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Complement: a brief overview
The complement system is an intricately interconnected cascade 
of  over 50 soluble and cell-bound proteins that function as a part 
of  the innate immune system (1). Originally thought of  as solely 
liver derived, local sources of  complement within tissues are now 
appreciated as critical regional coordinators of  immunity (2, 3). 
Complement activation occurs through three primary pathways: 
the classical, lectin, and alternative pathways. The classical path-
way is initiated by the binding of  C1q to immune complexes or 
pathogen-associated molecular patterns, while the lectin pathway 
is triggered by the recognition of  specific carbohydrate residues 
on microbial surfaces. The alternative pathway can be activat-
ed through pathogen recognition or tissue damage and through 
spontaneous C3 hydrolysis, which occurs at low levels even in the 
absence of  infection (1). Despite these distinct activation mecha-
nisms, all three pathways converge at the formation of  C3 and C5 
convertases, multisubunit protein complexes that cleave C3 and C5 
into bioactive fragments with various functions. Complement was 
once thought to function exclusively in the extracellular space, but 
more recent evidence has revealed additional intracellular effects 
(4–6). Intracellularly, it is thought that complement proteins such as 
C3 and C5 are cleaved by proteases such as cathepsins (4, 7), result-
ing in intracellular bioactive fragments of  complement that regulate 
cellular processes such as metabolism, autophagy, and the elimina-
tion of  intracellular pathogens (8–10). While first described over a 
century ago in the context of  microbiological insults, it has become 
clear that complement is an integral part of  diverse biological pro-
cesses, including Th2 immunity — the focus of  the present Review.

Complement involvement in allergy
The prevalence of  allergic diseases is increasing globally. In the 
United States alone, 24 million people have asthma (11), and over 
100 million people experience symptoms of  allergy (12, 13). With 
consideration of  their chronicity and their associated socioeconom-
ic burden, atopic diseases thus constitute a substantial public health 
challenge (14, 15). In susceptible individuals, allergic diseases 
arise due to a pathophysiological Th2-polarized immune response 
mounted against a harmless insult, the allergen (16). This aberrant 
immune response is precipitated by the interaction between the 
environment (allergen) and the body at barrier surfaces, i.e., the 
skin, gut, and lungs. Allergic diseases are numerous and mechanis-
tically diverse, though they share a common etiological theme in a 
Th2-polarized immune response. There are abundant data illustrat-
ing the phenomenon known as “atopic march,” whereby an initial 
sensitization in infancy lays the foundation for allergic disease later 
in childhood in a skin-to-gut-to-lung axis: atopic dermatitis (AD) 
manifests first, followed by food allergy (FA), and then finally asth-
ma (17). The close relationship between the allergic diseases is evi-
dent by their high comorbidity; for example, patients with AD have 
been reported to have 3–4 times the odds of  having a second atopic 
disease (18). Thus, while there is utility in framing discussions in 
the context of  the affected barrier, it should be advised that allergic 
diseases are not discrete entities but rather manifestations of  often 
multitissue pathology in susceptible individuals.

Thus, the immunologic mechanisms of  allergic diseases are 
vastly complex and beyond the scope of  this discussion. Brief-
ly, the canonical view of  allergic sensitization, or the process 
of  generating allergen-specific IgE antibodies, begins with aller-
gen uptake by DCs at barrier surfaces (19). DCs then migrate to 
regional lymph nodes to present allergen to naive CD4+ T cells, 
triggering polarization into Th2 cells. Discussions around the 
mechanisms driving allergic disease often revolve around adap-
tive immunity. However, it is important to emphasize that innate 
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keratinocytes express an array of  complement components — 
including C3, C3aR, and complement inhibitors such as comple-
ment factor I (CFI) and complement factor H (CFH) — the major-
ity of  this evidence is derived from nonallergic contexts, indicating 
a potential homeostatic role for complement signaling in the skin 
(37–39). However, aberrant complement activation is thought to 
play a role in AD. A polymorphism in C3AR1 is associated with 
children with asthma who have manifestations of  AD (26). C3 has 
been shown to play a role in instigating allergic inflammation in 
the skin. Some of  the first work to identify a link between AD and 
complement showed that C3 and its cleavage product, C3a, were 
elevated in skin biopsies and blood of  patients with AD (40–42). 
Interestingly, these changes were not isolated only to eczematous 
regions and were instead seen throughout the skin (43), thus pro-
viding early evidence supporting the notion of  allergic diseases as 
systemic rather than purely localized disorders. In one study, epi-
cutaneous OVA challenge induced skin and blood eosinophilia in 
wild-type but not C3-deficient mice (43). Moreover, C3-deficient 
mice had reduced Th2 cytokine expression at the site of  exposure, 
indicating a dampening of  the Th2 response. In the same study, 
in vitro OVA challenge of  splenocytes from OVA-sensitized mice 
elicited increased production of  IL-4, IL-5, IL-13, and IFN-γ, an 
effect not observed in C3 deficiency.

