

Impact of SGLT2 inhibitors on cerebrospinal fluid dynamics and implications for hydrocephalus management

Nishanth S. Sadagopan, Rushmin Khazanchi, Rishi Jain, Amy B. Heimberger, Stephen T. Magill

J Clin Invest. 2025. <https://doi.org/10.1172/JCI188584>.

Research Letter [In-Press Preview](#) [Aging](#) [Neuroscience](#)

Find the latest version:

<https://jci.me/188584/pdf>

Impact of SGLT2 inhibitors on cerebrospinal fluid dynamics and implications for hydrocephalus management

Nishanth S. Sadagopan^{1*}; Rushmin Khazanchi^{1*}; Rishi Jain¹, Amy B. Heimberger¹; Stephen T. Magill¹

¹Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

*Indicates co-first author

Correspondence:

Stephen Magill, M.D., Ph.D.

676 N. St. Clair Street, Suite 2210

Chicago, IL 60611

Email: stephen.magill@nm.org

Phone: 312-695-8143

Conflict-of-Interest Statement: ABH holds equity in Caris Life Sciences, serves on the advisory board of WCG Oncology, receives research support from Alnylam Pharmaceuticals and AbbVie, and is an inventor on the following patents: “Biomarkers and combination therapies using oncolytic virus and immunomodulation” (US20140377221A1);” miRNA for treating cancer and for use with adoptive immunotherapies” (US20170312304A1); “Concurrent chemotherapy and immunotherapy” (US9399662B2); and “Low intensity ultrasound combination cancer therapies.” (WO2022192323A).

1 **To the Editor:**

2 Sodium/glucose cotransporter 2 (SGLT2) inhibitors (SGLT2-I) are increasingly used for
3 glycemic control, cardiovascular and renal protection, and weight loss in type 2 diabetes mellitus
4 (DM) (1). DM incidence ranges from 15-18% in idiopathic normal pressure hydrocephalus
5 (INPH) patients, increased from general populations (2). SGLT2 (*SLC5A2*) is expressed in the
6 choroid plexus epithelial and ependymal cells in humans, potentially influencing cerebrospinal
7 fluid (CSF) production (3). INPH is a syndrome affecting up to 3% of individuals 65 and older,
8 characterized by dementia, gait impairment, and urinary incontinence (4). INPH is treated with
9 ventriculoperitoneal shunts (VPS), but no approved pharmacological treatments exist. We
10 observed a reduction in ventricular size in a patient with INPH after initiating an SGLT2-I (Case
11 2), prompting a review of our institutional cohort to assess the impact of SGLT2-I on ventricular
12 size. The Institutional Review Board approved this study.

13 Three INPH patients with imaging before and after SGLT2-I treatment were identified.
14 Radiographic changes in ventricle size were quantified using Evan's Index (EI) and the callosal
15 angle (CA) at the anterior commissure (AC), posterior commissure (PC), and splenium (5). The
16 last brain imaging before SGLT2-I initiation was compared to the first scan after SGLT2
17 inhibition (Figure 1A). For patients with a programmable VPS, shunt settings remained
18 unchanged between scans.

19 The mean age at INPH diagnosis was 74 years (SEM: 3.3). Two patients were male, and
20 one female. All patients underwent VPS placement and showed postoperative improvement in
21 NPH symptoms. Each patient started SGLT2-I therapy after VPS placement (Figure 1B). The
22 average time from VPS placement to pre-SGLT2-I scan was 11.4 months (SEM: 4.9), from pre-

23 SGLT2-I scan to SGLT2-I initiation was 11.7 months (SEM: 2.2), and from SGLT2-I initiation
24 to first post-SGLT2-I scan was 5.7 months (SEM: 1.8).

25 Only the CA at the splenium and EI were measurable in all patients pre- and post-
26 SGLT2-I therapy. One patient experienced dramatic ventricle size reduction, rendering the CA at
27 the AC and PC unmeasurable due to ventricular collapse (Figure 1A, Case 2). This patient
28 required a VPS valve adjustment post imaging to reduce CSF drainage. The mean pre-SGLT2-I
29 EI was 0.34 (SEM: 0.1), and post-SGLT2-I therapy EI was 0.26 (SEM: 0.1; 2-tailed T-test, p=
30 0.2597). The mean pre-SGLT2-I CA was 88.1° (SEM: 15.3), and post-SGLT2-I therapy CA was
31 105.1° (SEM: 17.9; 2-tailed T-test, p=0.0225), with all patients showing increased CA (Figure
32 1C). Ventricular volume changes were analyzed via segmentation before and after SGLT2-I
33 therapy. (Supplementary Figure 1).

