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Introduction
Head and neck squamous cell carcinoma (HNSCC) is the sixth most 
common cancer globally, with approximately 800,000 new cases and 
approximately 450,000 deaths annually (1). Treatment of  HNSCC 
has made modest advances over the course of  decades, consisting 
of  cytotoxic platinum-based chemoradiation (CRT) or primary 
surgical management with risk-adapted adjuvant therapy (i.e., 
radiation and/or chemotherapy). With current treatment strat-
egies, more than 50% of  patients experience recurrence within 
3 years, while more than 10% experience distant failures (2–4). 
Moreover, surgery, radiation, and chemotherapy all harbor signif-
icant side effects. Unfortunately, HNSCC lacks actionable genomic 
targets due to the complex and evolving genomic landscape, with 
limited success in targeting EGFR and PIK3CA (5, 6). Therefore, 
understanding the molecular mechanisms responsible for HNSCC 
pathogenesis and development of  effective therapeutic strategies are 
substantial hurdles in the management of  HNSCC.

The emergence of  immune checkpoint inhibition (ICI) rep-
resents a major shift in the treatment paradigm of primary and 
recurrent/metastatic (R/M) HNSCC. ICI is now the standard of  
care (SoC) for R/M HNSCC (7), but response rates remain mod-
est, around 14%–22% (8, 9). Other immunotherapeutic strategies, 
including tumor vaccines and adoptive transfer of  antigen-specific 
T cells, have also been explored in clinical trials involving patients 

with HNSCC with limited response rates (10, 11). Several potential 
factors contribute to these modest responses, including tumor-intrin-
sic molecular heterogeneity and metabolic adaptations, which dimin-
ish antitumor immunity, tumor antigen escape, influx of  suppressive 
immune cell populations, dysregulated metabolism, and develop-
ment of  dysfunctional antitumor T cells (12–16). To overcome these 
formidable obstacles and advance the outlook for patients, better 
understanding of  the mechanisms driving resistance to antitumor 
immunity is urgently needed.

In this Review, we provide an update on the current landscape 
of  immunotherapy in patients with HNSCC, explore potential 
mechanisms driving resistance to immunotherapy, discuss major 
challenges in the immunotherapy of  HNSCC patients, and offer 
our perspective on prioritizing development of  targets influenc-
ing immunotherapy outcomes.

Current immunotherapeutic strategies in HNSCC
While current immunotherapeutic strategies for HNSCC primar-
ily leverage ICIs, such as α–PD-1 therapies, a variety of approaches 
including T cell–based immunotherapy are emerging. The advent of  
ICIs, particularly PD-1 inhibitors such as nivolumab and pembroli-
zumab, has transformed the treatment landscape for HNSCC. While 
the impact of ICIs in HNSCC has not matched that in melanoma 
(17) or cutaneous squamous cell carcinoma (18), the landmark trials 
CheckMate 141 and KEYNOTE-040 galvanized the use of ICIs in the 
treatment of R/M HNSCC (8, 9). Moreover, forthcoming data from 
the KEYNOTE-689 trial will be paradigm-shifting (19). Critical ques-
tions remain at the forefront of ongoing research: What is the optimal 
timing for immunotherapy administration — adjuvant or/and neo-
adjuvant? sequential or concurrent? How can predictive biomarkers 
refine patient selection? And how can immunotherapies best integrate 
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Radiation therapy in combination with ICI. Ionizing radiation 
is under active investigation for enhancing immunotherapeutic 
responses. Putative mechanisms supporting this approach are the 
activation of  cytotoxic lymphocytes, DC activation and T cell prim-
ing, activation of  pro-death signaling in tumor cells, and release 
of  damage-associated molecular patterns (DAMPs) (25). A phase 
I study testing the safety of  partial tumor irradiation with stereo-
tactic body radiotherapy to oligometastatic disease coupled with 
pembrolizumab in advanced solid tumors demonstrated encourag-
ing results (Table 2) (26). In contrast, NRG-HN004 (ClinicalTrials.
gov NCT03258554) compared radiotherapy with concurrent plus 
adjuvant durvalumab versus RT/cetuximab, observing no improve-
ment in progression-free survival (PFS) (27). However, irradia-
tion also induces deleterious effects, including increased Treg and 
myeloid-derived suppressor cell (MDSC) infiltration, PD-L1 induc-
tion, and activation of  prosurvival mechanisms via chronic IFN 
signaling (25, 28). The role of  radiotherapy in modulating anti-
tumor immunity remains to be elucidated as a tool for enhancing 
immunotherapy effectiveness.

Chemoradiotherapy combined with ICI. Building on the advances 
of  KEYNOTE-040 and CheckMate 141 in R/M HNSCC, excit-
ing advances are on the horizon integrating immunotherapy with 
definitive CRT (Table 2). The role of  SoC cisplatin chemothera-
py for enhancing ICI is under active investigation, with support 
from preclinical data (29, 30). Preclinical and clinical data suggest 
that cisplatin promotes immunogenic tumor cell death (30), DC 

with established SoC? These challenges reflect the rapidly evolving 
landscape of HNSCC immunotherapy. An overview of current evi-
dence and future directions of immunotherapy is provided in Tables 
1–5, setting the stage for the next chapter in this transformative field.

Combination ICI. Initial ICI trials in HNSCC demonstrated 
durable treatment responses and overall survival (OS), suggesting 
maintenance of  immune equilibrium (Table 1). Combination ICI 
with multiple coinhibitory molecules may amplify the treatment 
response by differentially regulating various cell populations in the 
tumor microenvironment (TME) (20). The CheckMate 651 study, 
combining α–PD-1 and α–CTLA-4 blockade in R/M HNSCC, 
observed no change in objective response rate (ORR) or OS (21). 
Similarly, CheckMate 714 observed no change in ORR with α–
PD-1/α–CTLA-4 inhibition over α–PD-1-alone in platinum-re-
fractory R/M HNSCC (22). The phase III EAGLE trial evaluated 
durvalumab, an α–PD-L1 monoclonal antibody, versus durvalum-
ab plus tremelimumab (α–CTLA-4) versus SoC in patients with 
R/M HNSCC. OS did not differ across groups relative to SoC (23). 
In parallel, KESTREL found no benefit to single-agent or combina-
tion α–PD-L1 with or without α–CTLA-4, even noting that patients 
with high PD-L1 expression receiving SoC had better ORR com-
pared with durvalumab alone or durvalumab plus tremelimumab 
(24). While reinvigoration of  cytotoxic T cell function through 
coregulatory signal pathway modulation is effective, deeper under-
standing of  the mechanisms regulating the fate and response of  
effector lymphocytes in TME is critically needed.