Dysregulated complement also drives other manifestations 
of  type 2–driven skin inflammation. Aberrant anaphylatox-
in-driven mast cell and basophil degranulation is thought to 
worsen disease in patients with chronic urticaria (CU) (44). In 
line with this, studies of  CU show elevated levels of  serum C3 
and C4 (45). Furthermore, elevated C3 is thought to be a fac-
tor in patients with CU who display resistance to anti-IgE treat-
ment (46). Similarly, overzealous C3a and C5a signaling on skin 
mast cells is thought to enhance experimental cutaneous aller-
gy, an IgE-dependent mouse model of  type I hypersensitivity 
(47). Other studies examining contact allergic dermatitis in mice 
showed either a dispensable (48) or a protective (49) role for C3 
in response to irritant-induced dermatitis (using toluene-2,4-di-
isocyanate). In contrast, C5a signaling through C5aR1 promotes 
inflammation in models of  allergic dermatitis (50). Conversely, 
C5a signaling through C5aR2 (also known as C5L2) protects 
against oxazolone-induced allergic contact dermatitis, as it is 
thought to prevent aberrant activation of  the C5aR1 (50), pos-
sibly via inhibition of  C5aR1/β-arrestin–mediated initiation of  
the ERK1/2 signaling cascade (51). Metal exposures can also 
drive skin allergies; nickel and cobalt allergies are the most com-
mon and often manifest as contact dermatitis (52–54) and even 
airway allergy (55, 56). They have been shown to activate C3 
and complement factor B (CFB) in human plasma, while rel-
atively nonallergenic metals like barium, copper, and zinc did 
not (57). Thus, dysregulated complement in the skin may act as 
a sensitizer to the downstream development of  Th2 responses.

Complement and gut allergy
FA affects approximately 10% of  US adults (58), among whom 
nearly half  report allergies to multiple foods (59). Anaphylaxis, a 
severe and potentially fatal manifestation of  FA, is also thought 
to be driven by aberrant complement activation. Levels of  C3a 
are elevated in individuals with anaphylaxis and correlate with 

immune mechanisms such as complement are critical in shaping 
the tone and magnitude of  type 2 responses.

The complement system has emerged as an integral com-
ponent of  myriad immunological processes, including in type 2 
(Th2) immunity (20, 21). The complement system has numerous 
ties to initiating and propagating allergic inflammation (Table 
1). A basic overview of  the complement components relevant to 
the subsequent discussion is provided in Figure 1. Perhaps the 
most well-cited components are the anaphylatoxins, complement 
fragments C3a, C4a, and C5a (22). These complement fragments 
are soluble inflammatory proteins named for their ability to elicit 
anaphylaxis, a systemic, life-threatening allergic reaction (22, 23). 
However, as will be discussed, far more complement components 
than the anaphylatoxins are implicated in allergy. The subsequent 
sections will outline connections between complement and aller-
gic diseases according to the barrier site affected.

Genetic clues connecting complement to allergic 
diseases
Allergic diseases are multifactorial and are thought to result from 
a combination of  environmental and genetic drivers. Numerous 
genetic variations in complement components have epidemiolog-
ical ties to allergic diseases, though it is worth noting that most 
data focus on allergic asthma; other Th2 allergic diseases are not 
as well represented. SNPs in complement genes have been associ-
ated with the likelihood of  having allergy. For example, SNPs in 
C3, C3AR1 (encoding a C3a receptor), and C5 have been positively 
associated with bronchial asthma in Japanese children and adults 
(24–26), Caribbean adults (27), and French Canadian women 
(28). In a case-control study of  Italian children, the frequency of  
C5 polymorphism was increased among individuals with asthma 
(29). Interestingly, protective C5 polymorphisms have been identi-
fied in patients with AD, with patients exhibiting the C5 rs366510 
SNP having reduced allergen-specific serum IgE against common 
allergens such as Dermatophagoides pteronyssinus (house dust mite 
[HDM]) (30). Other studies have identified polymorphisms in 
complement-encoding genes that correlate with poor outcomes, 
such as an association between C3 rs448260 and more frequent 
asthma hospitalizations (31). Together, these data provide an evi-
dentiary foundation for the role of  complement in the pathophys-
iology underpinning allergic diseases. Indeed, a growing body of  
evidence is illuminating the close relationship between comple-
ment and allergic skin, gut, and lung diseases.

