeal microenvironment tightly regulates immune cell
recruitment and retention to maintain a balance between immune
defense and prevention of neuroinflammation (17).

Several studies have identified specific receptors involved in the
migration and infiltration of leukemic cells into the CNS (18-29).
To date, CCR7 and its chemokine CCL21 were identified to be nec-
essary to drive T-ALL migration to the meninges (30). Moreover,

1



:

RESEARCH ARTICLE

the chemokine receptor, CXCR4 has been shown to regulate T-ALL
progression and homing to the BM and the meninges (31-36). It
is becoming increasingly evident that the meningeal microenviron-
ment impacts leukemic cell ability to invade and reside in the menin-
ges (26, 28, 37-39). In turn, disseminated leukemic cells exploit the
meninges to create a supportive niche for leukemic cell survival.

The hallmark of neuroinflammation is the influx of leukocytes
across the blood-brain or blood-CSF barrier. The entry of leuko-
cytes into the CNS/meninges is regulated by chemokines (17, 40).
Inflammatory chemokine expression is typically low in the rest-
ing CNS/meninges but can be upregulated during inflammation
(17). CXCL10, known as an inflammatory chemokine, controls
the entry of various leukocyte subsets into the meninges and other
tissues during inflammation (41-44). CXCL10 is expressed by neu-
rons, glia, and stromal cells in multiple meningeal diseases (41-46).
Elevated levels of CXCL10 have been associated with invasive-
ness and metastatic potential in solid tumors (47-49). Interesting-
ly, increased levels of CXCL10 have been detected in the CSF of
patients with T-ALL with CNS involvement (31). CXCL10 binds
to CXCR3, which is predominantly expressed on activated T cells
and regulates T cell trafficking into extramedullary sites such as the
brain and meninges (43, 50-55). Interestingly, several lines of evi-
dence suggest that CXCR3 contributes to the metastasis of various
solid tumors (47, 48, 56-58).

Similar to normal T cells, T-ALL cells possess unique migra-
tory and homing abilities (22, 59, 60). Given the implication of
CXCR3-CXCL10 signaling in the migration of normal T cells
across the blood—CSF barrier during inflammation (43, 50, 54),
we hypothesized that T-ALL cells may exploit normal T cell func-
tion and adopt proinflammatory pathways to facilitate leukemic
cell migration and dissemination into the meninges. In this study,
we investigated the role of CXCR3-CXCL10 signaling in T-ALL
infiltration and retention in the meninges. Our findings support the
mechanism by which T-ALL hijacks the CXCR3-CXCL10 path-
way to colonize the meningeal niche, underscoring the potential for
targeting this pathway in T-ALL.

Results

CXCR3 is expressed in human T-ALL and murine AE-Notchl-driven
T-ALL. We first studied CXCR3 expression in T-ALL using a murine
model of AE-NOTCHI-induced T-ALL (Figure 1A and Supple-
mental Figure 1, A-D; supplemental material available online with
this article; https://doi.org/10.1172/JCI188888DS1) (61). This
model leads to the development of T-ALL with meningeal infiltra-
tion (Figure 1B) (19). We evaluated CXCR3 expression in thymic
CD4*CDS8* double positive (DP) cells of AE-NOTCHI T-ALL and
control nonleukemic mice. The levels of CXCR3 were higher in
CD4*CD8* DP cells of leukemia-bearing mice compared with con-
trol animals (Figure 1C). We also observed an upregulation of Cxcr3
mRNA and cell surface protein levels in murine BM lineage nega-
tive (Lin") progenitors transduced with AE NOTCHI1 (Figure 1, D
and E). Cxcr3 mRNA levels gradually increased at each time point,
suggesting that NOTCH1 regulates Cxcr3 (Figure 1F). According-
ly, targeting NOTCHI1 signaling with DBZ, a y-secretase inhibitor,
reduced CXCR3 mRNA and protein levels in both human and
murine T-ALL cells (Supplemental Figure 1, E-H). We next exam-
ined the expression of CXCR3 in T-ALL cells isolated from distinct
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sites of leukemic cell infiltration. The highest levels of cell surface
CXCR3 were found in leukemic cells (GFP*/CD4'CD8*DP) col-
onizing the meninges, thymus, and BM, as opposed to the liver,
spleen, lungs, and blood in AE NOTCHI T-ALL mice (Figure 1G
and Supplemental Figure 1I). We confirmed that T-ALL cells colo-
nizing the meninges had higher Cxcr3 mRNA levels compared with
leukemic cells in the BM (Figure 1H). We next investigated CXCR3
expression in human T-ALL cell lines (# = 10). TAL1-expressing
KOPTKI1 and Jurkat cells, and early T cell precursor (ETP) phe-
notype PER117 cell line had higher levels of CXCR3 compared
with other tested cell lines (Figure 1I). Flow cytometry analyses
and immunoblotting of primary T-ALL samples (n < 15), further
confirmed differential CXCR3 levels in T-ALL cells compared with
human CD34" progenitors (n = 2) and mature CD4* (n = 5) and
CD8" cells (n = 5), which had lower CXCR3 expression (Figure
1, J and K, Supplemental Figure 1J, and Supplemental Table 1).
Furthermore, the levels of CXCR3 mRNA were higher in primary
T-ALL samples (n = 24) compared with normal thymic cells (n =
3) (Figure 1L). Molecular interrogation of normal human thymic T
cell subsets confirmed lower expression of CXCR3 on CD4*/CD*
DP cells, CD4" cells, and CD4/CD8" double negative (DN) DN/
CD3" cells compared with DN/CD3* (y3) and CD8" cells (Figure
1M and Supplemental Figure 1K). Of note, DN/CD3* and CD8*
cells represent a small fraction (approximately 1% and 5%, respec-
tively) of the total thymocytes in thymus. Analyses of published
datasets for pediatric, adolescent, and young adult patients with
T-ALL (62, 63) showed that increased expression of CXCR3 was
not associated with any T-ALL molecular subtype or genetic lesion
(not shown). Collectively, these results demonstrate that CXCR3 is
differentially expressed in T-ALL in a tissue-specific manner.
CXCR3 regulates T-ALL cell proliferation and disease progression. To
examine the effect of CXCR3 on T-ALL progression, we performed
CRISPR/Cas9-mediated knockout (KO) of CXCR3 in KOPTK1
and PER117 cell lines, which exhibited higher levels of CXCR3
expression (Supplemental Figure 2, A-C). NOD.Cg-Prkdc
12rg™"i/Sz] (NSG) mice were transplanted with KOPTK1 and
PERI117 cells transduced with control (sgCtrl) and sgRNAs target-
ing CXCR3 (CXCR3KO1 and CXCR3 KO2). We observed prolonged
survival of mice injected intravenously with CXCR3 knockout cells
compared with animals inoculated with control cells (Figure 2,
A and B). Tissue examination of animals injected intrafemorally,
which were all euthanized 45 days after inoculation, revealed low-
er levels of KOPTKI1 cells in the BM and limited infiltration of
T-ALL cells into extramedullary sites such as the meninges and oth-
er organs, compared with the control group mice (Figure 2, C and
D, and Supplemental Figure 2D). We further investigated whether
CXCR3 regulates T-ALL cell homing into the BM. We recovered
a lower number of T-ALL cells from the femurs of mice inocu-
lated with CXCR3 knockout cells compared with animals injected
with control cells (Figure 2E). Functionally, CXCR3 knockout in
KOPTK1 and PER117 cells resulted in decreased cell proliferation
and a delay in cell cycle progression in S and G2/M phases, accom-
panied by an increase in G0/G1 phases (Figure 2F and Supplemen-
tal Figure 2E). There was no effect on apoptotic cell death in the
tested cells upon CXCR3 deletion (Supplemental Figure 2F). Using
T-ALL cell lines (KOPTK1, PER117) and primary samples (Pt #2,
Pt #4), we demonstrated that CXCR3 knockout reduced the activa-
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Figure 1. CXCR3 is expressed in T-ALL. (A) A schematic diagram for the generation of oncogenic 4E-NOTCH1-driven T-ALL. (B) Confocal images of whole-
mount meninges from AE-NOTCH1 and control mice showing infiltration of GFP-expressing (green) leukemic cells. Representative images (3 mice/group).
Scale bars: 2 mm (top row), 50 um (bottom row). (C) Cell surface CXCR3 on CD4*CD8* DP cells isolated from the thymus of leukemic (AE-NOTCH1) and control
(CON) mice (n = 5/group). Data represent median fluorescent intensity (MFI) + SD. (D) Cxcr3 expression in AE-NOTCHT-transformed (AE-NOTCH1) and control
(CON) Lin- hematopoietic progenitors. Mean + SD, 3 independent experiments. (E) CXCR3 levels in AE-NOTCH1-transformed and control hematopoietic pro-
genitors; representative histograms (left); MFI + SD, 3 separate experiments (right). (F) Expression of Cxcr3 during AE-NOTCH1-driven transformation (mean
+ 5D, 3 independent experiments). (G) CXCR3 levels in T-ALL cells (CD4*CD8* DP/GFP*) isolated from distinct organs of moribund AE-NOTCH1 mice (n = 5); MFI
+ SD. (H) Cxcr3 expression in T-ALL (CD4*CD8* DP/GFP*) cells isolated from the BM and meninges of moribund 4E-NOTCHT mice (n = 4). Mean + SD. Represen-
tative histograms for CXCR3 levels in (1) T-ALL cell lines (n = 10), (J) primary T-ALL cells (n = 8), and normal CD34* cells (n = 2). (K) Immunoblotting for CXCR3 in
primary T-ALL cells (n = 15). Representative blots from at least 2 separate experiments. (L), CXCR3 expression in primary T-ALL samples (n = 24) and normal
thymocytes (Thymus, n = 3). (M), CXCR3 expression in normal human thymic T cell subsets (n = 4 donors). The data show the percentage of receptor-posi-
tive cells in each subset. Mean + SD. (A) lllustrations were created with BioRender.com. (C-E, H, and L) unpaired 2-tailed t test. (G and M) 1-way ANOVA with
Tukey’s multiple comparison test; *P < 0.05; **P < 0.005; ***P < 0.0005; ****P < 0.0001.