Table 1. Immune checkpoint blockade therapy in HNSCC

Trial Agent Patient cohort  
(n)

Primary  
outcomes

OS  
(mo)

ORR  
(%)

Toxicity grade 3–4  
(%)

Other  
comments

Refs.

ICI immunotherapy
CheckMate 141 Nivolumab (N) vs. SoC 361 HNSCC OS 7.5 (N) 

5.1 (SoC)
13.3 (N) 

5.8 (SoC)
13.1 (N) 

35.1 (SoC)
(8)

KEYNOTE-040 Pembrolizumab (Pembro)  
vs. SoC

494 HNSCC OS 8.4 (Pembro) 
6.9 (SoC)

14.6 (Pembro) 
10.1 (SoC)

13 (Pembro) 
36 (SoC)

(9)

KEYNOTE-055 Pembrolizumab 171 Pt- and Ctx-
pretreated HNSCC

Radiographic 
treatment effect

Not available 16 15 (191)

α–PD-1 plus α–CTLA-4 blockade
CheckMate 651 
(NCT02741570)

Nivolumab/ipilimumab  
(N/I) vs. EXTREME

947 R/M HNSCC OS 13.9 (N/I) 
13.5 (EXTREME)

13.9 (N/I) 
13.5 (EXTREME)

28.2 (N/I) 
70.7 (EXTREME)

CheckMate 651  
did not meet 

primary end point

(21)

CheckMate 714 Nivolumab/ipilimumab  
vs. nivolumab

425 Pt-eligible or 
Pt-refractory R/M 

HNSCC

ORR Not available Pt-refractory: 
13.2 (N/I) 
18.3 (N) 

Pt-eligible: 
20.3 (N/I) 
29.5 (N)

Pt-refractory: 
15.8 (N/I) 
14.6 (N) 

Pt-eligible: 
24.6 (N/I) 

13.1 (N)

(22)

EAGLE  
(NCT02369874)

Durvalumab (D) vs. durvalumab/
tremelimumab (D/T)  

vs. SoC

697 R/M HNSCC OS 7.6 (D) 
6.5 (D/T) 
8.3 (SoC)

17.9 (D) 
18.2 (D/T) 
17.3 (SoC)

10.1 (D) 
16.3 (D/T) 
24.2 (SoC)

(23)

KESTREL  
(NCT02551159)

Durvalumab vs. durvalumab/
tremelimumab (D/T)  

vs. EXTREME

823 R/M HNSCC OS 9.9 (D) 
10.7 (D/T) 

10.3 (EXTREME)

17.2 (D) 
21.8 (D/T) 

49.0 (EXTREME)

8.9 (D) 
19.1 (D/T) 

53.1 (EXTREME)

(24)

OS, overall survival; ORR, objective response rate; Pt, platinum; SoC, standard of care; Ctx, cetuximab; EXTREME, Ctx/cisplatin/carboplatin + 5-FU 
(5-fluorouracil) ≤6 cycles, then Ctx maintenance.
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CD8+ T cell priming, NK cell functions, and antibody-dependent 
cell-mediated cytotoxicity (ADCC) (36, 37). Compared with SoC 
cisplatin, cetuximab offers unique benefits, particularly for patients 
unable to tolerate cisplatin, though its utility has been limited by 
the side effect of  acneiform rash (38). Initial studies demonstrat-
ed the advantages of  combining cetuximab with radiotherapy, 
showing improved outcomes compared with radiotherapy alone 
(39). Promising results were also observed with pembrolizumab 
and cetuximab in combination in a phase II trial among patients 
with platinum-ineligible or -resistant R/M HNSCC (40). However, 
GORTEC-REACH — comparing concurrent cisplatin or cetux-
imab radiotherapy versus radiotherapy with concurrent weekly 
cetuximab and avelumab (α–PD-L1) — failed to meet its prima-
ry end point (41). Despite these limitations, cetuximab facilitated 
broader adoption of  immunotherapies in HNSCC and bridged the 
gap to the next generation of  immunotherapies, leaving a lasting 
legacy in HNSCC treatment.

In addition to cetuximab, VEGF inhibitors, including tyrosine 
kinase inhibitors (TKIs), have immunomodulatory properties. A 
phase II trial combining pembrolizumab and cabozantinib, a mul-
tikinase TKI, observed a partial response or stable disease in over 
half  the cohort in conjunction with increased CD8+ T cell infil-
trates in responders (42). The ALPHA study combining pembroli-
zumab with afatinib, an irreversible TKI, observed a promising 

activation, and antigen-specific T cell killing (31). Data evaluat-
ing concurrent versus sequential pembrolizumab in the definitive 
treatment of  HNSCC with CRT highlight better outcomes with 
sequential immunotherapy (32). The phase III KEYNOTE-048 
trial comparing pembrolizumab with and without chemotherapy 
with cetuximab plus chemotherapy for R/M HNSCC revealed a 
lack of  PFS benefit with ICI (33). Pembrolizumab with chemo-
therapy improved OS compared with cetuximab plus chemothera-
py in all subpopulations, independent of  PD-L1 combined positive 
score (CPS) status. The phase III KEYNOTE-412 (NCT03040999) 
trial evaluated pembrolizumab plus CRT versus CRT in locally 
advanced HNSCC (LA-HNSCC), finding no difference in event-
free survival (34). The JAVELIN trial comparing avelumab plus 
CRT versus CRT in LA-HNSCC also observed no difference in 
PFS (35). Further work is warranted to elucidate the extent to 
which chemotherapy can enhance ICI effectiveness.

RTK inhibition and ICI. Combining ICI with RTK inhibition is 
promising, though recent trial results were modest (Table 3). EGFR 
is an established therapeutic target in HNSCC. There is a propensi-
ty for EGFR copy number amplification and overexpression in car-
cinogen-driven, HPV– HNSCCs. Cetuximab, an EGFR-targeting 
mAb, was one of  the first immunotherapies approved for HNSCC, 
marking a pivotal moment in systemic cancer therapy. Cetuximab 
can augment antitumor immunity, promoting DC maturation, 

Table 2. Chemoradiotherapy coupled with immune checkpoint blockade in HNSCC

Trial Agent Patient cohort  
(n)

Primary  
outcomes

OS  
(mo)

ORR  
(%)

Toxicity grade  
3–4 (%)

Other  
comments

Refs.