34 This study reports ventriculomegaly changes following SGLT2-I therapy in patients with
35 INPH. The CA at the splenium increased by a mean of 17.0°, which is the only radiographic
36 parameter that predicts improvement in INPH symptoms (5). Supplementary volumetric analysis
37 confirmed reduced ventricular volume after initiation of SGLT2-I treatment. Patients showing
38 ventricular changes post-VPS may have a greater propensity to respond further to SGLT2-I,
39 though a larger study is needed. Given potential CSF drainage interactions in INPH patients after
40 initiating SGLT2-I therapy, practitioners should monitor these patients closely.

41 SGLT2 expression in the choroid plexus epithelium (2), combined with these
42 observations, suggests SGLT2 inhibition may modulate CSF production and ventricular size.
43 Furthermore, SGLT2 is upregulated in brain tissue after traumatic brain injury (TBI), and up to

44 46% of ICU-admitted TBI patients develop hydrocephalus (6,7). Thus, SGLT2 inhibition may be
45 a rational strategy for the treatment of post-traumatic hydrocephalus.

46 All patients had a CT scan at least 3 months after VPS placement, without change in
47 shunt drainage setting, so ventricular size is expected to be stable. However, this retrospective
48 study cannot rule out a delayed decrease in ventricular size in response to VP shunting, although
49 this is unlikely and a limitation of this study. While excess CSF production is a potential
50 mechanism for INPH, its etiology is still unclear, with factors such as ependymal cilia
51 dysfunction and impaired CSF absorption implicated. It is uncertain if SGLT2 inhibition
52 functions in the brain similarly to its role in the kidneys. Alternatively, systemically administered
53 SGLT2-I could reduce ventricular size secondary to diuresis, as SGLT2 is highly expressed in
54 the kidneys. However, no changes in serum electrolytes or kidney function were observed in
55 these patients. Further research is required to determine the mechanism of SGLT2 action in the
56 brain and ependyma and its impact on CSF dynamics. Recent reports have shown that glucagon-
57 like peptide 1 receptor agonists can decrease intracranial pressure, but this mechanism also
58 remains unknown, highlighting the importance of monitoring for off-target effects of novel
59 medications that may impact and modulate CSF dynamics (8). These observations provide the
60 foundation for prospective clinical trials to evaluate the efficacy, safety, and long-term benefits
61 of SGLT2 inhibition in treating INPH or post-traumatic hydrocephalus alongside the rationale to
62 investigate the mechanistic role of SGLT2 in modulating CSF dynamics.

63 **References**

64 1. Tuttle KR. Digging deep into cells to find mechanisms of kidney protection by SGLT2
65 inhibitors. *J Clin Invest.* 133(5):e167700.

66 2. Hudson M, Nowak C, Garling RJ, Harris C. Comorbidity of diabetes mellitus in idiopathic
67 normal pressure hydrocephalus: a systematic literature review. *Fluids Barriers CNS.* 2019 Feb
68 12;16:5.

