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Introduction
The complement system is a network of  circulating and mem-
brane-bound proteins (Tables 1, 2, 3, 4, and 5), crucial for immune 
defense and tissue homeostasis, while driving inflammation and 
injury during disease (1). As an ancient component of  immunity, 
complement is highly conserved across vertebrates, with primitive 
forms present even in invertebrates (2). Research on this system, 
utilizing in vitro assays, animal models, and human samples, has 
provided key insights into its biology and role in numerous diseases 
(3). The FDA has currently approved 11 complement inhibitors for 
11 disease indications (Supplemental Table 1; supplemental mate-
rial available online with this article; https://doi.org/10.1172/
JCI188347DS1), with more under investigation (4). Although clin-
ical complement inhibition has only recently gained momentum, 
animal models have demonstrated its therapeutic potential for over 
50 years (1, 5). However, the use of  animal models is increasing-
ly questioned because of  ethical and translational concerns. For 
anti–neutrophil cytoplasmic antibody–associated vasculitis (AAV), 
animal models were crucial in uncovering the role of  complement 
in its pathogenesis and achieving approval of  the C5a receptor 
antagonist in this disease (6, 7). In contrast, complement inhibitors 

for paroxysmal nocturnal hemoglobinuria (PNH) were approved 
almost entirely based on studies using human blood samples (8, 9). 
Presently, the clinical use of  complement therapeutics enables the 
direct study of  complement inhibition in humans (10). This, com-
bined with innovations in molecular techniques and tools — i.e., 
large-scale genomics (11, 12), AI-assisted methodology (13, 14), 
and organoids (15) — raises an important question in complement 
research: How essential is it to continue conducting animal experi-
ments to achieve future success?

Although quantifying the contribution of  animal models to clini-
cal advancements in the complement field is challenging, this Review 
aims to assess areas where animal studies have made substantial con-
tributions and where they have fallen short or proved unnecessary.

Animal testing in biomedical research
The rise of  animal-free methods, along with concerns about ani-
mal rights, ethics, high costs, and translatability, sparked skepticism 
regarding the continued reliance on animal testing. This shift is 
reflected in policy changes in the United States (Frank R. Laut-
enberg Chemical Safety Act — Toxic Substances Control Act) 
and the European Union (Registration, Evaluation, Authorisation 
and Restriction of  Chemicals Regulation & 223/2009 EU CPR), 
placing animal research under heightened scrutiny. Additionally, 
the FDA now permits nonanimal testing alternatives for instances 
like biosimilar drugs and toxicity (FDA Modernization Act 2.0 — 
S.5002). Surveys indicate declining public support for animal test-
ing and growing preference for its elimination (16). However, nega-
tive media coverage and misinformation contribute to unfavorable 
perceptions of  animal testing (17), while increased awareness of  
regulations protecting laboratory animals improves attitudes (18). 
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principles provide a framework for conducting (more) ethical ani-
mal research. In brief, Reduction involves using the minimum num-
ber of  animals needed for reliable results, while Refinement focuses 
on minimizing pain and suffering. Replacement entails employing 
nonanimal methods, when possible, either absolutely or relative-
ly (animals provide organs or tissues for in vitro experiments). 

This complicates the determination of  whether current negative 
views stem from misinformation or informed opinions.

Animal testing in research is under strict regulations in North 
America, the European Union, and several other countries, based 
on the principles of  the 3 Rs (Replacement, Reduction, and Refine-
ment) (summarized in ref. 19). Established over 50 years ago, these 

Table 1. The initiators of the classical pathway and lectin pathway in mice and humans

Protein Mice Humans Ref.
C1q Mice have three C1q genes (C1qa, C1qc, C1qb) on chromosome 4. Human and 

mouse C1q share high homology (72%, 83%, and 73%) and cross-reactivity. 
However, mouse C1q has fewer arginine residues, which interact with the 
negative charges of ligands such as β-amyloid. No other key differences have 
been described between mouse and human C1q regarding structure, functions, 
or distributions.

C1q deficiency in humans is linked to SLE, and C1qa–/– mice develop a similar 
phenotype. In both species, BM transplantation can restore C1q levels and 
mitigate SLE, as myeloid cells produce circulating C1q levels. C1q is expressed  
in the aging brain.

Humans have three C1q genes on chromosome 1: 1) C1qA, 
encoding the A-chain; 2) C1qB, encoding the B-chain; 3) C1qC, 
encoding the C-chain.

Six A-, six B-, and six C-chains form one C1q molecule, which 
associates with two C1r and two C1s molecules to form the C1 
complex. C1q activates the CP by binding to immune complexes 
(IgM, IgG3, IgG1) or other DAMPs and PAMPs.

282–286

C1r, C1s Mice have gene duplicates of C1r and C1s on chromosome 6: 1) c1rA and c1sA, 
mainly expressed by the liver and to a lesser extent by fat tissue and highly 
homologous in amino acid identity to human C1r (81%) and C1s (74%); 2) c1rB 
and c1sB, solely expressed in the male gonads.

Both sets of enzymes are believed to form complexes with C1q but are expected 
to differ in substrate specificity. C1ra and C1sa serve as the murine orthologs to 
human C1r and C1s.

Human C1r and C1s are encoded by single genes on chromosome 
12 (C1R and C1S) and produced by the liver, with secondary 
production by leukocytes and the brain. C1r autoactivates 
when the C1 complex binds to ligands via C1q. Active C1r then 
converts C1s, which first cleaves C4 and then C2 within a C4b-C2 
complex.

53, 54, 56,  
287

MBL Mice have two genes for MBLs: 1) Mbl-a on chromosome 14 (ortholog of human 
MBL1), 2) Mbl-c on chromosome 19 (corresponds to human MBL2).

Both proteins are produced by the liver and circulate as oligomers that can bind 
MASPs to activate C4. They differ in carbohydrate avidity, with MBL-C resembling 
human MBL. In addition, MBL-C has higher circulating levels than MBL-A, while 
MBL-A has a greater C4 activation potential than MBL-C.

The human MBL2 gene encodes MBL, while MBL1 is a 
pseudogene. Both are located on chromosome 10. MBL is 
produced by the liver and found in serum as different oligomers 
together with the MASPs. MBL activates the LP by binding 
to carbohydrates on both DAMPs and PAMPs. A genetic MBL 
deficiency is common in humans.

45, 46, 
288–290

Ficolins Mice have two ficolin genes on chromosome 2: 1) Fcn-a encodes ficolin-A (the 
ortholog of human FCN2), which is mainly expressed in the liver and spleen, 
and has a shorter splicing variant; 2) Fcn-b encodes ficolin-B (corresponding to 
human FCN1), which is mainly expressed by leukocytes.

Both ficolins form oligomers, are present in blood, and bind MASPs to activate 
C4, but differ in their avidities for carbohydrates. Ficolin-A forms larger 
oligomers and has higher circulating levels and greater C4-activating potential 
than ficolin-B. The mouse homolog of the human ficolin-3 gene is a pseudogene 
on chromosome 4.

Humans have three ficolins encoded by 1) FCN1 and FCN2 on 
chromosome 9, 2) FCN3 on chromosome 1.

All ficolins circulate as oligomers and bind MASPs to activate C4. 
Ficolin-3 (produced by lungs and liver) forms larger oligomers 
and has higher serum levels and greater C4-activating potential 
than the rest. Ficolin-2 (produced by liver) binds the broadest 
range of targets, while ficolin-1 (produced by leukocytes) has 
the lowest C4-activating potential and serum levels.

45, 46, 49, 50, 
291–293

CL-10, CL-11 Mice have collectin-10 and collectin-11, encoded by 1) Colec10 on chromosome 15, 
2) Colec11 on chromosome 12.

In both mice and humans, collectin-10 and -11 are produced by the liver, with 
collectin-11 also produced by the kidney. In mice, collectin-11 is also highly 
expressed in the heart and CNS. Mouse and human collectins differ in their 
carbohydrate specificity. Colec11–/– mice develop normally, but human COLEC11 
mutations are linked to craniofacial abnormalities.

Human collectin-10 and -11 are part of the complement system 
encoded by 1) COLEC10 on chromosome 9, 2) COLEC11 on 
chromosome 2.

Both collectins are found at low levels in the circulation, 
primarily as heterocomplexes. Collectin-11, both alone and as a 
heterocomplex with collectin-10, can bind MASPs and activate 
complement via the LP.