J Clin Invest. 2026;136(2):e188888 https://doi.org/10.1172/)C1188888

:



RESEARCH ARTICLE

A KOPTK1 C  Bone marrow
*kkk
100+ P <0.0001 -+ sgCtrl 100 :ﬁ*
3 807 P <0.0001 = CXCR3 KO1 . 10
2’60 - CXCR3 KO2 0 +
T S
2 40 (@]
> < 041
@ 2 X o001
% 3 60 so 130 150 180 o001
NN
Days cg,\‘ © {_0{1’
B
B PER117 e
100+ —+ sgCtrl oo
< 50 p<0.0001 -~ CXCR3KO1
< - CXCR3 KO2
= %07 P <0.0001
é 401
c/:) 20
o4
50 100 150 200 250
Days
Oq’
[1.0
+0.8
0.6
x107
04
0.2
Radiance
(p/slcm?/sr)
Color scale
Min =5.00 x 10°
Max = 1.00 x 107
Dorsal Ventral
G KOPTK1 PER117 Pt #2 Pt#4
- N by N - o b N
o O o O o O o O
X X ¥ X ¥ X X ¥
@ M [s¢] [s] D ™ [s] (]
558588 sEE:E 8
Q (6] Q (6]
X X X X X X X X
00 @00 &6 o0& 0O
CXCRS‘—_ — ‘ ", * ‘
P-ERK1/2 >
L
(Thr202/Thr204)" i "" g ‘

ERK1/2|------( ’--- ---‘

P-p38 MAPK ’_ ' 3 < ‘ ’! ' ‘

(Thr180ITyr182)
p38 MAPK |uge e e we w0 9| |— JR—— -—‘

P-AKT (Ser473) ‘- - + i - - -

| o

AKT }- - - - -‘ )------|

P-SAPK/JNK g . H’ ' ‘

(Thr183/Tyr185)
SAPKLNK |t ot W wp e 8 | [ e e o e

Non-P B-Catenin - ‘ ’, ’ I

(Ser33/37/Thr41) ‘-' r .
Actin ’- - - - e - ‘ ‘------‘

Leukemic cells

-

The Journal of Clinical Investigation

Meninges Blood Spleen
*kkk *kkk *kkk
100, SEEE Skkk Ak
- 1007] opr 1007 2
.10 .10 L 10
[t o] [t
g1 2 1 S 1
Q o1 T T Q o1 ‘}- *® Qo
- S - + F
R oot R 001 R 001 !
oot L — 0.001
& D S D&
NS oo
BN S o8 F
Q2 Q-
A A °
[CAN¢) o O
Lungs Testis
*kkk *kkk
*kkk
1007 o 100 Akkk
& &H 10 &H 10 *
2 z z
e Q o4 + 2 o1
R R 001 ¥ - Ro.01 + o
0.001 0.001
ONONCY OO
S o8 o D05 0
P & L &
P A H°
o O [CLINE)
*kkk
10 frorrary e sgCtrl
1 ey e CXCR3 KO1
£ 04 o CXCR3 KO2
0.01
0.001
—-sgCtrl = CXCR3 KO1 —CXCR3KO2
KOPTKA1 PER117
1500 800
B ES
g 1000 )% g 600 . l%
< ¥ S0 E
E’ 500 *|% o * | %
3 = 200
8 8
0
0 24 48 72 96 120 0 74 45 72 % 120
Time (h) Time (h)
KOPTK1 PER117
£ 2 £ 2
g5 &%
s 8§t s8¢
L3S 2R3 =
CXCR3 ww o o | - |
GAPDH = s | —— |
NaK-ATPase ol wa | e |
Vehicle Cfz
- N - o
o O o O
X X< X X
0D oM o« ™
5885 EE
o o
X X X
2388 38538
CXCR3 | == -
P-B-Catenin
(Ser33/37/Thra1)| == w= w=
Non-P B-Catenin
(Ser33/37/Thra1) | @~ = 9 = =
ACtn | - > - - o

J Clin Invest. 2026;136(2):e188888 https://doi.org/10.1172/)C1188888



The Journal of Clinical Investigation RESEARCH ARTICLE

Figure 2. CXCR3 promotes T-ALL cell proliferation and disease progression. KOPTK1 and PER117 T-ALL cell lines were transduced with lentivirus express-
ing sgRNAs targeting CXCR3 (CXCR3 KO1and CXCR3 KO02) and a negative control sgRNA (sgCtrl). Kaplan-Meier survival curve analyses of NSG mice (n = 8/
group) transplanted with 1x 10° transduced (A) KOPTK1 and (B) PER117 cells (log-rank test). (C) Quantification of human CD45" cells in distinct organs of
NSG mice (n = 5/group) euthanized 45 days after receiving intrafemoral implantation with 3 x 10° transduced KOPTK1 cells. (D) Bioluminescence imaging of
NSG mice (n = 3/group) inoculated intrafemorally with transduced KOPTK1 cells (3 x 10°) coexpressing firefly luciferase. (E) Homing of T-ALL cells in the BM
at 24 hours. NSG mice (n = 5/group) received intravenously 1x 107 fluorescently labeled (DsRed) transduced KOPTK1 cells. (F) Cell growth of KOPTK1 and
PER117 transduced with sgRNAs targeting CXCR3 (CXCR3 K01, CXCR3 K02) and a negative control sgRNA (sgCtrl). Mean + SD for 1 of 3 independent exper-
iments performed in triplicate; repeated measure ANOVA with Tukey's multiple comparisons test. (G) Immunoblotting of KOPTK1, PER117, and primary
T-ALL cells (Pt #2, Pt #4) with the indicated antibodies. (H) Cytoplasmic and membrane-associated CXCR3 fractions in T-ALL cells. Cytoplasmic GAPDH
and membrane Na, K-ATPase o1 served as controls. (I) KOPTK1 cells were treated with an irreversible proteasome inhibitor, carfilzomib (Cfz; 0.5 nM, 6 h) or

vehicle control (Vehicle), followed by immunoblotting with the indicated antibodies. (G-1) Representative blots from at least 3 separate experiments.
(C and E) Data are shown as mean + SD. One-way ANOVA with Tukey's multiple comparison test; ****P < 0.0001.

tion of ERK1/2, p38, AKT, and SAPK/JNK, along with B-catenin
pathways, which are known to regulate T-ALL cell proliferation and
signal transduction (Figure 2G) (29). With evidence that CXCR3
regulates cell signaling pathways in the absence of chemokine stimu-
lation (Figure 2G), we next examined its cellular localization. In line
with prior observations (64, 65), we detected both membrane-bound
and cytoplasmic fractions of CXCR3 in T-ALL cells under steady-
state and ligand-stimulated conditions (Figure 2H and Supplemental
Figure 2G). Interestingly, forced CXCR3 expression restored non-
phosphorylated, active f-catenin, and, to a lesser degree, ERK1/2,
p38, AKT, and SAPK/JNK activation, rescuing T-ALL cell pro-
liferation (Supplemental Figure 2, H and I). To further determine
whether CXCR3 stabilizes B-catenin, we treated CXCR3 knockout
cells with the proteasome inhibitor carfilzomib, which restored active
B-catenin (Figure 2I), suggesting that CXCR3 prevents f3-catenin pro-
teasomal degradation under steady-state conditions. Consistently,
expression of constitutively active B-catenin in CXCR3-knockdown
cells partially rescued CXCR3 levels and T-ALL cell proliferation
(Supplemental Figure 2, J and K). Finally, cell fractionation revealed
restored cytoplasmic and nuclear f-catenin in CXCR3-rescued cells
(Supplemental Figure 2L), further supporting a role of CXCR3 in
stabilizing P-catenin and potentially regulating its transcription-
al activity. Together, these findings suggest that CXCR3 promotes
T-ALL cell proliferation and disease progression.