Complement and skin allergy
AD is a type 2 allergic disease of  the skin, and it presents clinically 
as dry, itchy, and red skin (32). AD commonly manifests in infan-
cy and affects approximately 20% of  children and 10% of  adults 
globally (33). Fundamentally, AD represents a failure of  barrier 
integrity at the skin, whereby barrier permeability potentiates 
allergen interaction with local immune cells, allowing for allergic 
sensitization (32). AD represents the first step in the atopic march 
and is thought to be a precursor to gut and airway allergies via 
epicutaneous sensitization (34, 35).

Keratinocytes are the most abundant cell type in the epidermis 
and function to promote barrier integrity as well as act as immune 
sentinels in the skin (36). While there is evidence that human  
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minutes (84), which were partly inhibited by antihistamine admin-
istration. This discovery is particularly relevant to asthma, as C3a 
is known to exacerbate bronchoconstriction, which is thought to 
involve the activation of  mast cells (85, 86). However, the impor-
tance of  C3a-induced mast cell degranulation in the pathogenesis of  
asthma is debated (87–91). Mast cells originating from the yolk sac 
(MCTC) are rich in granules containing tryptase, chymase, and car-
boxypeptidase. They reside in connective tissues, fat, and the skin’s 
submucosa, near blood vessels, lymphatics, and neurons. C3aR 
is highly expressed by MCTC. Human skin mast cells display high 
responsiveness to anaphylatoxins, including C3a, leading to hista-
mine release (92, 93). In contrast, bone marrow–derived mast cells 
(MCT), mainly located in respiratory and gastrointestinal mucosal 
tissues, primarily contain tryptase and express little C3aR. Reports 
show that human lung mast cells do not respond to C3a or C5a (90, 
91, 94). While mast cells in human lungs are overwhelmingly (90%) 
of  the MCT variety (95), it is conceivable that the relatively small 
proportion of  MCTC cells in the human lung may respond to C3a in 
disease, such as those that infiltrate airway smooth muscle bundles 
(96). However, the presence of  C3a-responsive lung mast cells in 
humans remains to be formally demonstrated. Finally, antihista-
mines, while important for the treatment of  allergic rhinitis, cannot 
treat asthma and are only considered optional adjunctive therapy to 
alleviate secondary symptoms for disease management (97). This 
suggests that C3a promotes asthma largely through mast cell–inde-
pendent mechanisms. Thus, while the importance of  C3a-induced 
mast cell degranulation in the pathogenesis of  asthma may be con-
troversial, it is clear that C3a signaling is crucial for airway allergy. 
Various asthma triggers — such as HDM, ozone, cigarette smoke, 
viruses, and pollutants — activate C3, drive type 2 inflammation, 
and promote airway hyperresponsiveness (AHR) in a C3-depen-
dent manner in mouse models (78, 98–106).

The primary sources of  C3 during allergy and the mechanisms 
by which it drives Th2 immunity remain areas of  active explo-
ration. C3, once thought to be solely derived from the liver and 
distributed systemically via circulation, is now known also to be 
produced locally at mucosal surfaces, including the airways (2, 3). 
C3 is found in various pulmonary cell types at steady state, includ-
ing the epithelium, and in a variety of  immune cells in both mice 
and humans (98, 107, 108). C3 mRNA and protein are upregulated 
in primary human airway epithelial cells in response to allergen, 
leading to the accumulation of  C3a (98). Mechanistically, it is now 
understood that C3a can signal to a range of  immune cells beyond 
mast cells. Notably, C3a has been shown to enhance DC activities, 
such as antigen uptake and expression of  costimulatory molecules 
in vitro (109). However, C3aR signaling in DCs does not appear 
to play a large role in HDM-induced allergic responses in vivo 
(110). Recent findings reveal that C3a signaling contributes to type 
2 immune responses by promoting expansion of  group 2 innate 
lymphoid cells (ILC2s) in an HDM-induced mouse model of  air-
way allergy (98). C3a, which is notably elevated in individuals with 
uncontrolled asthma (67, 68), has also recently been implicated in 
promoting the formation of  neutrophil extracellular traps (NETs) 
(111, 112), a process believed to contribute to the pathogenesis of  
more severe forms of  the disease (113–115). C3a may also contrib-
ute to disease via direct signaling to epithelial cells. C3a was shown 
to induce the expression of  MUC5AC, a key component of  mucin 

the severity of  anaphylaxis (60). Peanut allergy, one of  the most 
common and severe types of  FA, is mainly mediated by comple-
ment. Peanut extract has been shown to activate complement and 
induce rapid C3a accumulation in vitro and in vivo (61, 62). In 
animals, administration of  peanut extract i.v. causes rapid shock 
and death in a C3-dependent, IgE-independent manner (62). 
Mechanistically, this occurs through C3-induced release of  hista-
mine and platelet-activating factor, which activates macrophages, 
basophils, and mast cells. It is thought that the combination of  
C3 mobilization and IgE activation drives the full magnitude of  
anaphylactic symptoms. Conversely, foods that do not mobilize 
C3, like milk and egg, show little ability to induce shock (62). 
Notably, nonfoods known to cause severe anaphylaxis in humans, 
such as Hymenoptera (bee, wasp, etc.) venom and penicillin deriv-
atives, also cause complement activation (63–65). Similar to C3, 
C5a/C5aR1 signaling is pathogenic in an OVA model of  FA (66). 
C5a, especially in male mice, is necessary to drive the entirety of  
the FA phenotype, including shock-associated hypothermia (66). 
Altogether, complement may act as a powerful adjuvant in certain 
manifestations of  severe allergies.