24, 45, 294–297

MASPs, MAPs Mice have three MASPs and two MAPs: 1) Masp1 on chromosome 16 encodes 
MASP-1, MASP-3, and MAP-1; 2) Masp2 on chromosome 4 encodes MASP-2  
and sMAP.

In humans and mice, all MASPs/MAPs are produced by the liver and circulate 
in serum linked to the initiators of the LP. Masp1/3–/– mice develop normally, 
whereas human MASP-1/3 mutations are linked to craniofacial abnormalities. 
However, the lack of MASP-3 in humans and mice impairs the conversion of  
pro-Factor D into active Factor D.

Humans have three MASPs and two MAPs: 1) MASP1 on 
chromosome 3 encodes MASP-1 and the two distinct splicing 
variants, MASP-3 and MAP-1; 2) MASP2 on chromosome 1 
encodes MASP-2 and splicing variant sMAP.

MASP-1 activates MASP-2 plus cleaves C2, while MASP-2 cleaves 
C2 and C4. MASP-3 converts pro-Factor D into Factor D. MAP-1 
and sMAP act as LP inhibitors.

45, 298–302

CL, collectins; DAMPs, damage-associated molecular patterns; MAP, MBL/ficolin/CL-associated proteins; MASP, MBL-associated serine proteases; MBL, 
mannose-binding lectin; PAMPs, pathogen-associated molecular patterns; SLE, systemic lupus erythematosus; sMAP, small mannose-binding lectin-
associated protein.
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other systems (1, 3). Animal studies provided valuable insights, but 
not all findings translate to humans (3, 21). What, then, makes a 
model suitable for complement research, particularly for develop-
ing diagnostics and therapies for human diseases? Besides anatom-
ical, physiological, and disease-related similarities, it is crucial to 
evaluate aspects of  the complement system relevant to the research 
question, including phylogenetic proximity, sequence alignment, 
structure, functionality, protein interactions, and expression levels.

Commonalities in the complement system across species. Mammals, 
birds, amphibians, and fish generally possess a complete set of  com-
plement genes, with few exceptions (2). C3, a central component 
of  the complement cascade, shows strong conservation across spe-
cies (Figure 1) (22, 23). Similarly, there is a high degree of  inter-
species amino acid sequence homology with Factor B, along with 
collectin-10 and collectin-11 of  the lectin pathway (LP) (2, 20, 24). 

Replacement can also involve substituting vertebrates with species 
that have a reduced capacity to feel pain (i.e., invertebrates or bacte-
ria). Other strategies to reduce animal use include improved study 
design, method development, and project coordination. In silico 
(computational modeling), in vitro, and ex vivo approaches can 
also support the Reduction and Replacement principles.

Using animals to understand the human 
complement system
Despite being highly conserved across vertebrates, notable differ-
ences still exist between humans and research animals (Tables 1–5) 
(20). Animal models are selected for their ability to standardize and 
manipulate, thereby determining causality. Furthermore, research 
in intact organisms provides context, as the complement system 
operates in circulation and locally in tissues, while interacting with 

Table 2. Other proteins related to the classical pathway and lectin pathway in mice and humans

Protein Mice Humans Ref.
IgG Mice have four IgG isotypes: IgG1, IgG2a, IgG2b, and IgG3. Complement-activating 

ability: IgG2a > IgG2b > IgG3. Nonactivating isotype: IgG1.

Whether hexamerization and posttranslational modifications affect complement 
activation by murine IgG is unknown. Murine IgG can activate human 
complement; but this does not only rely on IgG isotype.

Humans have four IgG isotypes: IgG1, IgG2, IgG3, and IgG4. 
Activating ability: IgG3 > IgG1 > IgG2. Nonactivating isotype: IgG4.

The ability to activate complement by IgG isotype is shaped 
by their ability to form hexamers, whereas carbamylation and 
sialylation reduce their activation ability.

303–307

C1 inhibitor Murine C1 inhibitor is encoded by Serping1 on chromosome 2. Mouse C1 inhibitor 
shares 78% amino acid identity with human C1 inhibitor, and no key differences 
have been reported in their structural, functional, or distribution characteristics. 
In accordance, human C1 inhibitor can effectively restore complement regulation 
in Serping1–/– mice.

In humans, SERPING1 deficiency is associated with hereditary angioedema, and 
Serping1–/– mice exhibit a similar phenotype.

Human C1 inhibitor, encoded by SERPING1 on chromosome 11, 
is a serine protease inhibitor mainly produced by the liver. Its 
expression can be enhanced by androgens. C1 inhibitor covalently 
binds to and inhibits C1r, C1s, MASP-1, and MASP-2, thereby 
inhibiting activation of the CP and LP. C1 inhibitor is also involved 
in the contact and kallikrein-kinin systems.

129, 
308–310

C2 Mouse C2, encoded by C2 on chromosome 17 within the MHC class III gene cluster, 
shares 74% amino acid identity with human C2. No significant differences in 
structure, function(s), or distribution have been described between mouse and 
human C2. In contrast to human C2, murine C2 is larger, and iodination does not 
affect its activity. Human C2 cross-reacts with mouse complement.

The human gene for C2 (C2) is on chromosome 6 within the MHC 
class III gene cluster and primarily produced by the liver. Cleavage 
of C2 is the rate-limiting step in C3-convertase formation in both 
the CP and LP. Circulating C2 levels are much lower than those of 
other components of the CP.

298, 
311–314

C4 Mice possess two C4-like genes in tandem on chromosome 17 within the MHC 
class III gene cluster: 1) C4b (corresponding to human C4B) encodes C4; 2) Slp 
(corresponding to human C4A) is found only in adult male mice of certain strains, 
while it is entirely absent in several other strains.

Both proteins are liver-produced, are present in serum, and share 94% amino 
acid identity. Unlike C4, Slp is not cleaved by C1s, but it seems to enhance CP 
activation through an unclear mechanism. Human C4 exhibits slightly higher 
homology with mouse C4 than with Slp.

Consistent with the association between C4 deficiency and SLE in humans, C4–/– 
mice exhibit abnormal regulation of autoreactive B cells. Furthermore, human C4 
can restore complement activity in C4–/– mice.

Humans have two functional C4 isotype genes in the MHC class 
III gene cluster on chromosome 6, with varying numbers of 
copy variants that determine the basal circulating levels: 1) C4A, 
encoding an acidic C4; 2) C4B, encoding a basic C4.

C4A and C4B share a 99.5% sequence identity, but functional 
differences have been observed between them, for example, in 
immune complex handling with CR1.

55–59, 311, 
315

C4-binding 
protein (C4bp)

Mouse C4bp consists of SCR domains. Mice have a single functional gene: 1) 
C4bpa on chromosome 1 in the RCA; 2) C4bpb is a pseudogene, and mouse C4bp 
therefore lacks a β chain.

Mouse C4bp is produced by the liver and circulates as multimers of α chains, 
which are noncovalently linked to each other. Although the murine α chain of 
C4bp lacks SCR5 and SCR6 found in the human α chain of C4bp, they have high 
homology and share 61% amino acid identity. Furthermore, the locations of 
key functional regions in the α chain are largely conserved between mice and 
humans. Mouse C4bp inhibits complement activation by similar mechanisms as 
seen in humans.

Human C4bp consists of SCR domains and is made up of 
multiple α chains and a single β chain. Both chains are encoded 
in the RCA gene cluster: C4BPA and C4BPB on chromosome 1. 
C4BP is synthesized in the liver, but also by the pancreas, and 
circulates in plasma. C4BP inhibits complement activation by 
1) serving as a cofactor for Factor I–mediated cleavage of cell-
bound and soluble C4b, plus soluble C3b; 2) binding C4b and 
preventing the formation of C3-convertases; 3) accelerating the 
decay of CP/LP C3-convertases.

316–319

MASP, MBL-associated serine proteases; RCA, regulators of complement activation gene cluster; SCR, short consensus repeat; SLE, systemic lupus 
erythematosus.
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ly, protein-protein interactions in the complement system are highly 
conserved across species, such as C1q with IgG (27), MASPs with 
mannose-binding lectin (28), Factor H with C3d (25), and CD59 
with C8 (29). Reduced homology and loss of  cross-reactivity with 
human counterparts can result from coevolution to preserve key 
protein interactions, maintaining the fundamental framework of  
the complement system within species (29). Together, these func-
tional similarities underscore the value of  animal models in study-
ing the complement system’s role in human diseases.