CXCR3 mediates T-ALL cell migration and infiltration into the menin-
ges. Given the role of CXCR3 and its chemokines CXCL9, CXCL10
and CXCL11 in immune cell trafficking (66), we next studied how
CXCR3 regulates leukemic cell migration. We observed enhanced
migration of KOPTK1 and PER117 cells to CXCL10 compared
with CXCL9 and CXCL11, and subsequently reduced T-ALL cell
migration upon CXCR3 silencing (Figure 3A and Supplemental
Figure 3, A-C). As CXCL10 induced higher levels of T-ALL cell
migration than CXCL9 and CXCL11, CXCL10 was selected for
further validation studies. We tested a small set of primary T-ALL
samples, stratified based on cell surface CXCR3 expression levels
(CXCR3tieh = 5 or CXCR3"¥, n = 5). Samples with higher CXCR3
levels showed increased migration to CXCL10 compared with low-
er CXCR3 expressors (Figure 3B). CXCR3 deletion in 2 primary
T-ALL samples (Pt #2, Pt #4) resulted in reduced leukemic cell
migration to CXCL10 (Figure 3C). Furthermore, pharmacological
inhibition of CXCR3 with AMG487, a CXCR3 antagonist, reduced
migratory capacity of both T-ALL cell lines and primary cells to
CXCL10 (Figure 3, D and E) but had no effect on T-ALL cell pro-
liferation and viability (Supplemental Figure 3, D-F). Consistently,
murine 4E-NOTCH I-transformed T-ALL cells exhibited migration
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toward a CXCL10 gradient (Supplemental Figure 3G). Although
CXCL10 induced CXCR3 internalization, it was not expressed in
T-ALL, and did not affect T-ALL cell proliferation (Supplemental
Figure 3, H-K). As transendothelial migration is critical for leuke-
mic cell dissemination, we further investigated the role of CXCR3
in T-ALL cell migration through a monolayer of human umbili-
cal vein endothelial cells (HUVEC) in the presence or absence of
CXCL10. Knockout of CXCR3 in KOPTK1 and PER117, and in
primary T-ALL cells (Pt #2, Pt #4), reduced leukemic cell migra-
tion through HUVEC (Supplemental Figure 3, L and M). Function-
ally, loss of CXCR3 expression in T-ALL cells resulted in reduced
expression of critical regulators of cell motility, including cortactin,
vinculin, paxillin, focal adhesion kinase (FAK), and ezrin-radixin-
moesin (ERM) (Figure 3F). In contrast, stimulation of T-ALL
cells with CXCL10 led to increased levels of these migration-
associated proteins (Supplemental Figure 3N). Notably, CXCL10
treatment selectively decreased the levels of active, nonphosphory-
lated (Ser33/Ser37/Thr41) B-catenin (Figure 3G) without affecting
the activation of ERK1/2, p38, AKT, and SAPK/JNK signaling
pathways (Supplemental Figure 30), suggesting a specific role for
fB-catenin in mediating the cellular response to CXCL10. Treatment
with the proteasomal inhibitor carfilzomib restored active B-catenin
levels in CXCL10-treated cells, suggesting that CXCL10 engage-
ment promotes B-catenin phosphorylation (Ser33/Ser37/Thr4l)
and its subsequent degradation in the proteasome (Figure 3H).
These findings reveal the mechanistic link between CXCL10-medi-
ated signaling and B-catenin turnover in T-ALL. We next induced
ectopic expression of CXCR3 in the DND41 cell line, which has
previously been reported to lack meningeal infiltration (30) and
does not express CXCR3, CCR7, or CXCR4 (Supplemental Fig-
ure 3, P-T). Forced expression of CXCR3 in DND41 cells induced
migration to CXCL10 compared with CXCL9 and CXCL11, with-
out affecting cell proliferation, cell cycle, or apoptosis (Figure 31
and Supplemental Figure 3, U-Y). Upregulation of CXCR3 led to
decreased survival in mice compared with the control group (Figure
3J). Strikingly, while control animals developed T-ALL with infil-
tration of multiple organs but no meningeal involvement, forced
CXCR3 expression drove robust meningeal infiltration, underscor-
ing a potential role for CXCR3 in directing T-ALL cell trafficking to
the meninges (Figure 3K and Supplemental Figure 3Z). Collective-
ly, these results suggest that CXCR3 regulates T-ALL cell migration
and promotes meningeal infiltration.

USP7 regulates CXCR3 stability by deubiquitylation. The ubiqui-
tin-specific protease 7 (USP7) is expressed in T-ALL and transcrip-
tionally regulated by NOTCH1 (67, 68). USP7 binding studies in
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Figure 3. CXCR3 regulates T-ALL cell migration and infiltration into the meninges. (A) Migration of T-ALL cells upon CXCR3 knockout + CXCL10 (100 ng/mL, 6 h,
3 um transwell membrane) (B) Primary T-ALL cells were stratified based on CXCR3 cell surface expression as high (n = 5) and low (n = 5), followed by cell migra-
tion assay + CXCL10 (100 ng/mL, 6 h). (C) Migration of primary T-ALL cells (Pt #2, Pt #4) upon CXCR3 deletion + CXCL10 (100 ng/mL, 6 h). (D) T-ALL cell lines and
(E) primary cells grouped as CXCR3 high (n = 5) and low (n = 5) were pretreated with a CXCR3 antagonist, AMG487 (1.5 ug, 30 min.). Cell migration + CXCL10 (100

ng/mL; 6 h). (F-H) Immunoblotting for specified proteins (Cfz, carfilzomib, 0.5

nM, 6 h; CXCL10, 100 ng/mL, 1h). Representative blots from at least 3 separate

experiments. (I) DND41 cells were transduced to express either CXCR3 variants (CXCR3 TV1, CXCR3 TV2, CXCR3 TV1 + TV2) or a negative control plasmid (CON).
Cell migration in the presence or absence of CXCL10 (100 ng/ml, 6 h). Mean + SD, 3 separate experiments performed in duplicate. (J) Kaplan-Meier survival curve
analysis of NSG mice (n = 8/group) intravenously inoculated with 1 x 10° transduced DND41 cells (log-rank test). (K) Human CD45* cells isolated from various

organs of moribund NSG mice (n = 6/group). The percentage of T-ALL cells (% h
+ SD, 3 separate experiments performed in duplicate (B, D, and E) Mean + SD, e

CD45%) was calculated as [hCD45*/(hCD45* + mCD45%)] x 100. (A, C, and I) Mean
ach sample was tested in duplicate. Unpaired 2-tailed t test with Holm-Sidak

correction for multiple comparisons. (A, C, and I) Two-way ANOVA and (K) 1-way ANOVA with Tukey’s multiple comparison test; ****P < 0.0001.