Complement and airway allergy
Dysregulated complement levels are observed in Th2-mediated 
allergic diseases of  the respiratory system, impacting both the 
lower (e.g., asthma) and upper (e.g., chronic rhinosinusitis, aller-
gic rhinitis) respiratory tracts (67). At the systemic level, serum 
C3, C3a, and C4a are elevated (67–70) and positively correlated 
with asthma severity outcomes among adults (31, 67) and children 
(71). In a large study of  101, 029 individuals, elevated circulating 
levels of  C3 were correlated with elevated IgE and blood eosin-
ophils levels and were associated with asthma exacerbation and 
hospitalization (31). Anaphylatoxin accumulation is also observed 
in the allergic airways. C5a is elevated in asthmatic sputum com-
pared with that in control sputum (72), and C3a and C5a were 
found to be increased in the bronchoalveolar lavage (BAL) fluid 
after segmental allergen challenge in patients with mild asthma. 
Moreover, C3 protein measured in exhaled breath was associated 
with uncontrolled asthma (73). In addition, both anaphylatoxin 
receptors (C3aR and C5aR) were shown to have elevated expres-
sion in cases of  allergic rhinitis (74), nasal polyps (75), and fatal 
asthma (76), laying the groundwork for a local role for comple-
ment in the pathogenesis of  allergic airway diseases (77, 78). Aller-
gic diseases largely implicate dysregulated levels of  C3, C5, and 
their corresponding anaphylatoxins. However, other, less studied 
components of  complement, like CFH (79), and terminal compo-
nents of  complement, like C6, C7, and C8, have been found in 
some studies to be elevated in patients with asthma (73, 80, 81). 
Furthermore, CFB, a driver of  the alternative pathway of  comple-
ment, has been shown to drive allergic manifestations in a mouse 
model of  asthma (82).

C3 and C5 in airway allergy
The association between complement and allergy was first appre-
ciated in the early 1950s with the observation that anaphylatoxins 
were potent inducers of  histamine release (83), a major driver of  
immediate symptoms of  allergy. In fact, intradermal injection 
of  C3a in healthy volunteers drives wheal and flare reactions in  
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Another mechanism through which aberrant complement acti-
vation may promote allergy is by inhibiting Tregs. C3a and C5a 
have been identified as negative regulators of  mouse and human 
Treg function (128, 129). This effect may be through direct signal-
ing to Tregs as in vitro stimulation of  CD4+ cells. The absence of  
both C3aR and C5aR signaling synergistically leads to TGFβ1-de-
pendent Treg autoinduction (128). This translated to humans, as 
both C3aR and C5aR antagonism also induced Treg differenti-
ation of  CD4+ T cells. In an Aspergillus model of  allergic airway 
inflammation, allergen challenge of  C3ar1-deficient mice result-
ed in increased frequency of  CD4+Foxp3+ cells in the secondary 
lymphoid organs and lungs but not thymus (130). Wild-type mice 
receiving a bone marrow transplant from C3ar1-deficient mice also 
showed an increased frequency of  CD4+Foxp3+ cells in the spleen, 
suggesting C3aR-mediated Treg suppression was primarily attribut-
ed to hematopoietic cells. Similarly, exposure to chitin, an integral 
component of  arthropods (mites, cockroaches, etc.), in animals 
sensitized to fungal allergy drove C3-dependent Th2 cells and a 
concomitant abrogation of  Tregs (99).

In addition to regulating Th2 responses, both C3a and C5a 
have been shown to act as critical regulators of  Th17 cells in the 
context of  allergy. In models of  more severe disease, Th17 cells 
are coelicited alongside Th2 cells, where C3a has been shown to 
promote Th17 cells. This is thought to happen via C3a enhancing 
the production of  IL-23, as measured in allergen-exposed lung 
homogenates and mouse bone marrow–derived DCs (101, 131). 
This is supported by findings demonstrating C3a as a driver of  
IL-23 in human blood-derived monocytes, leading to increased 
Th17 responses (132). However, others have found that C3a could 
inhibit Th17 airway responses in animals sensitized to an Aspergillus 
protease/OVA mix (130). In contrast to C3a, C5a impairs the devel-
opment of  Th17 cells by inhibiting IL-23 and promoting IL-10 from 
mouse splenic and bone marrow–derived DCs (101, 133). Thus, in 
addition to regulating type 2 responses, it is thought that C3 and 
C5a may alter disease severity by modulating allergen-induced 
Th17 responses.