Even though Factor H, a soluble complement regulator, is only 
63% identical between humans and mice, the structural organiza-
tion and functional roles remain highly similar (25). In primitive 
invertebrates, C3-like molecules retain key structural features anal-
ogous to human C3, including the thioester moiety (which enables 
covalent binding to surfaces), anaphylatoxin domain (C3a frag-
ment), cleavage site (forming C3b), and Factor B binding site (C3- 
convertase assembly) (22, 23). Furthermore, many complement 
proteins exhibit functional cross-species reactivity (26). Important-

Table 3. The AP in mice and humans

Mice Humans Ref.
Factor B Murine Factor B is encoded by Cfb on chromosome 17, within the MHC class III 

gene cluster. Mouse and human Factor B are highly homologous (84% protein 
identity) and produced by the liver, with no key differences reported between them. 
Accordingly, human Factor B can react with mouse complement. AP activation is 
abolished in the serum of both Cfb–/– mice and humans with CFB deficiency.

Human Factor B is encoded by CFB on chromosome 6, within 
the MHC class III gene cluster. Factor B binds to C3(H2O) or C3b, 
enabling its cleavage by Factor D. Ba is a soluble fragment, while 
Bb remains attached to C3b. The formed C3-convertase (i.e., 
C3bBb) will then further cleave C3 molecules.

20, 313, 
320–322

Factor D Murine Factor D, encoded by Cfd on chromosome 10, shares 61% amino acid identity 
with human Factor D, with no key differences reported. In vitro AP activation is 
hugely reduced in Cfd–/– mice and human CFD deficiency. Accordingly, human Factor 
D restores AP activity in Cfd–/– mice. Lipodystrophy, characterized by loss of adipose 
tissue, results in lower Factor D levels in mice and humans.

Human Factor D is encoded by CFD on chromosome 19. Factor 
D, primarily produced by adipose tissue and metabolized by 
the kidney, circulates at low levels in its active form after being 
converted by MASP-3. Factor D cleaves Factor B when bound to 
C3, thought to be the rate-limiting step of AP activation.

323–328

Properdin Murine properdin, encoded by Cfp on the X chromosome, shares 76% amino acid 
identity with human properdin. A structural difference for mouse properdin is an 
insertion in the fifth TSR domain, with unknown consequences for ligand binding. 
Human properdin restores AP activation in the serum of Cfp–/– mice. Myeloid cells 
are the primary source of circulating levels of properdin.

Human properdin is encoded by CFP on the X chromosome and 
circulates in blood as different oligomers, increasing its activity. 
As a positive AP regulator, it binds C3b and Factor B (or Bb), 
stabilizing the C3- and C5-convertases and extending their  
half-life. Properdin can also bind altered surfaces and initiate  
AP activation.

115, 329–331

Factor H Mouse Factor H, encoded by Cfh on chromosome 1 within the RCA gene cluster, 
shares 63% amino acid identity with human Factor H. Individual domains exhibit 
higher homology, with similar locations of the regions responsible for regulation 
and surface recognition. Accordingly, human Factor H restores AP regulation in Cfh–/– 
mice. Both mouse and human Factor H are primarily produced by the liver. However, 
mice do not hold an equivalent of human FHL-1.

Human CFH deficiency is linked to C3G, and Cfh–/– mice develop a similar phenotype. 
In mice, Factor H on platelets and podocytes aids in immune adherence and  
immune complex processing, which are performed by human CR1 on erythrocytes 
and podocytes.

Human Factor H, encoded by CFH on chromosome 1 in the RCA 
gene cluster, consists of 20 domains. Domains 1 to 4 are vital for 
decay-accelerating and cofactor activities, while domains 6 to 8, 
plus 19 and 20, are crucial for surface binding. Factor H inhibits 
complement activation in circulation and on surfaces. The CFH 
gene also produces FHL-1, a splicing variant containing domains 1 
to 7 of Factor H, which has similar regulatory activity but cannot 
distinguish between host and foreign surfaces. Factor H and 
FHL-1 circulate in blood in a molar ratio of ~2:1.

25, 63, 153, 
332–334

FHRs Mice have five FHR genes on chromosome 1 in the RCA, termed Cfhr-a to Cfhr-e, 
related to their genomic order: 1) Cfhr-a and Cfhr-d are assumed to be pseudogenes, 
but transcripts have been found for Cfhr-a; 2) Cfhr-b, Cfhr-c, and Cfhr-e have been 
shown to produce transcripts and proteins. FHR-B and FHR-E have 5 domains, while 
FHR-C contains 14 domains.

The structure, domain composition, and sequence of murine FHR differ considerably 
from those of humans. In mice, the domains of FHRs exhibit a much higher degree 
of homology with Factor H than is seen in humans. Like humans, murine FHRs lack 
the regulatory domains but contain the binding domains of Factor H, enabling them 
to antagonize Factor H and promote complement activation.

Humans have five FHR genes on chromosome 1 in the RCA, in 
the following order: CFHR3, CFHR1, CFHR4, CFHR2, CFHR5. These 
genes originated from duplication events of CFH, thus sharing 
structural similarities.

FHRs share the binding domains of Factor H but lack the 
regulatory domains. As a result, FHRs can compete with Factor H 
for surface binding, but they instead promote further activation, 
thus making them Factor H antagonists. FHR-1, FHR-2, and 
FHR-5 contain a dimerization domain allowing them to form 
homo- and heterodimers. The genetic deletion of FHR-1 and 
FHR-3 is common in humans.

63, 64, 332, 
335, 336

Factor I Mouse Factor I, encoded by Cfi on chromosome 3, shares 78% amino acid identity 
with human Factor I. Like human CFI deficiency, Cfi–/– mice exhibit uncontrolled AP 
activation. In mice, circulating levels of Factor I are primarily produced by the liver. 
In addition to the cofactors of human Factor I, mice have Crry, a membrane-bound 
complement regulator. Cross-species activity of Factor I–mediated cleavage for C3b 
and C4b occurs with some cofactors but only if Factor I and the cofactor are from  
the same species.

Unlike Cfh–/– mice, Cfi–/– mice do not develop kidney disease but exhibit pathological 
changes in their kidneys.

Human Factor I is encoded by CFI on chromosome 4. CFI 
deficiency in humans is associated with an increased risk of 
infections, autoimmune disorders, and kidney disease.

Factor I regulates all pathways by cleaving C4b and C3b. The 
resulting fragments cannot cause further activation but retain 
immunomodulatory functions via binding to their receptors. 
Factor I circulates in an inactive form and requires a cofactor (i.e., 
C4BP, CR1, MCP, or Factor H) to attain enzymatic activity.

337–341

C4BP, C4-binding protein; Crry, CR1-related gene/protein Y; RCA, regulators of complement activation gene cluster; TSR, thrombospondin type 1 repeat.
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tor B, and Factor H were associated with allograft survival in kid-
ney transplantation, whereas recipient genetics had no effect (32). 
Another discovery arising from mice is the interaction between the 
LP and the alternative pathway (AP) via MASP-3, a splice vari-
ant of  the MASP1 gene (33). Evidence of  MASP-3’s role in AP 
activation came from MASP1/3–/– mice, which showed minimal 
AP activity alongside increased pro-enzyme Factor D levels (34, 
35). MASP-1 was found to convert pro-Factor D in vitro (34, 35), 
but MASP-3 was ultimately uncovered as the main Factor D acti-
vator in vivo (36, 37). Findings in humans verified that MASP-3 
functions similarly across mammals (38, 39). A final noteworthy 
example is sex-based differences in the complement system, first 
reported in Science in 1966 (40). Testosterone treatment in steril-
ized mice enhanced terminal complement activity, whereas estro-
gen decreased it (40). Recent work verified that female mice have 

Three examples of  key paradigm shifts in the understanding 
of  complement biology discovered in animal models and proven 
relevant to humans will be highlighted. Traditionally, the comple-
ment system was regarded as a liver-produced system confined to 
the circulation. However, research in mice revealed that locally 
produced complement is crucial for immune responses in diseases. 
Over 35 years ago, mouse kidneys were found to express and syn-
thesize prominent amounts of  complement (30). Later, a series of  
elegant experiments using a murine kidney transplantation model 
demonstrated that locally produced C3, rather than circulating C3, 
is paramount in initiating alloreactivity (31). When wild-type or 
C3–/– kidneys were transplanted into C3–/– or wild-type recipients, 
wild-type recipients of  C3–/– kidneys exhibited the best outcomes, 
with 80% graft survival after 100 days. Recently, these observations 
were verified in humans, where genetic variations in donor C3, Fac-

Table 4. Complement regulators and complement receptors in mice and humans

Mice Humans Ref.
MCP (CD46) The mouse gene for MCP (Mcp) is located on chromosome 1 within the RCA gene 

cluster. While the cofactor activity of MCP for Factor I–mediated cleavage of C3b 
is conserved across multiple species including in mice, MCP also functions as a 
receptor for species-specific pathogens indicative of structural differences. Unlike 
humans, MCP expression in mice is restricted to the testes and the eye. The 
mouse-specific complement regulatory protein Crry is thought to perform some 
of the regulatory functions of human MCP, such as serving as a cofactor for Factor 
I in tissues that lack mouse MCP.