NOTCH]1-driven T-ALL revealed enrichment of CXCR3 signaling
components, highlighting a potential regulatory link between USP7
and CXCR3 signaling (68). Based on these findings, we hypothe-
sized that USP7 regulates CXCR3 expression in T-ALL cells. We
knocked down USP7in KOPTK1 and PER117 cell lines and inves-

tigated its effect on CXCR3 expression. We found that USP7 silenc-
ing reduced the expression of CXCR3 at both protein and mRNA
levels (Figure 4, A—C, and Supplemental Figure 4A). USP7 is known
to stabilize its substrate proteins by removing their ubiquitin tags,
thus preventing proteasomal degradation. To determine whether
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USP7 stabilizes CXCR3, we induced increasing concentrations of a
USP7-expressing plasmid into the CUTTL1 T-ALL cell line, which
expresses low/undetectable levels of endogenous CXCR3 protein.
We observed a gradual increase in CXCR3 levels corresponding
with increasing expression of USP7, suggesting that USP7 stabi-
lizes CXCR3 (Figure 4D). To further delineate whether the cata-
lytic function of USP7 plays a role in stabilizing CXCR3 protein,
we silenced endogenous USP7 followed by ectopic expression of
USP7 WT and USP7 catalytic domain mutant (USP7 CS, C233S)
in KOPTKI1 cells. The expression of CXCR3 was absent in the cells
expressing catalytically inactive USP7 (USP7 CS) as opposed to
the cells expressing WT USP7, in which the expression of CXCR3
was present (Figure 4E). These results indicate that the catalytic
activity of USP7 is required to regulate CXCR3. Importantly, treat-
ment with the proteasomal inhibitor carfilzomib restored CXCR3
expression in USP7-deficient cells compared with vehicle-treated
control cells, suggesting that USP7 maintains CXCR3 levels by
preventing its proteasomal degradation (Figure 4F). We next inves-
tigated the interaction between USP7 and CXCR3. Endogenous
USP7 was detected in immunoprecipitants with anti-CXCR3 but
not IgG antibodies (Figure 4G). Conversely, CXCR3 was present
in USP7 but not IgG immunoprecipitants (Figure 4H), indicating
the presence of a specific interaction between USP7 and CXCR3.
Finally, we sought to understand whether USP7 regulates CXCR3
stability by deubiquitylation. We observed that USP7 silencing led
to increased polyubiquitination of CXCR3 in coimmunoprecipita-
tion experiments (Figure 4I). Furthermore, CXCR3 polyubiquitina-
tion was increased in T-ALL and HEK293 cells expressing USP7
CS compared to USP7 WT, underscoring the importance of the
catalytic function of USP7 in maintaining CXCR3 protein levels
(Figure 4] and Supplemental Figure 4B). Prior studies showed that
USP7 interacts with NOTCHI1 (Figure 4H) in T-ALL to regulate
leukemic cell growth (67, 68). We found that targeting NOTCH1
reduced CXCR3 expression (Supplemental Figure 1, A-D), lead-
ing us to investigate its direct role. We observed enrichment for
the CXCR3 promoter region in NOTCH1 immunoprecipitants in
KOPTKI1 cells (Figure 4K). A luciferase reporter assay showed that
NOTCHI1 inhibition with DBZ decreased CXCR3 promoter activ-
ity, which was abrogated when the NOTCH1-binding site was lost
(Figure 4L). Together, these results suggest that USP7/NOTCH1
regulates and stabilizes CXCR3.

T-ALL induces CXCLI0 in the meninges. Given the role of
CXCR3 in regulating T-ALL chemotaxis, we investigated the lev-
els of CXCL9, CXCL10, and CXCL11 in the blood, bone marrow
serum, and CSF of AE-NOTCH1 T-ALL and control mice. Leuke-
mic mice had elevated levels of CXCL10 in the blood serum, bone
marrow serum, and CSF, compared with control animals (Figure
5A). Interestingly, the levels of CXCL10 were higher in the CSF
than in the blood and bone marrow serum of T-ALL-bearing mice,
suggesting an enhanced immune response in the CSF microenvi-
ronment (Figure 5A). Immunostaining of a whole-mount menin-
ges revealed increased expression of CXCL10 in AE-NOTCHI mice
compared with control animals, where CXCL10 expression was
not evident (Figure 5B). In contrast, the levels of CXCL9 in the
CSF and meninges of control and AE-NOTCH1 mice were low
or undetectable (Supplemental Figure 5, A and B). CXCL11 was
not detected in murine tissue (not shown), consistent with previ-
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ous reports indicating that C57BL/6J background mice do not
express Cxcl11 (69). Consistently, we observed increased levels of
CXCL10, but not CXCL9, in CSF and meningeal lysates compared
with blood and BM samples from moribund NSG mice inoculated
with human T-ALL cell lines (Supplemental Figure 5, C and D).
Additionally, we observed an increase in CXCL10, but not CXCL9,
in the CSF of mice inoculated with DND41 cells overexpressing
CXCR3 (Supplemental Figure 5, E and F). Importantly, our find-
ings were further validated by detecting elevated CXCL10 levels
in CSF samples from patients with T-ALL (n» = 7) compared with
normal human CSF (n = 4) (Figure 5C and Supplemental Table
2). Next, we sought to understand whether CXCL10 mediates leu-
kemic cell infiltration into the meninges. CD45.1 hematopoietic
progenitors were transduced with 4E-NOTCHI-GFP followed by
transplantation into recipient CXCLI0 knockout (CXCL10 KO;
B6.129S4-Cxcl10"44/]) and relevant control mice (CD45.2) (Fig-
ure 5D). Postnecropsy tissue analyses performed on terminal mice
revealed a decrease in the number of T-ALL cells infiltrating the
meninges but not the BM or other organs in CXCLI0-KO mice
compared with the control animals, which presented with high lev-
els of T-ALL cells in the BM and extramedullary tissues (Figure
5E and Supplemental Figure 5G). Loss of CXCL10 did not affect
T-ALL cells homing to the BM, suggesting that other factors drive
T-ALL to this niche (Supplemental Figure 5H). Notably, we did
not observe leukemic cell homing into the meninges of the tested
mice (Supplemental Figure 5H), consistent with CXCL10’s role as
an inducible inflammatory chemokine, which is absent in nonin-
flamed tissues. Additionally, we did not observe an increase in apop-
totic cell levels in T-ALL cells recovered from meninges and BM
of CXCL10-KO mice compared with control group (Supplemen-
tal FIgure 5I). While T-ALL cells exhibited reduced proliferative
activity in the meninges compared with BM, the loss of CXCL10
had no effect (Figure 5F). To further investigate how CXCL10
regulates T-ALL infiltration into the meninges, we analyzed leu-
kemia burden and CXCL10 levels in the BM, meninges, and other
organs at various time points during 4E-NOTCHI-driven T-ALL
development. T-ALL cells gradually increased in the BM of leuke-
mia-bearing mice, independent of CXCL10 knockout (Figure 5G).
In contrast, leukemic cells were detected in the meninges at Day 20,
with an increase by Day 35 (Figure 5G). T-ALL infiltration into the
meninges was delayed compared with the BM. Although CXCL10
knockout did not affect T-ALL infiltration into other organs or the
BM, its loss reduced T-ALL infiltration into the meninges (Figure
5G and Supplemental Figure 5J). In line with this, an increase in
CXCL10 was observed in the CSF of 4E-NOTCHI mice at Days
20 and 35, while its levels in blood serum samples remained low
(Figure 5H and Supplemental Figure 5K). To determine whether
the meningeal microenvironment induces CXCL10 in response to
T-ALL, we evaluated CXCL10 expression in stromal (CD45") and
hematopoietic (CD45") cells isolated from the meninges of con-
trol and T-ALL-bearing mice. We observed an increased expres-
sion of Cxcl10 in the meningeal stromal cells (CD45") as opposed
to CD45+ cells (Figure 5I). As expected, Cxcl9 was expressed at
low/undetectable levels in the tested cells (Supplemental Figure
5L). Next, we sought to identify specific meningeal stromal cells
that induce CXCL10 in response to T-ALL. We found that fibro-
blasts and pericytes, but not endothelial cells or vSMC, expressed
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Figure 4. USP7 stabilizes CXCR3 in T-ALL. T-ALL cells were transduced with shRNA targeting USP7 (shUSP7 1 and shUSP7 2) and scrambled control (shNC),
and USP7 (A) transcript and (B) protein were confirmed. Means + SD for 3 independent experiments. (€) CXCR3 cell surface levels; representative histograms
(top); MFI + SD, 3 separate experiments (bottom). (D) CUTTL1 T-ALL cells were transduced with increasing concentrations of USP7-expressing plasmid,
followed by immunoblotting for CXCR3. (E) KOPTK1 cells expressing shRNA USP7 (shUSP7 1) and scrambled control (shNC) were transduced with plasmids
expressing USP7 WT and catalytically inactive USP7%3*> mutant (USP7 CS). Immunoblotting of the indicated proteins. (F) KOPTK1 cells with USP7 knock-
down (shUSP7 1, shUSP7 2) or control cells (shNC) were treated with an irreversible proteasome inhibitor, carfilzomib (Cfz; 0.5 nM, 6 h) or vehicle control
(Veh), followed by immunoblotting with the indicated antibodies. Immunoprecipitation of endogenous (G) CXCR3 and (H) USP7 in KOPTK1 cells under dena-
turing conditions, followed by immunoblotting for the specified proteins. (1) Immunoprecipitation of CXCR3 in KOPTK1 carrying USP7 knockdown (shUSP7 1
or shUP7 2) or scrambled control (shNC), followed by Western blot for USP7 and ubiquitin (UB). (J) Immunoprecipitation of CXCR3 in KOPTK1 cells expressing
USP7 WT and catalytically inactive USP7¢%33° mutant USP7 CS. Immunoblotting analysis of the specified proteins. (K) Enrichment of NOTCH1 on the CXCR3
promoter by ChIP-gPCR in KOPTK1 cells. (L) Luciferase reporter assay for CXCR3 on KOPTK1 following treatment with a y-secretase inhibitor (DBZ, 0.1 uM,