It is intriguing to draw parallels between the role of  complement 
in pulmonary fibrosis and allergy, as dysregulated complement has 
also been implicated in patients with fibrosis (134). Similar to its 
involvement in allergy, C3 drives bleomycin-induced mouse models 

in cultured mouse bronchial epithelial cells (116), and repress vita-
min D metabolism in human upper airway epithelial cells (117), 
which is part of  a well-known antiallergic pathway.

The role of  C5 in allergy is more complex and nuanced than 
that of  C3. C5 and its anaphylatoxin, C5a, had traditionally been 
perceived as purely proinflammatory. However, a seminal study uti-
lizing several genetic crosses of  mouse strains with either resistance 
or susceptibility to AHR discovered C5 as a locus of  protection (118). 
Some mouse strains (A/J, AKR/J) are naturally C5-deficient due to 
gaining a stop codon in the C5 gene. These were more susceptible 
to OVA-induced AHR than C5-sufficient strains (C57Bl6/J, BALB/
cJ, C3H/HeJ) (118). Further work has shown that C5a signaling 
could have a dual role in allergy. During allergen sensitization, C5a 
protects against the development of  Th2 inflammation and AHR 
but enhances disease in animals with established allergy (119, 120). 
The protective effect of  C5a is thought in part to be driven by the 
coinhibitory molecules PD-L1 and PD-L2 on plasmacytoid DCs 
(pDCs) (121), previously shown to promote tolerance in models of  
airway allergy (122). In contrast, C5a signaling to adoptively trans-
ferred allergen-pulsed bone marrow–derived DCs drives Th2 inflam-
mation in the airways (123). Interestingly, deletion of  C5aR in the 
myeloid compartment in LysMCre mice had no significant effect on 
OVA-induced lung allergy (124). This suggests that nonmyeloid 
C5aR+ cells confer the protective or deleterious effect of  C5a during 
allergy. Because pDCs do not express LysM, this implies that the 
protective role of  C5a during the sensitization phase of  allergy is 
partly mediated by pDCs. This may translate in humans, as pDCs 
also respond to C5a (125). Conversely, the cell type that drives the 
proallergic effects of  C5a on established disease remains more neb-
ulous. While LysMCre marks almost all monocytes, macrophages, 
DCs, and neutrophils, only one-fifth of  eosinophils are affected by 
LysMCre-mediated targeting (126). Recent work suggests that airway 
allergen exposure elicits a population of  induced eosinophils, con-
trasting with resident eosinophils, expressing elevated levels of  intra-
cellular C5aR. In this context, C5a does not function as an eosin-
ophil recruitment factor; it promotes the degranulation of  these 
activated eosinophils. This was shown to drive AHR but not other 
manifestations of  allergy, like mucus secretion or Th2 cytokine pro-
duction (127). Thus, the question of  which other C5a-responsive 
cell(s) exacerbate type 2 inflammation remains to be understood.

Figure 1. Pathways of the complement system. A basic overview highlighting the complement components relevant to the discussion in this Review of comple-
ment in allergic disease. Ag, antigen; MASP, mannan-binding lectin serine protease; MAC, membrane attack complex.
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Indeed, CD46-cyt2 expression is higher in individuals with asthma 
than in control PBMCs, which favor CD46-cyt1 (142). Collectively, 
these data show that this protective pathway is compromised in sus-
ceptible individuals, promoting the development of  allergy.

Thus, growing evidence suggests that complement at bar-
rier surfaces may have evolved in vertebrates to interface with 
acquired immunity to provide crucial context for eliciting durable 
T cell responses.

Potential physiological function of the 
complement-Th2 axis
The evolution of  Th2 responses is crucial for eliminating parasitic 
worms and facilitating tissue repair. However, the response to hel-
minths alone does not fully account for the development of  aller-
gies. In addition to its antiparasitic function, the allergic response 
is believed to have evolved as a defense mechanism against various 
environmental toxicities (146). It is interesting to consider that 
complement, a quick-acting system triggered in response to envi-
ronmental dangers, such as toxic metals, insect and snake venoms, 
tick bites, bacterial toxins, and snail hemolymph (57, 63, 64, 147–
154), would have evolved to act as an adjuvant for the induction 
of  protective, long-lasting Th2 memory and subsequent neutraliz-
ing IgE responses against these harmful exposures (155). Based on 
this, it is tempting to make a parallel to other pathways, such as 
the mast cell–expressed G protein–coupled receptor MRGPRX2, 
which also appears to be a unique environmental-sensing system 
in the skin. MRGPRX2 can be triggered by over 100 different com-
pounds, some of  which are toxic, leading to IgE-independent mast 
cell degranulation (156). Together, these various pathways of  mast 
cell activation may lead to changes in behavior to avoid toxins 
(157, 158). If  we view the complement-Th2 system as an environ-
mental sensor designed to protect us from toxic exposures, we can 
also anticipate that its repeated activation may increase susceptibil-
ity to developing allergies in response to otherwise harmless envi-
ronmental proteins, such as allergens. Together, this encourages 
the broader view of  allergies to innocuous substances as potential 
misfires of  an immune system that evolved to protect against real 
dangers (Figure 2).