The human gene for MCP (MCP) is located on chromosome 
1 within the RCA gene cluster. MCP is ubiquitously expressed 
as different isoforms due to alternative splicing. Erythrocytes 
are the exception, as they lack MCP expression. MCP serves 
as a cofactor for Factor I–mediated cleavage of C4b and C3b 
deposited on the surfaces of host cells. In addition, MCP has 
immunomodulatory roles on T cells and other leukocytes, while 
pathogens can “hijack” MCP as a receptor.

65, 70, 83, 
342, 343

DAF (CD55) Mice have two genes for DAF on chromosome 1 in the RCA gene cluster: 1) Daf1 
encodes a widely distributed GPI-anchored DAF (the ortholog of human DAF), 
sharing 47% in amino acid identity; 2) Daf2 encodes a transmembrane DAF that 
is restricted to the testes and splenic dendritic cells.

The mouse-specific complement regulatory protein Crry and mouse DAF both 
possess decay-accelerating functions, which are only present in human DAF. 
Unlike human DAF deficiency, which causes CHAPLE disease, Daf1–/– mice do not 
present with an evident disease phenotype; instead, they show heightened T cell 
activity and exacerbated autoimmune-induced colitis.

Human DAF is encoded by DAF on chromosome 1 within the 
RCA. DAF is ubiquitously expressed in humans as different 
isoforms due to alternative splicing.

DAF is a GPI-anchored membrane regulator that protects 
host cells from complement-mediated cell lysis by preventing 
the formation of, and accelerating the decay of, C3- and 
C5-convertases, regardless of the activation pathway.

Additionally, DAF can signal intracellularly, thereby exerting 
immunomodulatory roles in leukocytes, while pathogens 
“hijack” DAF as a receptor.

73, 83, 262, 
265–268, 344

CR1 (CD35)  
& CR2 (CD21)

In mice, a single gene (Cr2) on chromosome 1 within the RCA encodes both 
receptors via alternative splicing. Adjacent to this, mice have Crry, which encodes 
another widely distributed membrane complement regulator that combines the 
functions of DAF and MCP. Crry is believed to be lost during primate evolution, 
resulting in the creation of a separate CR1 gene in primates and humans.

Structure: Mouse CR2 consists of 15 domains, sharing 58% amino acid identity 
with human CR2. In mice, CR1 is identical to CR2 with 6 additional domains that 
facilitate its cofactor activity. Mouse Crry contains 5 domains and shares a high 
degree of homology with domain 1 to 5 of human CR1.

Expression: Like humans, CR1 and CR2 are found on B cells and dendritic cells 
in mice, but their expression is more restricted. In mice, CR1 is not found on 
erythrocytes or podocytes. Instead, Crry is expressed on all mouse cells,  
including erythrocytes.

Function: Like humans, mouse CR1 acts as a cofactor for Factor I–mediated C3b/
C4b cleavage, and mouse CR2 serves as a receptor for C3 activation fragments 
(particularly C3d). Additionally, Crry has cofactor activity and decay-accelerating 
functions in mice. As seen in humans, mouse CR2 activates B cells together with 
the CD19 receptor. Mouse CR1 possesses equivalent activity, whereas this is not 
the case for human CR1. Furthermore, CR1 on human erythrocytes plays a role in 
clearing circulating immune complexes, which in mice is carried out by Factor H 
on platelets and podocytes.

Human CR1 and CR2 are encoded by distinct genes on 
chromosome 1 in the RCA.

CR1 serves as a cofactor for Factor I–mediated cleavage of C4b 
and C3b and accelerates the decay of C3- and C5-convertases; 
in these activities it functions in trans on other cells and 
immune complexes rather than in cis. It is broadly expressed, in 
varying amounts, on the membranes of leukocytes, podocytes, 
neurons, and dendritic cells. CR1 on erythrocytes is important 
for clearing circulating immune complexes, while CR1 on 
neutrophils and monocytes is involved in phagocytosis. CR1 
also has immunomodulatory functions on B and T cells, and 
pathogens use it to invade.

CR2 functions as a receptor for C3 activation fragments but 
can bind noncomplement proteins. It is highly expressed on 
the surface of mature B cells but found on other cell types. 
In collaboration with CD19, CR2 plays a key role in B cell 
activation. CR2 also aids in the processing and presentation 
of complement-coated antigens to T cells, captures immune 
complexes on dendritic cells in lymphoid tissues to help 
maintain immunological memory, and shapes the repertoire of 
naturally occurring antibodies.

77–82, 84, 
345–348

DAF, decay-accelerating factor; RCA, regulators of complement activation gene cluster.
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reduced complement activity because of  lower levels of  terminal 
components (41). Complement assessments in healthy Norwegian 
blood donors corroborated that women have lower levels of  termi-
nal components and reduced functional activity (42).

Differences in the complement system among species. The com-
plement system exhibits notable differences across humans and 
research animals (Tables 1–5). Even closely related primate spe-
cies show divergences in complement genetics, circulating levels, 

and activity (43, 44). Among the pathways, the LP shows the 
greatest disparities across species (Table 1). In humans and great 
apes, MBL2 encodes mannose-binding lectin, while MBL1 is a 
pseudogene (45). In contrast, rodents, rabbits, pigs, and rhesus 
monkeys have two functional genes: Mbl-a and Mbl-c (45–48). Sim-
ilarly, while humans and primates possess three ficolins (ficolin-1 
to ficolin-3), rodents, rabbits, and pigs have only two (ficolin-A and 
ficolin-B), with ficolin-3 being a pseudogene (49–51). Additionally, 

Table 5. The terminal pathway and anaphylatoxin receptors in mice and humans

Mice Humans Ref.
CD59 Mice have two functional genes for CD59 on chromosome 2: 1) Cd59a encodes 

CD59a, a widely expressed membrane protein believed to be the ortholog of 
human CD59; 2) Cd59b encodes CD59b, a membrane protein restricted to the 
testes and pancreatic islets.

Cd59a and Cd59b share 41% and 44% amino acid identity with human CD59, 
respectively. Both proteins can functionally inhibit C5b-9 formation, but 
CD59b is more powerful than CD59a. In patients with PNH, erythrocytes lack 
both CD55 and CD59 due to a GPI anchor genetic mutation, with the loss of 
CD59 driving complement-mediated hemolysis. Single and double Cd59–/– 
mice develop a mild form of hemolytic anemia.

Human CD59 is encoded by CD59 on chromosome 11. This GPI-
anchored membrane regulator is ubiquitously expressed and 
halts formation of the MAC on host cells, to avoid complement-
mediated cell lysis.

CD59 binds to C8 in the forming MAC (C5b-8) and blocks 
C9 recruitment into the complex, as well as further C9 
polymerization in the MAC. CD59 can signal intracellularly, exerting 
immunomodulatory functions, and pathogens can “hijack” CD59 
as a receptor.

29, 71, 74–76, 
349–353

C5, C6, C7,  
C8, C9

The mouse terminal complement components C5, C6, C7, C8, and C9 are 
encoded by: 1) C5, located on chromosome 2, with mouse C5 sharing 89% 
identity with human C5. A large subset of commonly used inbred mouse strains 
for research are C5 deficient. 2) C6, C7, and C9 on chromosome 15. Mouse 
C6, C7, and C9 are highly homologous to their human counterparts, sharing 
75%–80% amino acid identity. However, mouse C6 is smaller, and some 
strains possess additional higher molecular weight forms of C6. 3) C8a and C8b 
on chromosome 4 for the α chain and β chain and C8g on chromosome 2 for 
the γ chain. The three chains of mouse C8 are highly homologous to the human 
counterpart, sharing 75%–80% amino acid identity.

No major structural, functional, or distribution differences have been 
described for these components in mouse and human. While cross-species 
reactivity is seen between mouse and human terminal components, activity is 
significantly reduced.