KEYNOTE-048 Pembrolizumab (Pembro)  
vs. Pembro/P/F  

vs. Ctx/P/F

882 HNSCC OS 11.6 (Pembro) 
13.0 (Pembro/P/F) 

10.7 (Ctx/P/F)

17 (Pembro) 
36 (Pembro/P/F)  

36 (Ctx/P/F)

55 (Pembro) 
85 (Pembro/P/F) 

83 (Ctx/P/F)

Adverse events led to 
death in 8%, 12%, and 
10% of patients in their 

respective groups

(33)

KEYNOTE-412 Pembro/CRT  
vs. placebo/CRT

804 HNSCC EFS 24-mo EFS: 
63% (Pembro) 
56% (Placebo)

Not available 92 (Pembro) 
88 (Placebo)

(34)

NCT02777385 Concurrent (C)  
vs. sequential (S)  

pembrolizumab CRT

80 HNSCC Locoregional  
control (LRC)

OS (% patients at 4 years): 
71% (C) 
83% (S)

Not available Not available LRC: 
64% (C) 
96% (S)

(32)

JAVELIN  
(NCT02952586)

Avelumab/CRT  
vs. placebo/CRT

907 LA-HNSCC PFS OS: not available 
PFS: not reached for  

either group

Not available 36 (avelumab) 
32 (placebo/CRT)

Trial discontinued (35)

NCT02684253 Nivolumab (N)  
vs. nivolumab/SBRT  

(N/SBRT)

62 HNSCC Radiographic 
treatment effect 

(RECIST)

14.2 (N) 
13.9 (N/SBRT)

34.5 (N) 
29 (N/SBRT)

13.3 (N) 
9.7 (N/SBRT)

(192)

NCT02608385 SBRT + pembrolizumab 97 patients  
with metastatic  

solid tumors

SBRT dose 
recommendation  
prior to Pembro

1-year OS: 
71% responders 

42% mixed-responders 
0% nonresponders

22 (overall) 
34 (irradiated) 

12 (unirradiated) 

11.8 (received full 
radiation dose) 

2.2 (received partial 
radiation dose)

SBRT delivered to 
oligometastases 

Pembro began within 
7 days following last 

fraction of SBRT 

12 HNSCC patients, 
several other primary sites 
represented (e.g., ovarian, 

breast, non–small cell 
lung, colorectal)

(26)

OS, overall survival; ORR, objective response rate; P/F, Pt agent and 5-FU; Ctx, cetuximab; CRT, chemoradiation; EFS, event-free survival; PFS, progression-free 
survival; SBRT, stereotactic body radiotherapy.
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investigation at several centers (NCT03978689), with results sug-
gesting expansion of  E711–20–specific clonotypes (49). Identifying 
high-affinity tumor antigens while avoiding cross-reactivity with 
host proteins and emergence of  poorly immunogenic neoantigens 
remains a challenge in vaccine-based therapy in HNSCC.

Adoptive T cell therapy. Adoptive T cell therapy (ACT) — infus-
ing tumor-reactive T cells, expanded tumor-infiltrating T cells 
(TILs), gene-engineered T cell receptor T (TCR-T) cells, and CAR 
T cells — represents an opportunity to leverage antigen specificity 
in HNSCC treatment, though there is a paucity of  known antigens 
in HNSCC (Table 4). Previously, Hinrichs’s group tested ACT 
using TILs selected for HPV E6 and E7 reactivity (11). TIL ther-
apy is limited by the lengthy process of  isolating and expanding 
TILs, as well as the need for surgical tumor excision from patients. 
Alternatively, TCR-T cell manufacturing decreases production 
time. TCR-T cell therapy has been accomplished in HPV-related 
cancers including cervical cancer and OPSCC using autologous 
E7 TCR-T cells (50). In a phase I trial of  HPV16 E7 TCR-T cell 
therapy, 50% of  patients responded, including several with α–
PD-1–refractory disease (50). However, limited progress has been 
made in the development of  CAR T–based therapies in HNSCCs. 
Although ACT offers the advantage of  specifically targeting tumor 
cells compared with the other immunotherapy strategies, it still 
faces formidable challenges in the suppressive TME, such as nutri-
ent deprivation, suppressive metabolites, and regulatory immune 
cell interactions. Combining tumor-specific T cell therapies with 
agents that overcome these limitations in the TME should increase 
the effectiveness of  this approach.

ORR (43). The KEYNOTE-146 phase IB/II trial of  lenvatinib 
plus pembrolizumab found an encouraging response rate in the 
phase II expansion cohort (44). However, the LEAP-010 phase III 
study (NCT04199104) combining first-line pembrolizumab with 
or without lenvatinib was discontinued after OS failed to improve 
(45). Given the variability in these results, a biological approach 
to identify and overcome barriers to effective antitumor immunity 
in HNSCC is warranted.

Antitumor vaccine therapy. Vaccine-based immunotherapy 
for HPV+ HNSCC is a logical intervention to target tumor cells 
expressing viral antigens (e.g., E6/E7) (46). Several strategies — 
including live-vector vaccines (e.g., axalimogene filolisbac secret-
ing the Lm-LLO-HPV E7 fusion protein), peptide vaccines such as 
ISA101 in combination with ICI (NCT03669718, NCT04398524, 
and NCT04369937), and the DNA vaccine MEDI0457 — have 
been developed and tested in patients with HPV+ cervical and 
oropharyngeal squamous cell carcinoma (OPSCC), with modest 
results (Table 4). One hurdle is overcoming T cell dysfunction in 
the TME with vaccine-mediated approaches. Several groups are 
examining combinations of  ICI with anticancer vaccines, includ-
ing a vaccinia virus encoding E6/E7 combined with IL-2 plus 
α–PD-L1 (NCT03260023) (47); a liposomal-based HPV16 E6/
E7 peptide vaccine (PDS0101) in combination with pembroli-
zumab (NCT04260126 and NCT05232851) (48); and the SQZ-
PBMC-HPV vaccine in combination with atezolizumab, ipilim-
umab, and nivolumab in patients with R/M HPV16+ solid tumors 
(NCT04084951). Additionally, a novel fusion protein in combi-
nation with pembrolizumab (HPV16 E7-pHLA-IL2-Fc) is under 

Table 3. Tyrosine kinase inhibition coupled with immune checkpoint blockade in HNSCC

Trial Agent Patient cohort  
(n)

Primary  
outcomes

OS  
(mo)

ORR  
(%)

Toxicity grade  
3–4 (%)

Other  
comments

Refs.