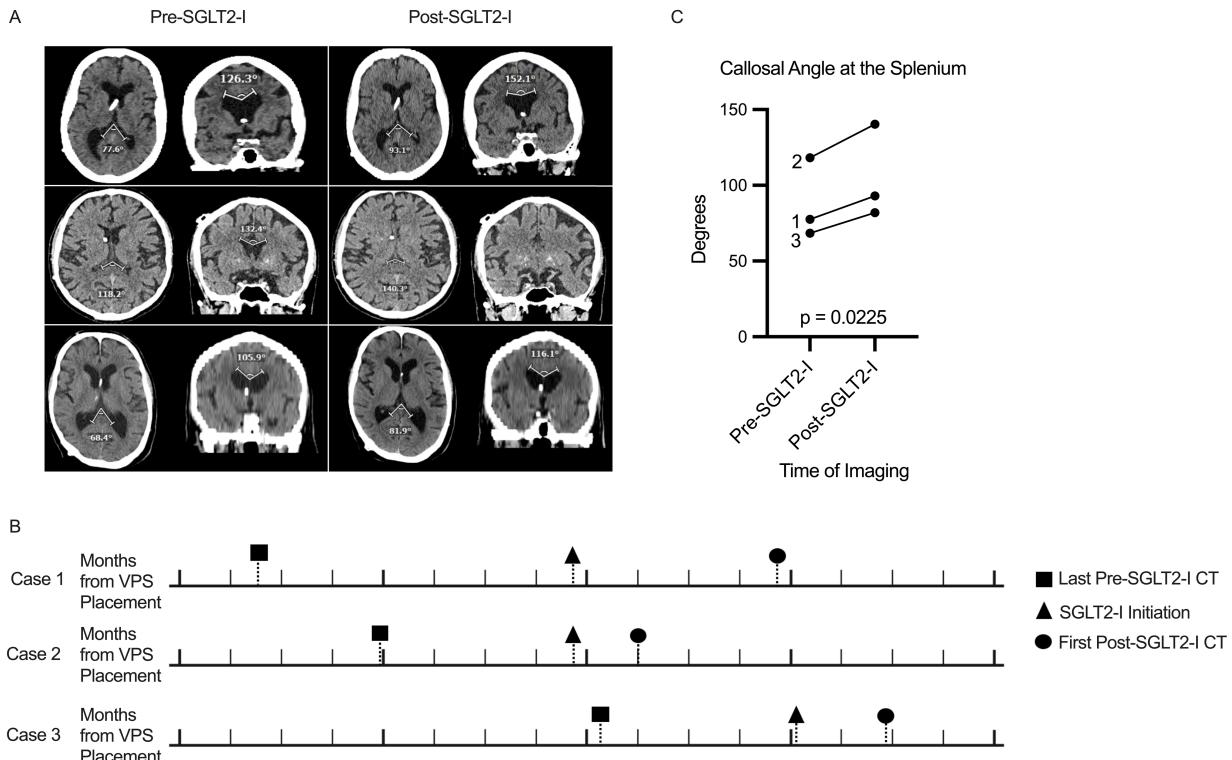
69 3. Chiba Y, Sugiyama Y, Nishi N, Nonaka W, Murakami R, Ueno M. Sodium/glucose
70 cotransporter 2 is expressed in choroid plexus epithelial cells and ependymal cells in human
71 and mouse brains. *Neuropathology.* 2020 Oct;40(5):482–91.

72 4. Williams MA, Relkin NR. Diagnosis and management of idiopathic normal-pressure
73 hydrocephalus. *Neurol Clin Pract.* 2013 Oct;3(5):375–85.

74 5. Hattori T, Ohara M, Yuasa T, Azuma R, Chen Q, Hanazawa R, et al. Correlation of callosal
75 angle at the splenium with gait and cognition in normal pressure hydrocephalus. *J Neurosurg.*
76 2023 Jan 20;139(2):481–91.

77 6. Oerter S, Förster C, Bohnert M. Validation of sodium/glucose cotransporter proteins in human
78 brain as a potential marker for temporal narrowing of the trauma formation. *Int J Legal Med.*
79 2019 Jul;133(4):1107–14.

80 7. Svedung Wettervik T, Lewén A, Enblad P. Post-traumatic hydrocephalus - incidence, risk
81 factors, treatment, and clinical outcome. *Br J Neurosurg.* 2022 Jun;36(3):400–6.


82 8. Mitchell JL, Lyons HS, Walker JK, Yiangou A, Grech O, Alimajstorovic Z, et al. The effect
83 of GLP-1RA exenatide on idiopathic intracranial hypertension: a randomized clinical trial.
84 *Brain J Neurol.* 2023 May 2;146(5):1821–30.

85

86

87 Figure Legend

88

89

90

91 **Figure 1. Effect of SGLT2 inhibition on ventricular size (A)** Axial and coronal CT showing
92 callosal angle (CA) at the splenium and anterior commissure (AC) pre- (left) and post-SGLT2
93 inhibition (right). **(B) Imaging** timeline after VPS placement and initiation of SGLT2-I. **(C)**
94 Quantification of change in CA pre- and post-SGLT2 inhibition (2-tailed Student's t-test,
95 p=0.0225).