In humans, genetic deficiencies of terminal components C5, C6, C7, C8, and 
C9 are associated with an increased risk of recurrent infections by Neisseria 
species, most commonly meningococcal meningitis or sepsis. Similarly, C5–/– 
mice have been shown to exhibit greater susceptibility to meningococcal 
infections, with worse disease severity and outcomes.

In humans, the liver predominantly produces circulating C5, C6, C8, 
and C9, whereas C7 is produced by BM-derived cells: 1) C5, encoded 
by its gene on chromosome 19, has a two-chain structure but lacks 
the thioester. When activated, it cleaves into C5a, an anaphylatoxin, 
and C5b. 2) C6, C7, and C9 are single-chain proteins encoded by 
distinct genes (C6, C7, and C9) on chromosome 5. 3) C8 consists of 
three polypeptides encoded by distinct genes. The genes for the α 
chain (C8A) and β chain (C8B) are located on chromosome 1 and 
the gene for the γ chain (C8G) on chromosome 9.

C6 binds to C5b, recruiting C7 and facilitating the complex to bind 
to lipids on the membrane. After C8 recruitment, the complex 
makes the initial insertion into the membrane, allowing multiple 
C9s to bind and form a ring-shaped pore. The pore diameter is 
determined by the number of C9s and shapes the effect, ranging 
from activation to cell death. Soluble C5b-9 represents the failure 
of surface assembly.

354–359

C3aR/C5aRs Mice have three anaphylatoxin receptors: 1) C3aR encoded by C3ar on 
chromosome 6, 2) C5aRs encoded by C5ar1 and C5ar2 on chromosome 7.

Structure: Mouse and human C5aR1 and C3aR share 65% amino acid identity, 
while C5aR2 shares 61%, with the biggest differences in the extracellular 
domains. C3a and C5a exhibit a similar degree of homology. Human 
anaphylatoxins strongly bind and activate the mouse receptors, except for 
human C5aDesArg, which only weakly binds mouse C5aR2.

Function: Like in humans, mouse C3aR and C5aR2 are both pro- and 
antiinflammatory, while mouse C5aR1 is mainly pro-inflammatory. Ligand 
specificity and signaling are largely conserved, but mouse C5aR2 has much 
lower affinity for C5a.

Expression: C3aR, C5aR1, and C5aR2: not fully known but shows similarities 
and differences with human expression:

Similarities: C3aR expression on eosinophils, C5aR1 expression on neutrophils, 
and C5aR2 expression on PMNs.

Differences: In humans, neutrophils express C3aR and T cells express C5aR2, 
while this is absent in mice. In mice, podocytes express C5aR1, while this is 
absent in humans.

Humans have three anaphylatoxin receptors: 1) The C3aR gene 
is on chromosome 12. 2) C5aR1 and C5aR2 are encoded by their 
respective genes on chromosome 19.

Structure: C3aR and C5aR1 are GPCRs, while C5aR2 lacks this G 
protein coupling. C3aR binds C3a but not C3aDesArg. C5aR1 and 
C5aR2 both bind C5a, but C5aR2 binds C5aDesArg with a higher 
affinity than C5aR1.

Function: C3aR and C5aR2 can elicit pro- and antiinflammatory 
responses (depending on costimulation, cell type, and context), 
while C5aR1 has mainly pro-inflammatory effects.

Expression: Various cells express C3aR, with high levels on 
eosinophils and mast cells. C5aR2 expression largely overlaps with 
that of C5aR1, but there are differences in abundance between 
them, especially in myeloid cells. Additionally, C5aR2 is expressed 
on certain cell types that lack C5aR1 and vice versa.

85–87, 90, 
360–367

C3aR, C3a receptor; MAC, membrane attack complex.



The Journal of Clinical Investigation   R E V I E W  S E R I E S :  C O M P L E M E N T  B I O L O G Y  A N D  T H E R A P E U T I C S

7J Clin Invest. 2025;135(12):e188347  https://doi.org/10.1172/JCI188347

mice exhibit reduced classical pathway (CP) functionality (52). C1r 
and C1s exist as gene duplicates in mice, whereas humans possess a 
single gene for each (53, 54). Humans have two C4-encoding genes 
(C4A and C4B), while mice have one C4 gene (Table 2), along with 
a “C4-like” gene for sex-limited protein (Slp) (55). Unlike C4, Slp is 
exclusively expressed in male mice of  certain strains, is not cleaved 
by C1s, and has low C4 activity (56–58). However, Slp may enhance 
CP activation by acting synergistically with C4 (58). Furthermore, 
immunoglobulin (sub)classes differ across species in their ability to 
activate complement (59).

Functional assays indicate that the AP, compared with other 
pathways, is relatively more potent in rodents than in humans (60–
62). Although Factor H shows high cross-species similarities (Table 
3), this does not apply to other members of  the Factor H protein 
family (63). Rodents lack an ortholog of  human Factor H-like pro-
tein 1 (FHL-1), an alternative splicing variant of  the Factor H gene 
(63). Humans also have Factor H-related proteins (FHR-1 to FHR-
5), originating from duplication events of  the Factor H gene, lead-
ing to structural similarities (64). However, these duplication events 
occurred after the divergence of  rodent and primate lineages (64). 
Consequently, the structure, domain composition, and sequence 
of  murine FHR genes differ from those in humans (63, 64). The 
resemblance between FHRs in humans and other animals, regard-
ing distribution and functionality, remains unclear.

Surface regulators and receptors also exhibit major cross-species 
differences (Tables 4 and 5). Membrane cofactor protein (MCP/
CD46) is widely expressed in humans but limited to testes in rodents 
(65). Furthermore, pigs, bovines, and most primates express MCP 
on erythrocytes, whereas humans do not (65–68). Although MCP’s 
cofactor activity for Factor I–mediated cleavage of  C3b is conserved 
across species (66, 69), structural differences exist, as MCP is a 
receptor for species-specific pathogens (70). Decay-accelerating fac-
tor (DAF/CD55) and CD59 are other widely expressed surface reg-
ulators in pigs, primates, and humans, preventing complement-me-
diated cell lysis (71, 72). Mice, however, possess two genes for both 
regulators, one widely expressed and resembling its human coun-
terpart, and one restricted to the testes (73–75). Remarkably, guinea 
pigs are the only mammals that lack CD59 (76).

In humans and primates, complement receptor 1 (CR1/
CD35) and complement receptor 2 (CR2/CD21) are encoded by 
separate genes (77), while in rodents, a single gene (Cr2) produces 
both receptors via alternative splicing (78, 79). Additionally, key 
differences exist in structure, functionality, and expression between 
rodent and human CR1 and CR2 (77–84). Rodents express anoth-
er regulator named CR1-related gene/protein Y (Crry), which is 
absent in humans and primates, likely performing regulatory roles 
of  human DAF, MCP, and CR1 (83, 84). The loss of  Crry in pri-
mates is believed to have contributed to the development of  a sepa-
rate CR1 gene (77). The dog genome contains a single Cr2-like gene 
adjacent to two Crry-like and two MCP-like genes, whereas the gene 
organization of  complement receptors in pigs remains poorly char-
acterized. Finally, although C3a and C5a receptors in humans and 
mice are functionally similar, their cellular expression shows both 
overlap and differences (Table 5) (85–87). Among GPCRs, which 
typically exhibit 85%–98% homology between humans and mice, 
anaphylatoxin receptors have the lowest homology (61%–65%) 
(88–90). Single-cell sequencing is enhancing cross-species compar-

isons of  complement mRNA expression in cell types and tissues, 
revealing both similarities and differences (91, 92).

Species differences in the binding avidities of  complement 
initiators, as well as the composition and potency of  complement 
pathways, can cause divergences in the mechanism of  complement 
activation between animal models and human diseases, despite 
both being complement mediated (93–95). Although differences in 
complement across species are often used to critique animal stud-
ies, they have also advanced our understanding of  human diseas-
es. Interspecies differences and animal studies have been pivotal in 
identifying MCP as the receptor for measles virus, which infects 
humans and primates but not rodents (70). MCP is highly homol-
ogous between humans and primates, while rodents exhibit key 
structural and expression differences (96, 97). Experiments with 
monkey erythrocytes first suggested MCP as a measles receptor. 
Functional studies with rodent cells provided conclusive evidence 
that the virus could bind to and infect rodent cells if  they expressed 
human MCP but no native rodent MCP (96, 97). Thus, while dif-
ferences in the complement system between animals and humans 
pose challenges for translational research, they can also help uncov-
er human-specific biology.