24 h). The NOTCH1 binding site is indicated as X (-360bp to -370bp upstream of the CXCR3 coding start site). (A, C, and L) One-way ANOVA with Tukey's
multiple comparisons test. (K) Unpaired 2-tailed t test; ****P < 0.0001. (B and D-J) Representative blots of 1 of 3 independent experiments.

intracellular CXCL10 in AE-NOTCHI T-ALL mice but not control
animals (Figure 5J and Supplemental Figure 5M). Furthermore,
CXCL10 levels were elevated in meningeal pericytes and fibroblasts
in T-ALL mice relative to their counterparts in other tissues and
organs, further supporting a unique role for the meningeal micro-
environment in driving CXCL10 induction in response to T-ALL
(Figure 5, K and L, and Supplemental Figure 5, N and O). In line,
coculturing human T-ALL cell lines or primary cells with prima-
ry human leptomeningeal cells (LeC), leptomeningeal pericytes
(Per), and dural fibroblasts (DuF), but not dural meningeal endo-
thelial (DuEC), and HUVEC cells, induced secretion of CXCL10
via ELISA (Figure 5, M-P, and Supplemental Figure 5, P-U). Our
observations were further supported by the evidence that CXCLI0
was upregulated in Per, DuF, and LeC cocultured with T-ALL cell
lines and primary cells, as opposed to stromal cells or leukemic cells
cocultured alone (Supplemental Figure 5, V-AA). Collectively,
these results demonstrate that T-ALL induces CXCL10 expression
by meningeal stromal cells.

Fibroblast- and pericyte-derived CXCL10 regulate CXCR3-mediated
T-ALL cell migration. We next studied the effect of meningeal stro-
mal cells on CXCR3-mediated T-ALL cell migration. We found
that T-ALL cell lines (KOPTK1, PER117) and primary cells (Pt
#2, Pt #4) migrated to primary human LeC, Per, and DuF (Figure
6, A—C). On the contrary, there was no evidence for migration of
leukemic cells to DuEC (Figure 6, B and C). Treatment of T-ALL
cells with a CXCR3 antagonist or CRISPR/Cas9-mediated knock-
out of CXCR3 in T-ALL cells reduced leukemic cell migration to
the meningeal stromal cells compared with controls (Figure 6, D
and E, and Supplemental Figure 6, A and B). We next investigated
if T-ALL cell migration is driven by factors secreted by the men-
ingeal stroma. T-ALL cells were tested for their migratory activity
toward conditioned medium (CM) derived from meningeal stromal
cells, in comparison with fresh culture medium. We observed an
increase in migration of T-ALL cell lines and primary samples
in the presence of CM from LeC, Per, and DuF compared with
fresh culture media (Figure 6, F-H). As expected, DuEC CM did
not induce leukemic cell migration. Notably, a CXCL10 neutral-
izing antibody inhibited T-ALL cell migration to both meningeal
stroma cells and stromal CM (Supplemental Figure 6, C-E). To
further delineate the effect of stroma-derived CXCL10 on T-ALL
cell migration, we knocked out CXCLI0 in primary human LeC,
Per, and DuF (Supplemental Figure 6, F and G). We observed
reduced migration of T-ALL cell lines and patient samples to the
tested stromal cells upon CXCLI0 deletion compared with control
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cells (Figure 6, I and J). Moreover, T-ALL cells did not migrate to
CM from LeC, Per, and DuF carrying CXCL10knockout compared
with CM from control stromal cells, further supporting the role of
stroma-derived CXCL10 in T-ALL migration (Supplemental Fig-
ure 6H). Lastly, to model the meningeal microenvironment in vitro,
we established tertiary and quaternary coculture systems to test
whether T-ALL cells transmigrate to DuF and LeC across either a
DuEC monolayer or a DuEC/pericyte bilayer. We confirmed that
T-ALL cells can migrate across both endothelial and endothelial/
pericyte-enriched barriers in these engineered coculture systems
(Supplemental Figure 6, I-N). Together, these results show that
CXCL10 secreted from meningeal stromal cells regulates migration
of CXCR3-expressing T-ALL cells.

CXCLI10-CXCR3 signaling promotes T-ALL cell adhesion to meningeal
stromal cells. We next hypothesized that the CXCR3-CXCL10 signal-
ing axis contributes to leukemic cell retention in the meningeal micro-
environment. First, we confirmed the adhesion of T-ALL cells to
LeC, Per, and DuF in both standard and multicell coculture systems,
whereas no adhesion was observed to DuEC (Supplemental Figure
7, A-D). To investigate the role of CXCR3 in leukemic-meningeal
cell-cell adhesion, we performed CXCR3 knockout in T-ALL cell
lines (KOPTK1 and PER117) and primary samples (Pt #2 and Pt
#4) followed by cell-cell adhesion analyses. CXCR3 deletion reduced
the adhesion of T-ALL cell lines and primary samples to LeC, Per,
and DuF (Figure 7, A—C). Conversely, knockout of CXCLI0in LeC,
Per, and DuF led to decreased adhesion of T-ALL cells to the test-
ed stromal cells (Figure 7, D and E). Accordingly, the adhesion of
T-ALL cells was reduced upon treatment with a CXCR3 antagonist
or CXCL10 neutralizing antibody compared with untreated or con-
trol leukemic cells (Supplemental Figure 7, E and F). Functionally,
coculturing T-ALL cells with meningeal stromal cells resulted in
increased expression of VLA-4 on KOPTK1 and PER117 cells (Fig-
ure 7F) concomitant with elevated levels of VCAM-1 in LeC, Per, and
DuF (Figure 7, G-I). Additionally, the expression of both VCAM-1
and VLA-4 was increased in the meninges of 4E NOTCHI T-ALL
mice compared with control animals (Figure 7, J and K). Knockout or
pharmacological inhibition of CXCR3 in T-ALL cells (Figure 7, L-O,
and Supplemental Figure 7, G-M) or CXCL10 in LeC, Per, and DuF
(Figure 7, P-S, and Supplemental Figure 7, N-T) reduced the expres-
sion of VLA-4 and VCAM-1in T-ALL and stromal cells, respectively,
further supporting the role of CXCL10-CXCR3 in regulating T-ALL
adhesion to meningeal stroma. Taken together, our data demonstrate
that CXCL10-CXCR3 signaling enhances cell-cell adhesion between
T-ALL and meningeal stromal cells through VLA-4/VCAM-1.
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Figure 5. CXCL10 is upregulated in the meningeal microenvironment in T-ALL. (A) CXCL10 in body fluids of T-ALL (AE-NOTCH1) and control (CON) mice

(n =7/group). Scale bars: 50 um. (B) CXCL10 immunolabeling (red) in the meninges of AE-NOTCH1 and control mice. Leukemic cells express GFP (green)

(n = 3/group). (C) CXCL10 in CSF from patients with T-ALL (n = 7) and normal CSF samples (n = 4). (D) Implantation of AE-NOTCH1-transformed cells into
CXCL10 KO and CXCL10 WT. (E) CD45*/GFP* and (F) Ki67*/GFP* cell quantification in organs of moribund AE-NOTCH1 T-ALL mice (n = 10/group and 5/group,
respectively). (G) GFP*/CD45* cells in the BM and meninges, and (H) CXCL10 in CSF of leukemic (CXCL10 WT and CXCL10 KO), and nonleukemic control mice
(CON) (n = 6/group) (days 12, 20, and 35) (1) Cxc/10 expression in stromal (CD45) and hematopoietic (CD45*) cells from BM, meninges (Mn) and thymus
(Thy) of AE-NOTCH1 mice (n = 4/group). (J) CXCL10 in meningeal cell subsets of T-ALL (AE-NOTCH?1) and control (CON) mice, including fibroblasts (PDG-
FRa*, NG2-, CD13*, CD31, CD45"), pericytes (PDGFRa*, NG2*, CD13*, CD31-, CD457), endothelial cells (CD31+, CD457), vSMC (Desmin*, CD13*, CD31*, CD45°), and
hematopoietic cells (CD45*) (MFI + SD, n = 6/group). (K and L) CXCL10 in pericytes and fibroblasts from various organs of AE-NOTCHT T-ALL mice (MFI +
SD, n = 4/group). CXCL10 in the medium of T-ALL cell lines (M and N) and primary T-ALL (Pt #2, Pt #4) (0 and P) cocultured with/without human primary
meningeal stromal cells for 6 h (Per, pericytes; DuF, dural fibroblasts). Mean + SD, 3 independent experiments. (A and G-}) Two-way ANOVA with Tukey's
multiple comparison test. (C) Unpaired 2-tailed t test. (E and F) Unpaired t test with Holm-Sidak correction for multiple testing. (K-P) One-way ANOVA

with Tukey’s multiple comparison test; ****P < 0.0001.