NCT03082534 Pembrolizumab (Pembro)/Ctx 33 HNSCC Radiographic 
treatment effect 

(RECIST)

Not available 45  
(partial response)

15 (40)

GORTEC-REACH  
(NCT02999087)

Exp (IMRT + Ctx + avelumab) 
vs. SoC (IMRT with cisplatin in 

fit patients and with Ctx  
in unfit patients)

707 LA-HNSCC 
randomized

2-year PFS Cisplatin-unfit group: 
2-year PFS 44% (Exp),  

31% (SoC) 
2-year OS 58% (Exp),  

54% (SoC) 

Cisplatin-fit group: 
OS not available 

1-year PFS 64% (Exp),  
73% (SoC)

Not available Cisplatin-unfit:  
80% in both arms 

Cisplatin-fit:  
Not available 

Two cohorts: 
Patients fit or unfit for  
cisplatin SoC IMRT +  

cisplatin (fit) or Ctx (unfit) 

Experimental arm:  
Weekly Ctx and avelumab and 

every 2 weeks during RT, followed 
by avelumab  
for 12 months

(193)

ALPHA  
(NCT03695510)

Afatinib/pembrolizumab 29 R/M HNSCC ORR Not available 41.4 37.9 EGFR amplification predicted 
higher response rate 

Methyladenosine phosphorylase 
loss or mutation predicted  

lower response rate

(43)

KEYNOTE-146  
(NCT02501096)

Lenvatinib + pembrolizumab 137 patients with 
metastatic  

solid cancers  
(phase Ib/II)

ORR Not available 36 (HNSCC) 67 Included metastatic HNSCC, 
renal cell carcinoma, endometrial 

cancer, melanoma, NSCLC,  
and urothelial cancer

(44)

OS, overall survival; ORR, objective response rate; Ctx, cetuximab; IMRT, Intensity-modulated radiation therapy; PFS, progression-free survival; NSCLC, 
non–small cell lung cancer.
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tures, such as a metabolic milieu detrimental to antitumor immu-
nity (55), chronic antigen stimulation, and variable Treg infiltrates 
(55–57), but also possess distinct features. HPV– HNSCCs have a 
more immune-suppressed TME, with high frequencies of  PD-1–
expressing CD4+ Th1 cells, accumulation of  tumor-associated 
macrophages (TAMs) and MDSCs, and high MHC expression 
and tumor immunogenicity of  tumor antigens (56–61). HPV+ 
HNSCCs are unique in that the causal agent also accounts for 
immunogenic antigens provoking tumor-specific responses. HPV+ 
tumors are notable for enrichment of  conventional CD4+ and CD8+ 
T cells, B cell subsets, and stromal cells and enriched HPV-specific 
T cells, as well as exhausted T cells (62–66) (Figure 2). Emerging 
data reveal that HPV gene expression is variable across HPV+ 
HNSCCs, which may represent another mechanism of  immune 
evasion by these tumors (12). Further work is needed to define 
the unique molecular and biochemical features driving immune 
pathogenesis in HPV+ and HPV– HNSCCs.

Suppressive tumor-infiltrating immune cell populations. Malignant 
tumors can recruit and/or develop different types of  suppressive 
cells in the TME, such as Tregs (14), tumor-associated neutrophils 
(TANs) (67), MDSCs (15), TAMs (16), and cancer-associated fibro-
blasts (CAFs), which promote cancer progression and immune 
escape, and induce immunotherapy resistance in HNSCC (Figure 1).

CAFs. An abundance of  CAFs is found in the stroma, constitut-
ing up to 80% of  the cellular composition in late-stage HNSCC (68). 
CAFs play an important role in HNSCC tumor growth, facilitating 
proliferation, invasion, migration, and angiogenesis, and promoting 
treatment resistance (13). Several subtypes of  CAFs accumulate in 

Mechanisms diminishing the response to current 
immunotherapeutic strategies
Given the limited success with current immunotherapies in HNSCC, 
identification of  the mechanisms responsible for immunotherapeu-
tic resistance is urgently needed. Potential mechanisms are summa-
rized below and shown in Figure 1.

Molecular and immune heterogeneity of  HNSCC. HNSCC tum-
origenesis is driven by HPV (HPV+) and/or carcinogens (e.g., 
smoking and alcohol). Carcinogen-driven (i.e., HPV–) HNSCC 
is largely mediated by loss-of-function mutations in tumor-sup-
pressor genes (e.g., TP53 and CDKN2A), whereas HPV+ HNSCC 
carcinogenesis is driven by viral oncoprotein–mediated inactiva-
tion of  tumor-suppressor genes (6). Tumor molecular heteroge-
neity drives different immune pathogeneses via several mecha-
nisms (Figures 1 and 2). While mutation rates do not differ by 
HPV status, there are differences in where mutations tend to 
occur (e.g., CpG sites) (6). Genomic heterogeneity and instabil-
ity potentially drive additional mechanisms promoting immune 
escape (51). Prevalent somatic mutations and indel-derived 
tumor-specific neoantigens partially account for this heterogene-
ity. Implications for antitumor immunity include the emergence 
of  dominant tumor antigens that suppress the function of  other 
TCR clonotypes (52). Moreover, cancer immunoediting results 
in persistent poorly immunogenic cancer cells that can escape 
the equilibrium phase (53, 54).

More nuanced differences between HPV+ and HPV– HNSCCs 
also drive variable immune phenotypes and responses, as illustrat-
ed in Figure 2. HPV+ and HPV– HNSCCs share some immune fea-

Table 4. Other immunotherapeutic strategies in HNSCC

Trial Agent Patient cohort  
(n)

Primary  
outcomes

OS  
(mo)

ORR  
(%)

Toxicity grade  
3–4 (%)

Other  
comments

Refs.