Innovations in animal testing for complement research. Advances 
in genome engineering have enabled the development of  animal 
models that more accurately mimic aspects of  human physiology, 
enhancing their clinical relevance. Targeted genomic humanization 
and conditional or inducible gene knockouts in rodents and larger 
animals have improved biological alignment with humans.

Replacing animal genes with human equivalents has been 
employed to address interspecies differences and to aid preclinical 
drug testing of  human-specific targets. Identifying human MCP as 
the measles virus receptor led to the creation of  human MCP-trans-
genic mice, enabling measles infection studies in previously resistant 
animals (98). Furthermore, since rodents have a single gene (Cr2) for 
CR1 and CR2, Cr2–/– mice exhibit dual deficiencies. Mice express-
ing human complement receptors were therefore developed to study 
their individual roles in vivo (99–101). Similarly, since mice express 
a single C4 gene (C4b), introducing human C4A into mice helped 
uncover the mechanisms underlying the association between C4A and 
schizophrenia in humans (102, 103). However, transgenic expression 
of  human complement has also had unexpected effects. Humaniz-
ing C3 in mice triggered C3 glomerulopathy (C3G), a complement- 
mediated kidney disease, because of  impaired regulation of  human 
C3 by mouse inhibitors, causing spontaneous complement activation 
(104). Alternatively, C3-humanized rats remain healthy and do not 
exhibit uncontrolled C3 activation (105). Furthermore, humanized 
Factor H mice normally regulate their AP and attenuate or reverse 
kidney and eye pathology seen in Cfh–/– mice (106). Other successful 
examples of  transgenic rodents include knockins of  human C1q, C5, 
C5aR1, C6, DAF, CD59, and C1 inhibitor (107–113).

The development of  inducible and/or tissue-specific gene 
manipulation in mice enables spatial and temporal control in pre-
clinical models. Early applications of  this technology involved 
mice expressing human CD59 on erythrocytes or endothelial cells 
(114). Subsequent targeting of  human CD59 in these mice with a 
pore-forming toxin created distinct disease models: disseminated 
intravascular coagulation when endothelial cells expressed CD59 
and acute hemolysis when erythrocytes expressed CD59 (114). 
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knockout mice (116, 117). Overall, tissue- and cell-specific knock-
outs of  complement genes have clarified the distinct functions of  
local versus systemic complement sources, and their relative signifi-
cance in infections and inflammatory diseases, sometimes revealing 

Tissue-specific knockout mice for properdin identified myeloid 
cells as the primary source of  circulating properdin levels (115), 
while mice with a conditional deletion of  Crry in proximal tubu-
lar epithelium circumvented the embryonic lethality seen in global 

Figure 1. Conservation of structure and function of C3 across species. (A) C3 is the central and most abundant circulating complement protein, forming 
the pivotal convergence point of all pathways. (B) Phylogenetic tree illustrating the early emergence of C3-like genes in primitive invertebrates. (C) Human 
C3 protein (UniProt Knowledgebase [UniProtKB]: P01024) exhibits significant homology with other animals, including mouse (UniProtKB: P01027), rat 
(UniProtKB: P01026), guinea pig (UniProtKB: P12387), pig (UniProtKB: P01025), and cynomolgus monkey (UniProtKB: A0A2K6D5R0). Percentages represent 
amino acid identity shared with human C3 and were obtained using the Align function on UniProt. (D) Human C3 consists of eight macroglobulin domains 
(MG1–MG8); an ANA domain; a linker (LNK) domain; a C1r/s, Uegf, B (CUB) domain; a TED; and a C345C domain. Structure of human C3 adapted from 
Zarantonello et al. with permission (368). Moreover, functional characteristics of C3 are conserved even in the most primitive invertebrates: (i) Cleavage of 
C3 removes the ANA domain (forming C3a) and induces conformational changes (forming C3b), exposing the reactive TED that enables covalent binding to 
surfaces. (ii) C3a is an ANA that can bind to its receptor (C3aR), leading to pro- and antiinflammatory effects, and is expressed in most species. (iii) Once 
formed, C3b can interact with Factor B, properdin, and various complement regulators. Factor B binding initiates formation of C3-convertases, which cleaves 
additional C3 into C3b, thereby creating an amplification loop. Binding of FH, MCP, DAF, and CR1 mediates C3-convertases’ deactivation (via disruption of 
the C3b–Bb interaction) or degradation (via proteolytic cleavage of C3b). (iv) C3 contains two highly conserved cleavage sites for Factor I (FI), which, in the 
presence of cofactors such as FH, MCP, or CR1, inhibit further activation and cleave C3. The first cleavage by FI releases C3f, forming inactivated C3b (iC3b).  
A second cleavage releases C3c from the target-bound C3dg fragment. C3 fragments can still exert functional consequences via interaction with receptors.
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aHUS is another disease where animal models contributed to 
and supported the effectiveness of  clinical complement inhibition. 
AP involvement in aHUS was first reported in the 1970s (142–145). 
Genetic studies associated Factor H mutations, followed by other 
complement-related gene variants, with the disease (146–150). This 
suggested that complement activation is central to aHUS, though 
the precise mechanisms remained unclear. Factor H mutations 
had also been linked to C3G, which is diagnosed by prominent C3 
deposition within the glomeruli (151). Animal models established 
a causal link between Factor H deficiencies and C3G, as a genetic 
deficiency in pigs led to spontaneous disease (152). Mice with tar-
geted gene deletions of  Factor H verified that complement dysreg-
ulation drives C3G (153). A key question remained: Why do some 
patients with complement dysregulation develop aHUS, while oth-
ers develop C3G? Factor H mutations in aHUS clustered in the pro-
tein’s C-terminus, reducing protection of  host cells from unwanted 
complement activation (154, 155). The seminal study by Pickering 
et al. revealed that complete Factor H deficiency led to C3G-like 
disease, whereas mice expressing a Factor H that lacked the last five 
domains developed aHUS-like disease (156). The structural simi-
larities between Factor H in mice and humans enabled this break-
through (25), offering the first in vivo evidence that impaired surface 
recognition by Factor H leads to aHUS. Of note, animal models 
showed that C5 inhibition in C3G provided only partial protection 
(157), foreshadowing mixed results in clinical trials with anti-C5 
therapy (158). Recent studies suggest that aHUS and C3G probably 
require different therapeutic approaches to inhibit complement, as 
loss of  Factor D or properdin in mouse models exacerbated C3G 
but protected against aHUS (125, 159–161).

Myasthenia gravis (MG) is an autoimmune disorder where 
autoantibodies disrupt neuromuscular transmission. Comple-
ment-activating autoantibodies are the primary driver of  MG. In 
1959, circulating levels of  complement were already reported to 
inversely correlate with the severity of  MG symptoms in patients 
(162). Fifteen years later, evidence emerged that targeting com-
plement could treat MG, with C3 depletion being protective in a 
rat model (163). In MG patients and animal models, the MAC 
localizes at the neuromuscular junction (164–166). Animal stud-
ies conducted in the late 1980s predicted the success of  terminal 
pathway inhibition in MG, as C5–/– mice were protected, while 
anti-C6 Fab antibodies in rats alleviated MG symptoms (167, 168). 
Overall, animal models have provided compelling evidence for the 
involvement of  complement in MG and its therapeutic potential 
(169). Although a phase III study of  anti-C5 therapy (eculizumab) 
in refractory MG missed its primary endpoint, positive secondary 
outcomes showed sustained benefit during the open-label exten-
sion phase, leading to FDA approval (170, 171). Later clinical trials 
with other anti-C5 therapies demonstrated greater improvements in 
generalized MG (172, 173), resulting in approval of  ravulizumab 
(a long-acting monoclonal antibody against C5) and zilucoplan (a 
C5-blocking cyclic peptide).

Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing 
inflammatory disease of  the CNS, distinct from multiple sclerosis. 
Recently, pathogenic autoantibodies targeting the astrocytic water 
channel aquaporin 4 (AQP4) were identified in most patients with 
NMOSD, termed AQP4-IgG-seropositive NMOSD (174). In a ran-
domized clinical trial involving patients with AQP4-IgG-seropositive 

opposing effects (118–121). These models have also uncovered key 
cell-intrinsic functions of  complement (122, 123).