Leukemia-derived proinflammatory cytokines induce CXCL10 in men-
ingeal stromal cells. We aimed to understand how CXCL10 is induced
during leukemic colonization of the meninges. Given that T-ALL
cells secrete proinflammatory cytokines (70), we hypothesized that

e

factors derived from T-ALL induce CXCLI10 in the meningeal
microenvironment. To test this hypothesis, we incubated meningeal
stromal cells in CM from T-ALL cell lines, KOPTK1, and PER117.
The CM from T-ALL cells induced an increase in CXCL10 expres-
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Figure 6. CXCL10 from fibroblasts and pericytes enhances migration of T-ALL cells. (A) A representation of T-ALL: T-ALL cell migration to the meningeal
stroma. (B) Migration of T-ALL cell lines (KOPTK1, PER117) and (C) primary T-ALL samples (Pt #2, Pt #4) in the presence or absence of human primary
meningeal stromal cells (Per, pericytes; DuF, dural fibroblasts; LeC, leptomeningeal cells, DuEC, dural endothelial cells) (6 h, 3 um). The effect of CRISPR/
Cas9-mediated knockout of CXCR3 (CXCR3 KO1, CXCR3 KO2, sgRNAs targeting CXCR3; SgCtrl, negative control) in (D) T-ALL cell lines and (E) primary T-ALL
cells on migration of leukemic cells towards meningeal stromal cells (6 h, 3 um). (F) A scheme: T-ALL cell migration to conditioned medium (CM, 48 h) from
meningeal stroma. The migration of (G) T-ALL cell lines and (H) primary T-ALL cells towards meningeal stromal cells CM (6 h, 3 pm). Fresh medium for
meningeal stromal cells was used as a control. The migration of (1) T-ALL cell lines and (J) primary T-ALL cells upon CXCL10 knockout (CXCL10 KO1, CXCL10
K02, sgRNAs targeting CXCL10; SgCtrl, negative control) in human primary meningeal stromal cells (6 h, 3 um). (A-]) Mean + SD from 3 independent
experiments performed in duplicate. (B, C, G, and H) Unpaired t test with Holm-Sidak correction for multiple testing. (D, E, 1, and J) One-way ANOVA with

Tukey’s multiple comparison correction; ****P < 0.0001.

sion in Per, LeC, and DuF, which corresponded with increased
CXCL10 secretion, while DuEC showed no response (Figure 8, A
and B, and Supplemental Figure 8A). This suggests that leukemic
cells deliver specific factors that induce CXCL10 in subsets of men-
ingeal stromal cells. Next, we analyzed the CM from T-ALL cells
incubated with or without LeC, Per, DuF, and DuEC. We observed

J Clin Invest. 2026;136(2):e188888 https://doi.org/10.1172/)C1188888

an increase in the levels of IFN-y, TNF-q, IL-7, IL-27, and PDGF-a
in the CM from the tested cocultures, except for DuEC cocultures
and compared with CM from T-ALL and meningeal cells cultured
alone (Supplemental Figure 8B). Subsequently, we demonstrated
that stimulation with recombinant IFN-y, TNF-a, and IL-27 induced
CXCL10 expression in human meningeal LeC, Per, and DuF com-
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Figure 7. CXCL10-CXCR3 regulates T-ALL-meningeal stroma cell-cell adhesion. (A) A graphic of T-ALL and meningeal stromal cell coculture. The effect of
CRISPR/Cas9-mediated knockout of CXCR3 (CXCR3 KO1, CXCR3 K02, sgRNAs targeting CXCR3; SgCtrl, negative control) in (B) T-ALL cell lines (KOPTK1,
PER117), (C) primary T-ALL cells (Pt #2, Pt #4), and (D and E) CXCL10 knockout (CXCL10 KO1, CXCL10 KO2, sgRNAs targeting CXCL10; SgCtrl, negative
control) in primary human meningeal stromal cells (Per, pericytes; DuF, dural fibroblasts; LeC, leptomeningeal cells, DuEC, dural endothelial cells) on
leukemic-stromal cell-cell adhesion (6h). (F) VLA-4 on KOPTK1 and PER117 cocultured with meningeal stroma (Per, DuF, LeC). Representative histograms
(left); MFI £ SD, 3 separate experiments (right). (G-1), VCAMT mRNA in T-ALL cells cultured alone (KOPTK1, PER117), stromal cells cultured alone (Per, DuF,
LeC), cocultured T-ALL cells (red font), or cocultured stromal cells (red font) (6h). Immunolabeling of whole meninges from T-ALL (AE-NOTCH1) and nega-
tive control (CON) mice; (J)) VCAM?1 (red), (K) VLAA4 (red), GFP-expressing T-ALL cells (green) (n = 3/group). Scale bars: 50 um. (L) VLA-4 in KOPTK1 carrying
CXCR3 knockout (CXCR3 KO1, CXCR3 KO2,) and control cells (SgCtrl) cultured with/without meningeal stromal cells. Representative histograms (top); MFI
+ SD, 3 separate experiments (bottom). (M-0) VCAMT mRNA in mKOPTK1 (with/without CXCR3 knockout) cocultured with meningeal stromal cells. The
cells were sorted after 6 hours of coincubation, followed by VCAMT expression in the specified cells (red font). (P) VLA-4 in KOPTK1 cells cocultured with
stromal cells (Per, DuF, LeC) (6h) upon CXCL10 knockout. Representative histograms (left); MFI + SD, 3 separate experiments (right). (Q-S) VCAMT mRNA
in meningeal stromal cells (with/without CXCL10 knockout) cultured alone or cocultured (red font) with KOPTK1 cells. (B-1 and L-S) Mean + SD, 3 separate

experiments. Two-way ANOVA with Tukey's multiple comparison test; ****P < 0.0001.

pared with IL7- and PDGF-o-treated cells (Figure 8, C and D, and
Supplemental Figure 8C). Interestingly, the levels of TNF-a, IFN-y,
and IL-27 were elevated in CSF samples from T-ALL patients (n =
7) compared with normal CSF samples (n = 4) (Figure 8E, Supple-
mental Table 2). Consistently, levels of Ifng, Tnf, and IL-27 mRNA
were increased in immune (CD45+) cells infiltrating the meninges,
but not in meningeal stromal cells (CD45-) of 4E-NOTCHI mice
(Figure 8F). Furthermore, IFN-y, TNF-q, and IL-27 expression was
elevated in T-ALL cells (GFP*/CD45") infiltrating the meninges,
but not in leukemic cells from the the BM or thymus of T-ALL
mice, suggesting a unique inflammatory crosstalk between leukemic
cells and the meningeal microenvironment (Figure 8G). Analysis of
CSF and blood serum samples from control and 4E-NOTCH1 mice
revealed a gradual increase in cytokine levels during T-ALL pro-
gression (Figure 8H and Supplemental Figure 8D). To investigate
how the meningeal microenvironment responds to T-ALL—derived
cytokines, we evaluated the expression of TNFR1, IL-27R-a, and
IFNGRI1 on meningeal stromal and immune cells, and confirmed
elevated receptor expression on mural (fibroblasts and pericytes)
meningeal cells in 4E-NOTCHI mice (Figure 8I). Accordingly,
coincubation of T-ALL cell lines with human LeC, Per and DuF
induced TNFR, IL-27R, IFNGR on the tested stromal cells (Figure
8J and Supplemental Figure 8E). To further dissect the mechanism
by which T-ALL-derived cytokines regulate CXCL10 expression
in the meningeal stroma, we performed coculture assays in the
presence or absence of cytokine-specific blocking antibodies. Since
IFN-y is a well-known inducer of CXCL10 (71, 72), we focused
on the roles played by TNF-a and IL-27, which are less character-
ized regulators of CXCL10 signaling. Pharmacological inhibition
of TNF-a and IL-27 with neutralizing antibodies reduced CXCL10
expression in Per, DuF, and LeC, concomitant with a decrease in
T-ALL migration to the meningeal stromal cells (Figure 8, K and
L, and Supplemental Figure 8, F-I). These observations were
accompanied by a decrease in CXCL10 secretion, as measured by
ELISA (Supplemental Figure 8, J and K). In line with this, CRIS-
PR/Cas9-mediated knockout of TNF and IL-27 in KOPTKI1 and
PER117 cells resulted in reduced CXCL10 secretion concomitant
with a decrease in CXCLI0 expression in stromal cells (Figure 8§, M
and N, and Supplemental Figure 8, L-O). Consequently, the migra-
tion of T-ALL cells towards Per, DuF, and LeC was also inhibited
(Supplemental Figure 8, P and Q). Collectively, these results indi-
cate that T-ALL cells secrete proinflammatory cytokines, which in
turn, activate CXCL10 expression.