of  lung fibrosis (135–137). Additionally, C5 has a dual role in this 
model: it initially protects against the acute effects of  bleomycin by 
dampening excessive inflammation, but during the chronic phase, 
it exacerbates fibrosis by promoting collagen deposition (136, 138). 
These findings suggest that complement not only modulates aller-
gy, but may also play a key role in tissue remodeling.

C1q and CD46 can protect against allergy
Some proteins of  complement have an unambiguous protective 
effect in allergy. The C1 subunit, C1q, which acts as the initiator 
of  the classical complement pathway, is now appreciated as having 
regulatory functions independent of  the complement cascade. In 
patients undergoing sublingual allergen therapy, C1q expression is 
increased in PBMCs of  responders compared with those of  nonre-
sponders (139). Consistent with this, C1q levels in exhaled breath 
were significantly lower in patients with poorly controlled asthma 
as compared with well-controlled asthma (73). Notably, in patients 
with wasp sting–induced anaphylaxis, levels of  serum C1q dropped 
with concomitant increases in C3 (16). In animals, C1q dampens 
allergic inflammation and AHR in response to OVA or birch pol-
len. C1q did not appear to promote protection via Treg expansion 
but rather through pDC elicitation (140), similar to C5a (121).

CD46, a negative regulator of  complement, has also been 
shown to protect against allergy. CD46 is a regulatory complement 
membrane protein that binds and acts as a cofactor in the inacti-
vation of  opsonins C3b and C4b in humans (141). It is thought 
that disruption of  CD46-mediated Treg induction also contributes 
to allergic asthma pathogenesis. CD46 costimulation of  human 
CD4+ T cells induces the production of  IL-10, IFN-γ, and gran-
zyme B, a phenotype consistent with type 1 regulatory T (Tr1) 
cells (142, 143). This response is impaired in asthma: CD4+ T cells 
isolated from the PBMCs of  patients with asthma have impaired 
production of  IL-10 in response to CD3/CD46 stimulation com-
pared with controls (142, 144). The mechanistic basis for failure 
to induce IL-10 production in the CD4+ T cells of  individuals with 
asthma may be attributable to the favored expression of  the cyto-
plasmic (cyt) tail isoform of  CD46. CD46-cyt1 favors IL-10, while 
CD46-cyt2 inhibits IL-10 expression in human CD4+ T cells (145). 

Figure 2. Context-dependent C3 function at barrier sites. C3 functions as an environmental sensor at barrier surfaces, triggering a protective Th2/IgE 
response to harmful exposures. However, repeated exposure to innocuous proteins (such as allergens and foods), metabolites (like penicillin and its deriva-
tives), or nonimmediate dangers such as air pollution can, in susceptible individuals, lead to pathological Th2/IgE responses.
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Beyond Th2-driven allergic responses, complement also influ-
ences tissue repair, a critical feature of  type 2 immune responses. 
Although complement can exacerbate pathogenic manifestations 
of  tissue remodeling, such as fibrosis, it also participates in phys-
iological tissue repair. C3 is upregulated in regenerating limbs of  
axolotl (159) and induces retinal regeneration in chicken (160). 
Moreover, topical C3 application facilitates wound healing in rats 
(161), and both C3 and C5 promote bone fracture healing (162). 
C1q and complement factor D (CFD) also promote collagen 
expression, angiogenesis, and tissue repair (163–165). However, 
this pathway is likely tightly regulated, as it can impair wound 
healing due to overzealous immune cell recruitment (166). While 
there is evidence that some components of  complement can reg-
ulate collagen production in vitro, it remains to be discovered 

whether the prorepair function of  complement in vivo occurs by 
inducing Th2 responses.