CRISPR/Cas technology has revolutionized genome editing, 
enabling multiple genetic modifications simultaneously. CRISPR/
Cas has created mice with atypical hemolytic uremic syndrome–
associated (aHUS-associated) mutations, verifying disease causal-
ity and facilitating preclinical drug testing (124, 125). CRISPR/
Cas systems also allow for larger gene modifications, such as the 
humanization of  the entire Factor H locus in mice (126). These 
mice lacked murine Factor H and FHRs but expressed human Fac-
tor H along with a normal or mutant FHR-5. The mutant FHR-5, 
linked to C3G in humans, resulted in a gain of  function, causing 
C3 deposition in the kidney and spontaneous disease (126). Addi-
tionally, CRISPR/Cas has generated Serping1–/–, C1qa–/–, Masp3–/–, 
Cfd–/–, Cfhr-e–/–, and C5–/– mice (127–132). Traditional genetic mod-
ification methods were challenging for large animals; however, 
CRISPR has enabled the development of  C3–/– pigs (133). Notably, 
CRISPR facilitated the creation of  pigs with multiple genetic mod-
ifications, including human MCP and DAF expression, advancing 
xenotransplantation toward clinical application (134).

Evaluating complement-targeted therapies: 
animal models versus clinical trials
Some diseases have shown drug efficacy in human trials consistent 
with prior observations in animal models, yet in other cases, clinical 
trials have failed despite robust animal evidence. It is challenging to 
discern whether these failures stem from the limitations of  animal 
models or flaws in trial design. Additionally, some anticomplement 
drugs have been approved based on successful clinical trials in dis-
eases without extensive animal testing, suggesting that animal stud-
ies may not always be essential. Conversely, failed trials without 
strong evidence from animal models raise questions about whether 
animal studies could have improved the design or predicted fail-
ure. Last, although not discussed here, animal testing is crucial for 
assessing toxicity (discussed in ref. 135).

Animal studies leading to approved complement inhibitors. AAV 
is a group of  diseases characterized by vascular inflammation in 
small vessels. This disease exemplifies how discoveries from animal 
models can lead to the clinical approval of  novel treatments (7). 
Traditionally, AAV was not considered complement mediated, as 
circulating C3 and C4 levels are often normal, with minimal tissue 
deposits of  immunoglobulin or complement (136). Clinical trials 
demonstrated that adding avacopan (a C5aR1 blocker) to existing 
immunosuppression regimens for maintaining disease remission 
facilitated faster glucocorticoid tapering, thereby reducing side 
effects, leading to FDA approval (6). Fifteen years prior, animal 
studies sparked interest in the complement system in AAV by iden-
tifying a critical role for the AP and showing that genetic deletion 
of  Factor B and C5 provided protection (137). Mouse models fur-
ther revealed the importance of  the C5a/C5aR1 interaction in AAV 
pathophysiology (138). Finally, murine models demonstrated that 
anti-C5 therapy and blocking C5aR provide protection in AAV 
(139, 140). Analysis of  patients with AAV shows AP activation 
fragments in blood, urine, and tissues (discussed in ref. 141), ver-
ifying findings from animal models. Although human studies may 
have eventually uncovered the involvement of  complement, the ini-
tial findings in animal models profoundly accelerated this process.
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inhibition (209–213). Anti-C5 therapy with eculizumab has been 
evaluated in nine clinical trials for AMR in transplantation, for 
either prevention or treatment (ClinicalTrials.gov NCT02013037; 
NCT01399593; NCT01567085; NCT00670774; NCT01895127; 
NCT02113891; NCT01095887; NCT01106027; NCT01327573). 
Similarly, C1 inhibitor has been investigated in six clinical tri-
als for AMR (ClinicalTrials.gov NCT01035593; NCT02936479; 
NCT02547220; NCT03221842; NCT01147302; NCT01134510). 
Blocking C5 did not significantly enhance outcomes in highly sen-
sitized patients, nor did it prevent the progression to chronic AMR 
(214–219). Trials using C1 inhibitor in sensitized recipients also 
showed underwhelming results (220–222), but therapy may have 
been underdosed (223). Drugs targeting other complement proteins 
remain under active investigation in AMR (224). Additionally, 
complement-targeted drugs have been tested in clinical trials aimed 
at reducing IRI and improving short-term posttransplant outcomes 
(225–230), primarily in kidney transplantation. To date, there have 
been no concrete clinical advancements or regulatory approvals, 
despite various animal models of  IRI predicting clinical success 
with anti-C5 therapy or C1 inhibitor (231–234).

Approved complement inhibitors without substantial animal studies. 
PNH was the first indication for which eculizumab received FDA 
approval (8, 9). It was well established that PNH erythrocytes lack 
CD55 and CD59 because of  a genetic mutation affecting their gly-
cosylphosphatidylinositol (GPI) anchor, leading to hemolysis via the 
insertion of  C5b-9 (235). PNH exemplifies FDA approval of  comple-
ment inhibitors with minimal animal studies. The reasons for limited 
animal studies in PNH are two-fold: (a) lack of  representative ani-
mal models (236) and (b) ability to easily collect erythrocytes from 
affected patients (237), making it straightforward to study comple-
ment inhibitors in vitro. Moreover, prior clinical studies had demon-
strated sufficient safety of  C5 inhibition in humans. Subsequently, 
studies in patients with PNH treated with eculizumab also advanced 
our understanding of  complement biology and disease mechanisms 
without further animal use, revealing C3 opsonins on erythrocytes 
trigger phagocytic uptake in the liver/spleen, causing extravascular 
hemolysis (10). Cold agglutinin disease (CAD) is another comple-
ment-mediated hemolytic anemia that received FDA approval for a 
complement inhibitor without comprehensive animal model testing. 
In CAD, autoreactive IgM activates the CP (238). However, since 
erythrocytes express CD55 and CD59, intravascular hemolysis by 
C5b-9 is limited and extravascular hemolysis predominates, driven 
by C3 opsonins (239). Like PNH, no accurate animal models exist, 
and anticomplement drug efficacy can be evaluated with in vitro 
assays using patient samples (240, 241). Sutimlimab, a C1s-blocking 
antibody, prevented opsonization of  erythrocytes in vitro and was 
effective in a phase III study of  patients with CAD, leading to FDA 
approval (241, 242). These results align with studies from the 1960s 
first suggesting complement’s role in extravascular hemolysis (243).

Age-related macular degeneration (AMD) is a multifactorial eye 
disease causing retinal degeneration and is the leading cause of  blind-
ness in the elderly population. Genetic studies in patients with AMD 
were the first to uncover the key role of  the complement system (63). 
Nearly two decades ago, three independent studies identified a com-
mon genetic variant in Factor H that significantly increased disease 
risk (244–246). Later research uncovered variants in additional com-
plement genes that contributed to disease risk (12, 247, 248), partic-

NMOSD, eculizumab reduced the relative relapse risk by 94% com-
pared with placebo (175). Later, ravulizumab demonstrated a simi-
lar reduction in relapse risk (176). Animal models of  NMOSD were 
vital in establishing the pathogenic role of  anti-AQP4 autoantibodies 
and the complement system (177–183). Mechanistically, these mod-
els uncovered that, in NMOSD, anti-AQP4 autoantibodies bind to 
astrocytes, triggering complement-mediated cell damage, leading to 
leukocyte infiltration, cytokine release, and blood-brain barrier dis-
ruption (184, 185). This ultimately causes bystander oligodendrocyte 
injury, myelin loss, and neuronal death (184, 185). Although no pub-
lications have reported on anti-C5 therapy in NMOSD models, com-
plement knockouts and complement inhibitors validated the efficacy 
of  complement-targeted therapies in NMOSD (186–188). Overall, 
the passive transfer of  human anti-AQP4 autoantibodies in animal 
models has been instrumental for uncovering disease pathogenesis 
and identifying complement as a therapeutic target in NMOSD.