Vaccine therapy
NCT02426892 ISA 101/nivolumab 24 HPV16+  

solid tumors
Radiographic treatment  

effect (RECIST)
17.5 33 14.3 (194)

NCT03162224 MEDI0457 HPV-16/18 
E6/E7 with IL-2 

vaccine + durvalumab

29 R/M HNSCC Radiographic treatment  
effect (RECIST)

Median 29.2 27.6 14.3 (10)

Cellular therapy
NCT01585428 HPV-specific TILs  

+ IL-2
29 metastatic HPV+ 
cancers (5 HNSCC)

ORR Not available 18 (noncervical) 
28 (cervical)

No autoimmune  
adverse events

Myeloablative therapy 
followed by TIL infusion

(11)

NCT02858310 Engineered TCR  
targeting HPV-16 E7

12 patients  
with metastatic  
HPV16+ cancers

ORR Not available 50 All experienced 
lymphopenia and 

neutropenia due to 
myeloablative therapy

Starting dose of 1 × 109  
E7 TCR T cells

(50)

Other strategies
NCT04247282 Bintrafusp alfa ≥T2 OC or larynx  

≥N0 M0
Pathologic treatment effect: 

pCR (0%) 
MPR (≤10%) 

pPR (11%–50%) 
NPR (>50%)

Not available 43 (pPR) 0 2 patients died  
of complications  

due to locoregional 
recurrence

(167)

NCT02538510 Vorinostat/
pembrolizumab

25 R/M HNSCC and 
salivary gland cancer

Radiographic treatment  
effect (RECIST)

12.6 (HNSCC) 
13.1 (salivary)

32 (HNSCC) 
16 (salivary)

36 (HNSCC and salivary) (168)

OS, overall survival; ORR, objective response rate; ISA 101, long-peptide HPV-16 vaccine; pCR, pathologic complete response; MPR, major pathologic 
response; pPR, partial pathologic response; NPR, no pathologic response.
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HNSCCs, with most exhibiting protumoral function, such as myo-
fibroblasts with high α–smooth muscle actin (α-SMA) expression, 
extracellular matrix–expressing (ECM-expressing) CAFs, and MHC 
II+ CAFs (69, 70). Furthermore, exploration of  another phenotype 
of  CAFs expressing elastic fiber differentiation genes revealed a 
negative prognostic impact on HPV+ HNSCC (69, 70). CAFs can 
affect tumor cells and immune cells in the TME via multiple mech-
anisms: (i) The signaling regulatory loop of  CAF-derived HGF and 
HNSCC-derived basic FGF (bFGF) increases oxidative phosphor-
ylation (OXPHOS) in CAFs and glycolysis in HNSCC cells (68); 
(ii) CAFs and their supernatants suppress T cell proliferation and 
promote Treg functions (71); (iii) CAFs induce immunotherapy 
resistance via CD8+ T cell exclusion (72); (iv) CAFs secrete a num-
ber of  factors that induce protumoral and immunosuppressive mac-
rophage differentiation from monocytes, which suppresses T cell 
proliferation (73); and (v) CAF-derived TGF-β promotes cetuximab 
resistance in HNSCC preclinical models (74).

TAMs. TAMs are a major tumor-infiltrating immune cell subset 
in HNSCC, playing a key role in tumor growth (75, 76). M2 mac-
rophage infiltrates correlate with aggressive tumor features, lymph 
node metastases, and poor prognosis in HNSCC (76–78). TAMs 
also correlate with aggressive clinicopathologic features in HNSCC 
(16). Under hypoxic stress, TAMs secrete TNF-α, IL-1, IL-6, IL-8, 
VEGF, GM-CSF, TGF-β, and MMP, promoting tumor angio-
genesis and invasion (79). TAMs are the major source of  PD-L1 
and other immune checkpoint ligands in the HNSCC TME (69). 
PD-L1+ TAMs are closely associated with CD8+ T cell function, 
suggesting regulatory cell-cell interactions in HNSCC (69). In addi-
tion, TAMs express PD-1, which decreases their phagocytic and 
cytotoxic potency (80).

MDSCs. Infiltration of  MDSCs is increased in oral cavity squa-
mous cell carcinoma (OCSCC) and correlates with pathological 
markers and prognosis (81). The inhibitory molecules PD-L1 and 
CD155 are highly coexpressed on MDSCs from HNSCC patients 
and associated with tumor progression and decreased cytotoxic 
T cell infiltrates (82). MDSCs can be phenotypically subdivided 
into two groups, polymorphonuclear MDSC (PMN-MDSC) and 
monocytic MDSC (M-MDSC). Increased M-MDSC infiltrates are 
associated with tumor burden after boron neutron capture ther-
apy for HNSCC (83). PD-L1 is expressed to a greater degree on 
M-MDSCs than on PMN-MDSCs (84).

TANs. Neutrophils play a crucial role in HNSCC (67). How-
ever, the prognostic significance of  TANs in HNSCC is poorly 
understood (85), which may be related to the variability neutrophil 
phenotypes, including a cytotoxic antitumor “N1” state and an 
immunosuppressive protumor “N2” state. The diversity and plas-
ticity of  neutrophils contribute to variable immune control, though 
there is much to be learned.

Tregs and Bregs. Tregs are present in the systemic circulation 
and tumors of  patients with HNSCC, and are associated with 
HNSCC outcomes (86–88). A spectrum of  Treg phenotypes likely 
exists in HNSCC. Neuropilin 1 (NRP1) is preferentially expressed 
on intratumor Tregs in HNSCC, and NRP1+ Tregs are more sup-
pressive and associated with worse outcomes (86). TIM3+ Tregs 
inhibit T cell proliferation, while TIM3 antagonism relieves 
Treg-mediated immunosuppression in HNSCC (89, 90). CTLA-4 
and CD39 are coexpressed on the majority of  tumor-infiltrating 
Tregs, with a greater capacity for suppression than circulating 
Tregs in HNSCC. CTLA-4+ Tregs can suppress cetuximab-medi-
ated ADCC, while their depletion restores NK cytolytic function 

Table 5. Neoadjuvant immunotherapy in HNSCC

Trial Agent Patient cohort  
(n)

Primary  
outcomes

OS  
(mo)

ORR  
(%)

Toxicity grade  
3–4 (%)

Other  
comments

Refs.