J Clin Invest. 2026;136(2):e188888 https://doi.org/10.1172/)C1188888

Discussion

It has been long understood that CNS disease negatively
impacts T-ALL treatment outcomes (6, 8). Here, we identify the
CXCR3-CXCL10 signaling axis as a critical regulator of T-ALL
dissemination and retention within the meningeal niche.

We demonstrated that CXCR3 plays dual and context-depen-
dent roles in T-ALL biology. In the absence of ligand, CXCR3 sta-
bilizes active B-catenin, promoting leukemic proliferation, whereas
CXCL10 engagement triggers B-catenin degradation and facilitates
T-ALL cell migration. These findings support a model in which
B-catenin acts as a molecular switch between proliferative and
migratory programs in T-ALL. Additionally, CXCR3 isoforms may
engage in ligand-independent or atypical signaling, influenced by
receptor localization, dimerization, or crosstalk, suggesting broad-
er, context-dependent functions beyond canonical ligand engage-
ment (64, 65, 73). This signaling versatility may enable leukemic
cells to dynamically adapt to changing microenvironmental cues
during disease progression.

Moreover, our findings demonstrate that CXCR3 promotes
T-ALL cell migration, with a marked preference for CXCL10
over CXCL9 and CXCL11, suggesting selective responsiveness to
a CXCL10 gradient. Notably, pharmacological inhibition with the
CXCR3 antagonist AMG487 recapitulated the effects of genet-
ic loss of CXCR3, reducing T-ALL cell migration to CXCL10,
while forced CXCR3 expression was sufficient to drive leukemic
cells to the meninges. These results underscore CXCR3’s potential
role in mediating T-ALL infiltration of the meningeal niche. This
is consistent with CXCR3’s established role in guiding T cell traf-
ficking (50, 53, 55) and with CXCR3"* T cells being recruited to
CXCL10-rich tumor sites to augment antitumor immunity (74-77).
Our observations support the notion that T-ALL exploits normal
T cell function to accelerate disease progression and dissemina-
tion. CXCR3 upregulation has also been linked to IL15-mediated
B-ALL cell migration (21) and has been observed in ALL patient
samples with CNS disease or relapse (21, 31). While no association
between CXCR3 expression and CNS status was found in our study,
this likely reflects the limited sensitivity of current cytospin-based
diagnostic methods (78), underscoring the need for robust tools and
improved biomarkers to accurately capture CNS involvement.

Our findings further highlight CXCR3 as a potential therapeutic
target in T-ALL, consistent with its established role in solid tumor
progression and metastasis (47, 48, 56-58). Although CXCR3 has
been linked to tumor dissemination in multiple cancers, its impact
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Figure 8. Leukemia-derived cytokines induce CXCL10 in meningeal stromal cells. (A) Stromal cells incubated with T-ALL conditioned medium (CM).

(B) CXCL10 mRNA in human meningeal stroma (Per, pericytes; DuF, dural fibroblasts; LeC, leptomeningeal cells, DuEC, dural endothelial cells) exposed

to T-ALL CM (6h). (C) Cytokine-stimulated stroma. (D) CXCL10 mRNA in meningeal stroma after TNF-a (10 ng/mL), IL-27 (100 ng/mL), and IFN-y (10 ng/
mL) stimulation (1h). (E) TNF-a, IL-27, and IFN-y in CSF from patients with T-ALL (n = 7) and healthy controls (n = 4). (F) Cytokine mRNA expression in
hematopoietic (CD45*) and stromal (CD45") cells from the BM, thymus (Thy), and meninges (Mn) of AE-NOTCH1 T-ALL mice (n = 4). (G) Intracellular TNF-a,
IL-27, and IFN-y in AE-NOTCH1 T-ALL cells in the meninges, BM, and thymus (MFI + SD, n = 6/group). (H) TNF-a, IL-27, and IFN-y in CSF of leukemic mice
(CXCL10 WT and CXCL10 KO) and nonleukemic controls (CON) (n = 6/group). (I) TNFR1, IL-27R-0, and IFNGR1 on mural (fibroblasts and pericytes; CD45-,
CD31, CD13*), hematopoietic (CD45*), and endothelial cells (CD45-, CD31*) in the meninges of T-ALL (AE NOTCH1) and control (CON) mice (n = 6/group). (J)
TNFR1, IL-27R-0, and IFNGR1 on meningeal stroma cocultured with KOPTK1. MFI + SD, 3 separate experiments. (K) Coculture with blocking antibodies. (L)
CXCL10 mRNA in meningeal stroma pretreated with TNF-a (0.5 pg) or I1L-27 (0.5 pg) blocking antibody (1h) and cocultured with T-ALL cells (6h). (M and N)
CRISPR/Cas9-deletion of TNF and IL-27 in KOPTK1 and PER117 (TNF-a KO1/K02, sgRNAs targeting TNF; IL-27 KO1/K02, sgRNAs targeting IL-27; SgCtrl, neg-
ative control). CXCL10 in the medium after 6 hours of T-ALL-stromal cell coculture. (B, D, L-N) Mean + SD, 3 separate experiments. (E) Unpaired t test with
Holm-Sidak and (B, D, F-J and L-N) two-way ANOVA with Tukey’s multiple comparison tests; ****P < 0.0001.
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appears to be context- and tumor-dependent. The spatial distribu-
tion of CXCR3 expression provides additional insight into CXCR3
function. We found the highest levels of CXCR3 in leukemic cells
infiltrating the meninges, thymus, and BM, suggesting a role in
both migration and adaptation to specific microenvironments.
Similar compartmentalized expression patterns have been report-
ed in solid tumors, where CXCR3 is enriched in metastatic foci
compared with primary sites (57, 58). Elevated CXCR3 expression
in primary T-ALL samples compared with normal thymic cells fur-
ther strengthens its therapeutic potential, and strategies targeting
CXCR3 have already been explored in several cancers and inflam-
matory diseases (58, 79-82). While additional studies are needed
to elucidate the mechanistic basis of CXCR3-mediated T-ALL
cell migration and meningeal infiltration, our findings underscore
CXCR3’s role in T-ALL dissemination and highlight it as a prom-
ising therapeutic target, warranting further evaluation of CXCR3-
directed therapies in both preclinical and clinical settings.

The increased CXCR3 levels observed in AE-NOTCH1-driven
T-ALL point to a role for NOTCHI signaling in CXCR3 regula-
tion. Consistent with prior genome-wide studies linking CXCR3
signaling to NOTCH1-driven T-ALL (68), we identified a role for
USP7 in stabilizing CXCR3 and demonstrated a specific USP7-
NOTCHI interaction that contributes to its transcriptional reg-
ulation (67, 68). Importantly, USP7 interacts with the NOTCH1
ankyrin domain, which remains intact in both WT and mutant pro-
teins (68), suggesting that USP7 binding and regulation of CXCR3
occur irrespective of NOTCH1 mutational status. This implies that
the USP7-NOTCHI1-CXCR3 axis may be broadly relevant across
molecular subtypes of T-ALL, warranting further investigation.