Clinical trials
There has been some exploration of  the therapeutic potential for 
targeting complement in allergic diseases, as summarized in Table 
2. In one study, 24 adult individuals with asthma with HDM sen-
sitivity received i.v. administration of  C1 inhibitor, an endogenous 
protein that targets both the lectin and classical pathways (167). 
This was followed by intrabronchial HDM/LPS challenge in one 
lung and saline administration in the contralateral lung. The BAL 
of  patients receiving the C1 inhibitor showed reduced levels of  C4a 
and C3a compared with patients receiving the placebo. C1 inhibi-
tor did not abrogate the pulmonary allergic response, as measured 

Table 1. Summary of complement component expression and role at barrier sites

Barrier site Complement component Cellular players Key points
Skin C3 KeratinocytesA (37) C3 and C3a elevated in skin and blood of patients with AD (40–42)

T2 cytokine productionB (43)
Skin and blood eosinophiliaB (43)

C3aR Mast cells (47)
KeratinocytesA (186)

C3AR1 SNP associated with asthmatic children showing AD manifestations (26)
Mast cell degranulationB (47)

C5a Inflammation in allergic contact sensitivityB (47)
C5aR1 Mast cells (47)

KeratinocytesA (187)
Mast cell degranulationB (47)

C5aR2 (C5L2) Oxazolone-induced allergic contact dermatitisC (50)
Factor B KeratinocytesA (37) Function unknown
Complement inhibitor factor I KeratinocytesA (39) Function unknown
Complement inhibitor factor H KeratinocytesA (38) Function unknown

Gut C3 Stromal cellsA (188) Peanut extract induces C3 deposition in vitro (61, 62)
C3a Elevated plasma C3a on peanut extract exposure in vivo (62)
C4 Plasma C3a accumulation on peanut extract challengeB (61)
C5aR1 Mast cells (66) AnaphylaxisB (66)

Mast cell degranulationB (66)
Upregulated by Fcε R crosslinking (66)
C5aR1–/– mice reduced IgE on oral OVA challenge (66)

Airways C1q PBMCs (139) Elevated in patients who respond to sublingual allergen therapy (139)
Allergic inflammationC (140)
Methacholine-induced AHRC (140)

C3 Epithelial cells (98)
Fibroblasts (189)

Mast cell degranulationB

Serum levels of C3 and C3a correlate with disease presence and severity in humans  
(31, 67–69, 71)

C3a Epithelial cells (98) Plasma C3a elevated in patients with uncontrolled asthma (67)
ILC2 expansion on HDM challengeB (98)
NETosisB (111, 112)

C4a Serum levels elevated in individuals with asthma (70)
C3aR Bronchial smooth muscle cells (190)

Nasal mucosa (74)
Expression induced in bronchial smooth muscle cells on OVA challenge (190)
Expressed in sinusoidal vessels of severe persistent, but not mild, allergic nasal mucosa (74)

C5 Airway inflammationC (118)
C5a Elevated in BAL

Protective effects linked to PD-L1 and PD-L2 on pDCs (121)
T2 inflammation on adoptive transfer of allergen-pulsed BMDCsB (123)

C5aR1 Eosinophils (191)
Pulmonary DCs (121)
Infiltrating immune cells in nasal 
mucosa (74)

Eosinophil recruitment to lung on single HDM exposureB (191)
Eosinophil recruitment to lymph nodesB (191)
Eosinophil costimulatory molecule expressionB (191)
Reduced DC C5aR expression on HDM challenge abrogated in C3aR-deficient mice (121)

ANot T2-specific; Bpromoted; Cdampened.
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by BAL immune cell count (eosinophils, neutrophils, and alveo-
lar macrophages) or bronchoalveolar degranulation of  eosinophils 
and neutrophils. However, C1 inhibitor decreased vascular leak, 
e.g., reduced BAL IgM. Notably, the concurrent administration of  
HDM and LPS complicates the interpretation of  these findings in 
the context of  allergic disease. LPS can have varied effects on Th2 
responses — suppressing them at higher doses while potentiating 
them at lower doses (168–173). Thus, the potential therapeutic use 
of  C1 inhibitor remains of  interest.

In one study, the oral C5aR antagonist NGD 2000–1 demon-
strated no improvements in lung function in individuals with 
asthma (174, 175). However, there has been interest in using the 
anti-C5 mAb, eculizumab, for treating allergic asthma. Eculizumab 
is a humanized IgG2/4 k mAb originally approved by the FDA in 
2007 for the treatment of  paroxysmal nocturnal hemoglobinuria to 
reduce hemolysis (176). By targeting C5, eculizumab precludes pro-
teolytic activation of  C5 by the C5 convertase, thereby preventing 
the formation of  C5a and C5b-9 (177). There is only one published 
clinical trial to date investigating the potential use of  eculizumab in 
the late asthmatic response (NCT00485576) (178). This phase II tri-
al followed a randomized, double-blind, placebo-controlled cross-
over study design and enrolled 19 participants with allergen-in-
duced bronchoconstriction. Participants were infused with placebo 
or 600 mg eculizumab and then exposed to inhaled allergen 24 
hours later. A minimum 4-week washout period was considered 
sufficient for eculizumab levels to drop to noneffective levels, after 
which participants were administered the opposite treatment. How-
ever, a significant period effect was observed, invalidating the study 
approach. Specifically, an improved late-phase asthmatic response, 
as measured by area under the curve of  forced expiratory volume in 
1 second (FEV1) from 3 to 7 hours after challenge, was observed in 
participants who received placebo first and then eculizumab, sup-
porting drug efficacy. However, participants who received placebo 
second also had significantly reduced late-asthma response after 
placebo compared with response at the initial study screening.