NCT02296684 Neoadjuvant  
pembrolizumab

36 resectable  
HPV-unrelated 

HNSCC

1-year relapse rate in  
high-risk pathology  

pTR-2 in surgical  
specimen

OS: not available  
1-year relapse rate:  

16.7%

Not available None after 
neoadjuvant 

pembro

22% pTR-2; 
downstaging  

of tumor occurred  
in 19% of patients

(150)

IMCISION  
(NCT03003637)

Neoadjuvant nivolumab/
ipilimumab

20 HNSCC Pathologic response OS: Not available 35 38 (153)

NCT02919683 Neoadjuvant Nivolumab (N)  
vs Neoadjuvant  

Nivolumab/Ipilimumab  
(N+I)

29 untreated ≥ T2 
OCSCC

Volumetric response 1-year OS: 89%  
1-year PFS: 85%  

Volumetric response:  
50% (N) 53% (N+I)

50 (N) 
53 (N+I)

14.2 (N) 
33.3 (N+I)

(151)

NCT03341936 Nivolumab/lirilumab 28 HNSCC 
undergoing salvage 

surgery

1-year DFS OS: Not available  
1-year DFS:  

55.2% patients

43 MPR or pPR 12.5 No grade 4 
toxicities

(195)

LCCC1621  
(NCT03174275)

Neoadjuvant carboplatin/ 
nab-paclitaxel/durvalumab

39 resectable locally 
advanced HNSCC

Pathologic response Not available 78 MPR or pPR Not available (196)

Li et al. Induction docetaxel/Pt/5-FU (IC)  
± sintilimab (ICS)

98 (IC) 
65 (ICS)

ORR Not available 68.4 (IC) 
84.6 (ICS)

15.3 (IC) 
18.5 (ICS)

(197)

Zhang et al. Neoadjuvant paclitaxel/ 
cisplatin/camrelizumab

30 HNSCC pCR Not available 37 pCR 
74.1 MPR

6.7 (198)

OS, overall survival; ORR, objective response rate; pTR-2, ≥50% of the overall tumor bed with tumor necrosis, keratinous debris, and giant cells/histiocytes; 
DFS, disease-free survival; MPR, major pathologic response; pPR, partial pathologic response; pCR, pathologic complete response.

https://doi.org/10.1172/JCI188128


The Journal of Clinical Investigation      R E V I E W

7J Clin Invest. 2025;135(8):e188128  https://doi.org/10.1172/JCI188128

(14, 91). In addition to Tregs, Bregs with potent immunosuppres-
sive function were identified in HNSCC (discussed below) (92).

T cell exhaustion. Exhausted T cell infiltrates are associated with 
poor outcomes in HNSCCs (93, 94). PD-1– and CTLA-4–express-
ing T cells are increased in the systemic circulation of  HNSCC 
patients (95). Two subsets of  exhausted T cells, CD8+PD1+TCF1+ 
progenitor exhausted T cells (Texprog) and CD8+PD-1+TCF1– termi-
nally exhausted T cells (Texterm) have been identified in HNSCCs. 
Texterm T cells were associated with Treg abundance in TME (96). 
Furthermore, HPV status correlates with PD-L1 expression and T 
cell exhaustion in HNSCC (Figure 2). T cells in HPV+ HNSCCs 
express higher levels of  exhaustion markers, including PD-1, 

TIM3, LAG3, and TIGIT, compared with those in HPV– HNSCC 
(97). PD-1+ T cells are associated with a favorable outcome in 
HPV+ HNSCC, perhaps serving as a proxy for activated infiltrating 
T cells responding to the viral antigens (98, 99). In contrast, HPV– 
HNSCCs tend to have a higher frequency of  dysfunctional PD-1+ 
TILs, correlating with a worse overall prognosis (94).

T cell senescence. T cell senescence is another important dys-
functional state with a distinct phenotype and function in chronic 
infections and cancers (100, 101). Senescent T cells highly express 
senescence associated β-gal but downregulate the costimulatory 
molecules CD27 and CD28. Senescent T cells are in a state of  
cell-cycle arrest, with increased cell cycle–regulatory molecules p16, 

Figure 1. Mechanisms driving resistance to immune checkpoint blockade therapy in HNSCC. The potential mechanisms driving resistance to 
antitumor immune responses are illustrated. Overcoming immune-suppressive populations including Tregs, Bregs, tumor-associated macrophages 
(TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), and cancer-associated fibroblasts (CAFs), as well as immune 
plasticity, will be critical for enhancing the response to immunotherapy and antitumor immunity. Defining cell-intrinsic features of HPV-related and 
carcinogen-driven (e.g., smoking) HNSCC will also be fundamental for reducing their tumor-intrinsic immune-suppressive capacity and immune escape 
mechanisms. Dysfunctional T cells generated by chronic antigen stimulation or T cell senescence induced by the tumor metabolome, proteome, and 
chemokine/cytokine milieu also impair the effectiveness of the immune response in HNSCC. Inadequate T cell costimulation drives T cell anergy, 
further impairing this response. Less-well-understood mechanisms driven by metabolic dysregulation impact the antitumor immune response in the 
tumor microenvironment, for which further work is warranted.
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HNSCC affect antitumor immune responses (109–111). Tumors 
can leverage homeostatic mechanisms by release of  immuno-
suppressive metabolites and ions (e.g., spermidine, K+) (112, 
113), favoring regulatory immune cells, and suppress antitumor 
responses (55, 104, 114, 115). Glutaminase and glutamate are 
enriched in HNSCCs (116) and can be targeted with differential 
effects on cancer cell and immune function, given the metabolic 
plasticity of  T cells (115). Competition for fatty acids and dys-
regulated lipid metabolites in the TME diminish CD8+ T cell 
responses (109–111, 117). Knowledge of  differential dependen-
cies on metabolites and nutrients in the TME could equip us with 
tools to impair tumor cell viability while enhancing antitumor 
immunity and abrogating immunotherapeutic resistance.

Emerging challenges impacting HNSCC response 
to immunotherapeutic strategies
Potential mechanisms diminishing immunotherapy responses in 
HNSCC are discussed above. However, several emerging concepts 
in tumor immunity are being uncovered, which are critical for 
enhancing immunotherapy against HNSCC.

Characterizing novel tumor-infiltrating immune cell populations. 
Accumulating studies have uncovered the function of  certain 
immune cell types in HNSCC, but there are still cell types whose 

p21, and p53; however this cell population remains metabolically 
active, producing high amounts of  the proinflammatory cytokines 
IL-2, TNF, and IFN-γ, as well as the suppressive cytokines IL-10 
and TGF-β (101). Senescent T cells have been found among TILs 
in HNSCCs and other cancers (101–103). HNSCC cell lines can 
directly induce T cell senescence in vitro (103). Importantly, these 
tumor-induced senescent T cells exert potent suppressive effects on 
T cell proliferation and function (103). The phenotypic and func-
tional characteristics of  senescent T cells may contribute to dimin-
ished ICI responses in HNSCC. Improving our understanding of  
the mechanisms involved in the induction and regulatory role of  
senescent T cells in HNSCC may lead to novel immunotherapies.