Unsuccessful clinical trials despite strong animal evidence. Outcomes 
in clinical trials of  complement-targeted therapies have been most 
disappointing in ischemia-reperfusion injury (IRI) related to cardio-
vascular disease and transplantation, along with antibody-mediated 
transplant rejection. The first large clinical trials of  anti-C5 therapy 
were conducted for cardiac IRI (189). Confidence in targeting com-
plement arose from preclinical studies demonstrating its key role and 
the efficacy of  inhibitors in reducing cardiac IRI in animal models 
(190, 191). Early studies of  a single-chain antibody directed against 
C5 (pexelizumab) demonstrated promising results in patients with 
myocardial infarction undergoing reperfusion therapy (192–196). 
The Assessment of  Pexelizumab in Acute Myocardial Infarction trial 
tested pexelizumab in 5,745 patients with acute myocardial infarction 
undergoing percutaneous coronary intervention to improve mortal-
ity (197). Additionally, the Pexelizumab for Reduction of  Infarction 
and Mortality in Coronary Artery Bypass Graft Surgery–I and –II 
studies assessed pexelizumab in 3,099 and 4,254 patients receiving 
cardiac bypass surgery to reduce perioperative myocardial infarc-
tion and mortality (189, 198). Together, these trials did not show a 
consistent significant clinical improvement. Similarly, a soluble form 
of human CR1 (TP10) was tested in 564 high-risk cardiac surgery 
patients requiring cardiopulmonary bypass but failed to reduce mor-
bidity or mortality, despite effectively inhibiting complement (199). 
Previous animal studies showed the inhibitor was highly effective in 
reducing cardiac IRI (200). Flaws in trial design have been suggested, 
and post hoc analyses proposed subgroups who might still benefit 
(201–205). However, it is crucial to recognize that animal models of  
cardiac IRI fail to accurately replicate the complex clinical setting 
of  patients with myocardial infarction undergoing reperfusion ther-
apy, including comorbidities and concomitant medications (206). 
For example, the use of  heparin, which also affects complement 
activation, is a treatment aspect not replicated in animal models,  
potentially confounding results (207).

Although tested in smaller numbers of  patients, clinical trials 
have extensively studied complement inhibitors in solid organ trans-
plantation. Despite these efforts, no evident clinical improvements 
or regulatory approvals have been achieved to date (208). Clinical 
trials primarily focused on antibody-mediated rejection (AMR) 
and IRI and were conducted predominantly in kidney transplan-
tation. Robust data from animal models, including rodents, pigs, 
and primates, consistently demonstrated the benefit of  complement 
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available animal-free alternative research methods offer tools that 
supplement, rather than substitute for, animal-based approaches. 
Ultimately, every experiment must justify its choice of  model — 
animal or otherwise — since all models are flawed and imperfect. 
Therapeutic targets supported by human observational genetic evi-
dence are twice as likely to result in approved drugs than targets 
without human evidence (269). A recent meta-analysis estimated 
an 86% alignment in positive results between animal models and 
human studies for therapeutics, yet only 5% progress from animal 
studies to regulatory approval (270). This suggests that while ani-
mal models can accurately predict drug responses in human diseas-
es, their translation is currently limited because of  inconsistencies 
in design between preclinical studies and clinical trials. Therefore, 
aligning the design of  animal studies with clinical trials — by incor-
porating randomization, blinding, clinically relevant outcomes, and 
long-term endpoints — could increase the number of  treatments 
that progress from animal studies to regulatory approval. Current-
ly, no data exist on the concordance between positive results from 
animal-free methods, e.g., organoids, and clinical trial outcomes. 
Until these methods are proven to be equally effective or superior, 
they cannot replace animal models.

The clinical efficacy of  complement inhibitors is the ultimate 
validation of  its pathophysiological relevance. However, the absence 
of  clinical trials or negative clinical results does not necessarily dis-
prove this. Industry chooses disease indications based on multiple 
factors, not just animal studies. While membranous nephropathy 
was among the first kidney diseases in which complement activa-
tion was thoroughly documented (271), industry prioritized clinical 
trials in IgAN. Furthermore, promising complement inhibitors in 
phase II trials have been discontinued because of  shifting business 
priorities (272). Challenges such as patient recruitment for rare dis-
eases, lengthy study durations, and complex endpoints in chronic 
conditions further complicate clinical trials. Design flaws may also 
contribute to unsuccessful outcomes (though this is speculative). 
For example, LP activation is observed in only one-third of  patients 
with IgAN (261). However, a phase III trial of  a MASP-2 inhibi-
tor in IgAN proceeded without assessing LP activation and yielded 
negative results (NCT03608033). Furthermore, anti-C5 therapy was 
tested in membranous nephropathy but failed to reduce proteinuria 
(273). However, the study was prematurely halted, and concerns 
linger about the therapy being underdosed (274, 275), as protein-
uria affects drug pharmacokinetics (276). In rheumatoid arthritis, 
complement inhibitors have yielded disappointing results so far, but 
they have been tested only in early-phase trials with few patients and 
short follow-up periods (277, 278). Consequently, the use of  comple-
ment inhibitors in these diseases remains an unfinished story.

Animal models, when justified, are invaluable for exploring the 
complement system in health and disease. We believe this is also 
evident from our better understanding of  disease mechanisms in 
conditions with approved complement inhibitors, such as aHUS, 
AAV, and MG, which have animal models, compared with CHA-
PLE and IgAN, which do not. Additionally, there is a clear need 
for better diagnostic tools for complement therapeutics, and animal 
models are extremely useful for developing and validating these 
tools, such as imaging approaches to detect tissue-bound comple-
ment deposits (279). Finally, animal studies have revealed surpris-
ing insights into complement’s role in disease, such as the discovery 

ularly in the FHRs (63). In 2023, the FDA approved two intravitreal 
complement inhibitors — pegcetacoplan (C3 inhibitor) and avacin-
captad pegol (C5 inhibitor) — as the first treatments for advanced 
non-neovascular AMD (249–251). Although animal studies have 
supported and substantiated human genetic findings by confirming 
the causal role of  complement in AMD (106, 252–258), their influ-
ence on the approval of  complement inhibitors appears limited.

In IgA nephropathy (IgAN), clinical trials led to the approval 
of  complement inhibitors without meaningful animal studies (259). 
Animal models of  IgAN are limited and rarely used to test com-
plement inhibition (260). Decades of  observational human data 
strongly suggested an important role for complement in IgAN. In 
brief, kidney biopsy data demonstrated that glomerular comple-
ment deposition is nearly always present and holds prognostic value 
(summarized in ref. 261). Extensive biomarker evidence indicated 
AP activation, including tissue deposition and detection of  activa-
tion fragments in plasma and urine (261). Unbiased genomics stud-
ies linked Factor H and FHR variants to disease risk and activity 
(13, 261), with circulating levels and renal deposits of  FHR also 
associating with outcomes (63, 261). Collectively, these findings 
compellingly implicated the AP as a key driver in IgAN. An interim 
phase III trial analysis showed that iptacopan (Factor B inhibitor) 
significantly reduced proteinuria in patients with IgAN, leading to 
accelerated FDA approval (259). This success also highlights how 
clinical observations can provide a strong rationale for effective 
clinical trials. Ongoing follow-up will assess iptacopan’s impact on 
kidney function in IgAN.

A final example is CD55 deficiency with hyperactivation of  
complement, angiopathic thrombosis, and protein-losing enterop-
athy (CHAPLE) disease. In 2017, whole-exome sequencing asso-
ciated loss-of-function variants in the DAF gene with early-onset 
protein-losing enteropathy and thrombosis in 11 individuals with 
gastrointestinal disorders, subsequently named CHAPLE disease 
(262). Shortly thereafter, reports demonstrated the efficacy of  
anti-C5 therapy for this condition (263). Pozelimab, a C5-blocking 
mAb, resolved clinical and laboratory manifestations of  CHAPLE  
disease in 10 patients during an open-label phase II/III study (264), 
becoming the only FDA-approved treatment for this condition. 
Daf1–/– mice do not exhibit an evident phenotype but are more 
prone to complement-mediated inflammatory injury (265, 266). As 
in patients with CHAPLE, Daf1–/– mice exhibit heightened T cell 
activity and exacerbated autoimmune-induced colitis (267, 268). 
The swift approval of  a complement inhibitor for CHAPLE dis-
ease clearly builds on insights from earlier translational and clinical 
studies of  other complement-mediated diseases. However, given 
this existing knowledge and the availability of  multiple clinical 
complement inhibitors with well-established safety and efficacy 
profiles, the necessity of  additional animal studies for new indica-
tions could be questioned.

Discussion and remarks
We conclude that animal studies are not the only means of  advanc-
ing disease understanding or developing complement-targeted ther-
apies, as evidenced by the approval of  complement therapeutics 
with and without reliance on animal studies. Simultaneously, we 
conclude that animal models remain a valuable tool in the com-
plement field, which currently cannot be replaced. Increasingly 
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that complement activation can promote tumor growth in animal 
models (280, 281). While the translation to human disease is tenta-
tive, ongoing clinical trials of  complement inhibitors for cancer will 
hopefully answer this question (NCT04919629; NCT04812535). 
Nevertheless, this research has already expanded our understand-
ing of  complement biology (1). In conclusion, when appropriately 
justified — particularly in relation to translation to human biolo-
gy and disease — while always considering and addressing ethical 
concerns, animal models remain a valuable ally to the complement 
field in the foreseeable future, as they cannot yet be fully replaced.
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