CXCL10 was elevated in BM, blood, and CSF of AE-NOTCH1
T-ALL mice compared with controls, suggesting a localized inflam-
matory response within distinct microenvironments. Reduced men-
ingeal infiltration in CXCL10-knockout mice points to a specific
role of CXCL10 in leukemic colonization of this niche. Elevated
CXCL10 levels have been reported in the CSF of ALL patients (21,
31) and have also been linked to advanced disease stage, metastasis,
and poor prognosis in metastatic solid tumors (47, 49, 58, 83-86).
Although CXCL10, CXCL9, and CXCL11 share roles in immune
cell recruitment, they often display distinct, nonredundant and
context-specific functions across various tumors and inflammato-
ry conditions (41, 71). Consistent with this, our findings support a
unique role for CXCL10 in guiding T-ALL to the meninges, high-
lighting CXCL10 as a selective and potentially actionable therapeu-
tic target in CNS disease.

Furthermore, we observed an enhanced inflammatory response
in the CSF of leukemia-bearing mice characterized by elevated
CXCL10 levels and reduced proliferation of leukemic cells in the
meninges compared with the BM. Moreover, CXCL10 loss did not
increase T-ALL cell death, supporting its role as a migratory cue
rather than a survival factor. We propose that high levels of CXCL10
in the CSF establish a chemotactic gradient that attracts T-ALL
cells to the meninges. Concurrently, the inflammatory response
within the CSF may modulate the meningeal microenvironment,
creating a sanctuary site for T-ALL cell survival. A limitation of
our study is that CXCL10-KO mice may have altered immune cell
trafficking, potentially influencing disease burden. While our find-
ings underscore the importance of the CXCR3-CXCL10 axis in
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T-ALL, further work is needed to define how immune cells contrib-
ute to leukemic progression within the meningeal niche.

Our findings also identify fibroblasts and pericytes as the primary
sources of CXCL10 in T-ALL-infiltrated meninges, suggesting that
meningeal stromal cells respond to leukemic cues and guide leukemic
migration. Fibroblasts and pericytes are key players in solid tumor
development and growth at metastatic sites (58, 87, 88). For instance,
CXCR3-expressing breast cancer cells induced CXCL9/10 in lung
metastasis-associated fibroblasts (58). Elegant studies by DeSisto
et al. (15) showed that meningeal fibroblasts constitutively express
CXCL12, supporting previous reports that CXCL12 promotes hom-
ing of T-ALL cells to the CNS and BM (33, 35). Subsequent studies
found that dural stromal cells expressed an abundance of CXCL12,
which mediated homeostatic T cell recruitment to dural sinuses (16).
This raises the intriguing question of the interplay between consti-
tutively expressed CXCL12 and inflammation-induced CXCL10 in
facilitating T-ALL colonization of the meningeal niche. Strikingly,
we also found that meningeal pericytes increase CXCL10 production
in response to T-ALL. Pericytes control leukocyte extravasation into
the brain and meninges upon activation by proinflammatory cyto-
kines (72, 89-91) and produce several proinflammatory chemokines,
including CXCL10 (90, 92). Interestingly, the CNS has the highest
pericyte coverage of any tissue (93, 94), and abnormal pericyte cov-
erage of tumor blood vessels has been linked to increased metastatic
potential across various cancer types (87). These observations reveal
a reciprocal interplay between T-ALL cells and the meningeal stro-
mal cells, highlighting the impact of T-ALL cells on CXCL10 pro-
duction by meningeal fibroblasts and pericytes.

Building on this, we showed that T-ALL—derived IFN-y, TNF-q,
and IL-27 induce CXCL10 expression in the meningeal microen-
vironment, resulting in increased permissiveness of the meninges
to T-ALL. While the role of IFN-y in inducing CXCL10 during
inflammation is well documented (42, 71), the roles of IL-27 and
TNF-a are less well understood (95-97). T-ALL cells produce sever-
al autocrine and paracrine cytokines that differentially regulate leu-
kemia survival and proliferation (70). Interestingly, elevated levels
of TNF-a were associated with leukemia progression and extramed-
ullary infiltration in AML and ALL (98, 99). Intriguingly, IL-27,
which displays pleiotropic functions in cancer (100), was shown to
inhibit AML and B-ALL progression in preclinical models (101,
102). Although we did not directly investigate the upstream mech-
anisms regulating CXCL10 induction in this study, our findings of
reduced IFN-y, TNF-q, and IL-27 expression in leukemia-bearing
CXCL10-deficient mice underscore the need for further mechanis-
tic studies. In normal T cells, CXCR3 signaling regulates cytokine
expression, particularly IFN-y and TNF-a, and indirectly induces
CXCLI10 in stromal cells through these cytokines (103). It is plau-
sible to speculate that similar mechanisms may operate in T-ALL,
whereby CXCR3-positive leukemic cells amplify cytokine produc-
tion and promote stromal CXCL10 expression, thereby reinforcing
leukemic cell recruitment and retention within the meninges. While
this has not been investigated in T-ALL, such studies are warrant-
ed to define upstream regulators and to determine whether IFN-y,
TNF-0, and IL-27 act synergistically or independently to drive
CXCL10 expression and leukemic cell recruitment.

In this study, we also identified a functional link between
CXCR3-CXCL10 and enhanced T-ALL cell adhesion to meningeal
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stroma. Specifically, CXCR3 upregulation increased VLA-4 integrin
expression, augmenting T-ALL cell adhesion to VCAM1-expressing
fibroblasts and pericytes. Moreover, treatment with a CXCR3 antag-
onist or a CXCL10-neutralizing antibody reduced T-ALL adhesion,
underscoring the role of CXCL10-CXCR3 signaling in mediating
cell-cell adhesion. These observations could inform strategies aimed
at disrupting leukemic cell retention within the meningeal microen-
vironment. Evidence that leukemic cells require stromal cell contact
for survival (38, 39, 104) further justifies targeting CXCL10-mediated
signaling in the CSF. Approaches to modulate CXCL10 levels with-
in the CNS have already been explored in the context of neuroin-
flammatory diseases (42, 105). Although targeting CXCL10 in the
CSF for leukemia treatment constitutes an ongoing research focus,
it potentially opens new avenues for future therapeutic interventions.

In summary, this study uncovers the reciprocal role of
CXCR3-CXCL10 signaling that orchestrates T-ALL progression
and meningeal colonization. Our results underscore the signifi-
cance of meningeal stromal cells and stroma-derived CXCL10 in
regulating the neurotropism and retention of CXCR3-expressing
T-ALL. We highlight the impact of T-ALL-secreted proinflamma-
tory cytokines in inducing CXCL10 in the meningeal fibroblasts
and pericytes, thereby facilitating leukemic cell meningeal colo-
nization. These insights illuminate mechanisms of T-ALL neuro-
tropism and identify multiple potential therapeutic targets, includ-
ing CXCR3, CXCL10, and downstream cytokine pathways, that
could be exploited to disrupt leukemic trafficking and retention.
Our ongoing studies aimed at pharmacologically targeting this
axis, including the use of CXCR3 antagonists such as AMG487
or CXCL10-neutralizing antibodies like eldelumab, may open new
avenues for systemic and CNS-directed therapies beyond conven-
tional cytotoxic approaches.

Methods
Sex as a biological variable. Our study exclusively examined male mice.
It is unknown whether the findings are relevant for female mice.

For further methods, see Supplemental Methods.

Study approval. Deidentified primary patient samples were
obtained from the Children’s Oncology Group study ALL0434
and the University of New Mexico (IRB #16-246 and #03-183),
and the University of Alabama at Birmingham (IRB-300009609,
IRB-160422003). All patients or their parents or guardians provid-
ed written, informed consent in accordance with the Declaration
of Helsinki and local institutional guidelines. Peripheral blood was
collected from healthy donors with informed consent and ethical
approval from the Swansea University Medical School Research
Ethics Committee (SUMSRESC; 2022-0029). The animal experi-
ments were approved by the ethical committees on animal welfare
at the University of New Mexico (19-30020-HSC) and the Univer-
sity of Alabama at Birmingham (IACUC-22544, IACUC-22519).

Statistics. The statistical analyses were carried out using Graph-
Pad Prism 10. Data are presented as mean * SD unless otherwise
indicated. Comparisons between 2 groups were performed using
2-tailed unpaired Student’s ¢ test. Comparisons among multiple
groups were performed using 1-way ANOVA or 2-way ANOVA,
as appropriate, followed by Tukey’s or Sidak’s multiple-comparison
post hoc tests, as specified in the figure legends. For experiments
involving 2 independent variables, 2-way ANOVA was used. Sur-
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vival curves were analyzed using the log-rank (Mantel-Cox) test.
The number of biological replicates (#) and the specific statistical
tests used are indicated in the corresponding figure legends. Statis-
tical significance was determined at P < 0.05.

Data availability. The data generated in this study are provided
in the Supporting Data Values file accompanying this paper.
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