Metabolic dysregulation in the TME. Metabolic dysfunction 
in cancer impacts both tumor and immune cells in HNSCC 
(104), with the TME characterized by nutrient depletion (105), 
hypoxia (55), acidity, and suppressive metabolites (106, 107). 
Tumors manipulate central carbon metabolism, producing lac-
tate through aerobic glycolysis, which can support suppressive 
Tregs (104) while blunting T and NK cell immune surveillance 
(108). Tumors also exploit glutamine and lipid metabolism, cre-
ating vulnerabilities that hinder T cell function. Furthermore, 
dysregulated metabolism of  glycerolipids, glycerophospholipids, 
and sphingolipids and upregulation of  cholesterol synthesis in 

Figure 2. Features driving distinct immune 
pathogenesis in HPV+ versus HPV– HNSCC. Unique 
etiologies of HNSCC drive differential immune 
responses and pathogenesis. HPV+ HNSCCs are driv-
en by dominant viral antigens (e.g., E6/E7), altered 
immune checkpoint signaling, and diminished 
cytosolic DNA–sensing functionality resulting in 
high levels of T lymphocyte infiltrates and germinal 
center B cells. In comparison, carcinogen-driven 
HNSCCs harbor a myeloid-rich, immune-suppressive 
tumor microenvironment driven by release of regu-
latory signaling molecules, genomic heterogeneity, 
and a lack of highly immunogenic neoepitopes. In 
HPV+ HNSCCs, viral oncoproteins promote loss of 
tumor suppressor gene expression and viral pro-
tein–mediated impairment of immunogenicity and 
antigen presentation. In HPV– HNSCCs, carcinogens 
such as those found in tobacco smoke impair CD8+ 
T cell function. Collectively, these differences are 
associated with generally better survival outcomes 
in HPV+ HNSCC compared with HPV– HNSCC. cDC2, 
type 2 conventional DCs.
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frequencies of  atypical memory (CD27–IgM–IgD–) B cells in 
OCSCC were associated with lower lymph node metastasis, while 
CD24hiCD38hi Bregs were associated with higher stage and nodal 
metastases (126). Deeper understanding of  their function is nec-
essary to develop potential treatment combinations that could 
improve HNSCC outcomes.

Dynamics and plasticity of  immune cell subsets. Tregs exhibit a 
range of  phenotypes and variable associations with outcomes in 
HNSCC patents (56, 127). Various Treg subsets are found in the 
TME, including thymic selection–derived Tregs (tTregs), periph-
erally converted Tregs (pTregs), tr-Tregs (tissue-resident Tregs), 
and follicular Tregs (Tfr Tregs). The functions of  these Treg sub-
sets on antitumor responses remain unclear (128). However, the 
TME augments Treg phenotype, stability, and plasticity, enabling 
them to switch phenotypic and functional states. Hypoxia in TME 
affects Treg function and stability. HIF-1α can repolarize Tregs 
into Th17 cells by upregulating RORγt while attenuating Treg 
development (129). Nrp1 is required to maintain the stability and 
function of  tumor-infiltrating Tregs. Nrp1–/– Tregs produce IFN-γ, 
which undermines the function of  WT Tregs. Hypoxia in the 
HNSCC TME may drive IFN-γ–induced Treg fragility through 

functions or identity remain unknown or controversial. For exam-
ple, several studies have demonstrated the existence of  γδ T cells 
in the HNSCC TME, which are associated with poor survival in 
patients with HNSCC (118–120). However, others found that high-
er levels of  γδ T cells were correlated with lower clinical stages and 
better OS in HNSCC patients (121). Thus, the precise role of  γδ T 
cells in HNSCC pathogenesis has yet to be elucidated.

Bregs are another poorly defined cell population in HNSCC. 
Bregs primarily drive immunosuppression, but their effects on 
tumor progression depend on their phenotypes. Tumor-infiltrating 
Bregs with a CD19+CD38+CD1d+IgM+CD147+ phenotype have 
been identified and express key regulatory molecules including 
IL-10, CD25, and IDO, contributing to suppression of  antitumor 
immune responses (122). CD19+CD24hiCD38hi Bregs preferen-
tially localize in tumor tissue rather than peripheral blood and 
exhibit higher density in the HNSCC TME relative to CD16+ B 
cells (123). Adenosine-producing Bregs (CD39+CD73+) suppress 
effector B cells by inhibiting Bruton’s tyrosine kinase phosphory-
lation via adenosine (124). Notably, increased CD19+IL-10+ Bregs 
in OCSCC were associated with CD4+ T cell differentiation into 
Tregs and worse survival outcomes in patients (125). Increased 

Figure 3. Novel strategies for overcoming immunotherapy resistance in HNSCC. (A) ICI can be enhanced by decreasing inhibitory T cell receptor signal-
ing, reinvigorating dysfunctional T cells, and modulating metabolic pathways in cancer cells and suppressive immune populations. Neoadjuvant ICI can 
increase the antitumor immune response and debulk tumors prior to ablative surgery or cytotoxic therapy. Combining cytotoxic therapies with immuno-
therapy may also improve the antitumor immune response via dendritic cell activation and T cell priming, activation of pro-death signaling in tumor cells, 
and release of DAMPs. (B) Reversing T cell senescence may also be accomplished through MAPK pathway inhibition, lipid metabolism modulation, and 
DNA damage blockade. Inhibiting the ability of cancer cells and Tregs to induce T cell senescence offers a novel opportunity for increasing ICI responses. 
(C) Metabolic reprogramming of tumor cells and Tregs also provides novel strategies for HNSCC treatment. (D) Targeting suppressive immune and stromal 
populations will be critical for altering the overall balance of cytotoxic/effector to regulatory responses in the TME.
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due to HPV-mediated disruption of  antigen processing and pre-
sentation (145, 146) and disruption of  chemokine and cytokine 
expression (147, 148). There are likely numerous other undiscov-
ered mechanisms through which HPV drives immune escape, such 
as metabolic dysregulation, chronic T cell stimulation, impaired 
coactivation, or genomic alterations. Identifying these mechanisms 
will equip us to strategically target HPV-intrinsic mechanisms for 
HNSCC treatment (149).

Novel therapeutic strategies and combinations
Despite the aforementioned challenges in enhancing antitumor immune 
responses to immunotherapy, forthcoming therapeutic options target 
specific cell populations, patient- and TME-specific immunotherapy 
combinations, and metabolic reprogramming (Figure 3).