Interestingly, prolonged inhibition of  C5 activation and reduced 
IL-13 in sputum was reported for participants receiving anti-C5 as 
the first treatment and placebo as the second treatment. This unex-
pected longevity of  C5 inhibition could be interpreted to mean that 
eculizumab was still active; however, the results from this study are 
inconclusive. Nonetheless, eculizumab’s therapeutic potential for 
allergic diseases merits further investigation. There are no data on 
the second-generation iteration of  eculizumab, called ravulizumab 
(179), in the context of  allergy.

Future directions
It is clear that the complement system is more intricate and 
far-reaching than previously recognized. More than a collection 
of  antimicrobial humoral mediators originating from the liver, it 
shapes biological processes in unexpected ways. Growing evidence 
suggests that locally produced complement is critical in health and 
disease. For instance, C3 activation in synovial fibroblasts induc-
es metabolic changes that prime them for chronic inflammation in 
arthritis (180). In addition, airway epithelial C3 — distinct from 
systemic C3 — protects against lung injury in response to bacterial 
infection (2). These and other studies highlight the need to investi-
gate locally produced complement for their unique contributions 
to disease and potential therapeutic implications. While we know 
that there is an increase in local complement during allergy, wheth-
er it drives aberrant Th2 responses is unknown. Moreover, allergy 
often presents as a multitissue disease, where sensitization at one 
site may predispose development of  allergy at a separate site. This 
may involve a mechanism where local aberrant complement activa-
tion at one barrier site may initiate a pathogenic cascade replacing 
healthy, homeostatic responses to allergen at another. Additionally, 
whether intracellular complement in the resident cells at barrier sites 
plays a role in allergic manifestations is unknown. These potential 
mechanisms of  allergenicity represent novel areas of  exploration.

Accumulating evidence suggests that local complement activa-
tion is a key mechanism linking environmental exposures to the 
development of  allergic diseases. For instance, exposure to pollut-
ants, including microplastics, is a growing source of  environmental 
toxic triggers that drive the accumulation of  mucosal complement 
(106, 181–183). This complement-mediated activation is a potent 
adjuvant, intensifying the response to otherwise harmless proteins 
like pollen, dust mites, and pet dander. Studies have shown that 
particulate matter from air pollution amplifies Th2 responses and 
IgE production in animals exposed to these allergens, tipping the 
balance toward an exaggerated immune response. Thus, aberrant 
complement activation links environmental pollutants directly to 
the rising prevalence of  allergic diseases.

Another intriguing aspect of  complement’s role is its potential 
effect on transmaternal health and early immune development. Breast 
milk, known to contain complement (184, 185), plays a crucial role 
in immune modulation during infancy, though its functions remain 
only partly understood. Evidence suggests that breast milk comple-
ment targets Gram-positive bacteria in the infant’s gut, promoting 
inflammation resolution and barrier integrity (185). Disturbances 
in the gut microbiome, often linked to complement dysregulation, 

Table 2. Summary of allergy therapeutics targeting complement

Drug name C1 inhibitor NGD 2000–1 Eculizumab Ravulizumab
Target Lectin + classical pathways (142) C5aR C5 C5
Drug type Endogenous protein Antagonist mAb mAb
Route of 
administration i.v. Oral i.v. i.v.

Clinical trial? Asthma (167) Phase II; asthma (175) NCT00485576 (phase II; asthma) (178) None
Comments No effect on pulmonary immune cell recruitment; 

decreased vascular leak; coadministration of LPS 
precludes definitive interpretation

No improvement of lung function 
in individuals with asthma

FDA approved in 2007 for paroxysmal 
nocturnal hemoglobinuria (176)

Second-generation iteration 
of eculizumab (179)
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have been associated with a range of  atopic conditions affecting the 
gut, skin, and lungs. The microbiota in breast milk further influences 
allergy risk, suggesting that altered complement activity may shape 
the microbiome in ways that predispose offspring to allergic disease.

In conclusion, the complement system’s expanding roles as a 
local sensor of  environmental exposures — whether venoms, toxins, 
metals, allergens, or microbes — directly impact barrier site health, 
dysregulation of  which contributes to the development of  allergy.
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