Neoadjuvant immunotherapy. Neoadjuvant immunotherapy is 
poised to revolutionize HNSCC management in the definitive and 
R/M treatment settings, with the groundbreaking phase III KEY-
NOTE-689 trial setting the stage for the next era of  HNSCC ther-
apy. Multiple neoadjuvant immunotherapy studies have been com-
pleted or are ongoing (150–153) (Table 5). Neoadjuvant ICI may 
enhance long-term tumor control by (i) rejuvenating tumor-specific 
cytotoxic lymphocytes and trafficking to micrometastatic depos-
its while enhancing DC presentation of  tumor antigens to T cells 
(154); (ii) increasing antigen-specific responses to a diverse neoan-
tigen repertoire (52); and (iii) increasing systemic immunity (155). 
Patients in KEYNOTE-689 (NCT03765918) were randomized to 
receive either neoadjuvant pembrolizumab followed by surgery and 
adjuvant pembrolizumab or standard surgical resection with adju-
vant SoC therapy (156). Unpublished findings prelude improve-
ments in key primary and secondary outcomes (19). Other innova-
tive approaches such as neoadjuvant bintrafusp alfa, an engineered 
fusion protein targeting PD-L1 and TGF-β signaling, demonstrate 
enhanced systemic immunity and antigen-specific T cell respons-
es (155). Neoadjuvant α–PD-1/α–CTLA4 therapy using HNSCC 
samples from the IMCISION trial identified a decrease in activat-
ed Tregs and dysfunctional CD8+ T cells (157). Leveraging sam-
ples from a phase II trial of  neoadjuvant nivolumab or nivolum-
ab/ipilimumab in patients with untreated oral OCSCC illustrated 
increased local and systemic antitumor immunity (151, 158). Neo-
adjuvant immunotherapy (159), neoadjuvant chemoimmunother-
apy (160, 161), and neoadjuvant radiation coupled with immuno-
therapy (NCT03635164, NCT03247712) (162, 163) in combination 
are under investigation. Further studies are urgently needed to dis-
sect the mechanisms and optimize treatment combinations driving 
responses to neoadjuvant immunotherapy in HNSCC.

Immunotherapy combinations. Strategically targeting multiple 
limbs of  the immune response may enhance outcomes. Trials 
testing inhibition of  immune-regulatory signaling molecules (e.g., 
LAG3, TIGIT, TIM-3, CD266, PVRIG, STING, and CD96) are 
currently underway (Figure 3). These approaches are intended to 
overcome compensatory upregulation of  known and unknown 
immune-regulatory checkpoint molecules, which may drive adap-
tive resistance to ICI (164). In one clinical case report, a patient 
with SoC-refractory HNSCC was successfully treated with the 
combination of  nivolumab and ipilimumab (165). Clinical studies 
of  eftilagimod and relatlimab (LAG-3 inhibitors) for HNSCC are 
underway. The TACTI-002 trial (NCT03625323) combining efti-

HIF-1α (130). Comprehensive understanding of  the immunolog-
ical mechanisms responsible for the control of  Treg functional-
ity, plasticity, and instability in TME represents a challenge for 
HNSCC immunotherapy.

TAMs and TANs exhibit phenotypic plasticity, which can be 
detrimental to tumor control (131). TME induces the polarization 
of  macrophages and TAMs predominantly exhibiting an M1 phe-
notype at early tumor stages, when antigen presentation drives anti-
tumor CD8+ T cell and NK cell recruitment (132). In the HNSCC 
TME, tumor cell–derived cytokines and chemokines including IL-6, 
IL-10, and CCL2 can drive polarization of  TAMs toward the M2 
phenotype (133). Increased TANs and neutrophil-to-lymphocyte 
ratio (NLR) were associated with poor prognosis in patients with 
HNSCC (134, 135). TANs exhibit phenotypic plasticity regulated 
by TME factors and can be distinguished by an antitumorigenic 
N1 phenotype or protumorigenic N2 phenotype. TGF-β stimulates 
N2 and inhibits N1 polarization, while IFN-β promotes N1 and 
inhibits N2 polarization in the TME. Migration of  neutrophils to 
tumor-draining lymph nodes in HNSCC shapes antitumor immuni-
ty in a stage-dependent manner (136). In N0 (without lymph node 
metastasis) HNSCC, neutrophils can prime T cells, with neutrophil 
accumulation in T cell–rich zones associated with improved surviv-
al. In contrast, neutrophils become immunosuppressive in patients 
with lymph node metastases and are associated with a poor progno-
sis. Further understanding of  how TAMs and TANs dynamically 
regulate antitumor immunity is needed to strategically target these 
cells for enhancing immunotherapeutic responses in HNSCC.

Distinct metabolic dysregulation in tumor and immune cells. While 
we provided a broad overview of  metabolic features of  TME that 
impair antitumor immune responses and immunotherapy effec-
tiveness above, several unknowns persist. For example, glycolysis, 
pentose phosphate metabolism, tricarboxylic acid cycle, and glu-
tamine metabolism are upregulated in HNSCC (137), but we do 
not know how specific cells such as TILs use these metabolites and 
what functions they serve in immune evasion. Moreover, tumors 
can leverage homeostatic metabolites to dysregulate antitumor 
immunity through unclear mechanisms (114). Distinct metabolic 
spatial phenotypes have been identified (138); however, the role of  
these spatial features in driving metastasis, treatment resistance, 
and immune evasion in HNSCC is unknown. Dysregulated lipid 
metabolism is also present in HNSCC (139–141). Preclinical data 
suggest that inhibiting cholesterol synthesis may enhance immu-
notherapy responses (141). Therefore, additional work is needed 
to parse the specific mechanisms, substrates, and enzyme kinet-
ics involved in cell-intrinsic metabolism, immune evasion, and 
response to immunotherapies in HNSCC.

HPV and HPV-specific immunity in HNSCC pathogenesis. While 
much is known about the pathogenesis, progression, and thera-
peutic outcomes in HPV+ HNSCC (142), the molecular processes 
regulating HPV-mediated immune evasion and responses to immu-
notherapy remain under investigation (Figure 2). Although HPV 
viral antigens represent a tumor-specific biomarker, the distribution 
of  viral antigen expression in tumor cells and molecular controls of  
viral antigen expression must be defined (143, 144). Furthermore, 
there are several challenges to targeting viral antigens, including 
MHC-restricted cytotoxic T cell dysfunction and viral molecular 
mimicry of  human proteins (e.g., of  HPV16 E7), which could be 
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impair antitumor immunity (178, 179). The increased glucose 
uptake and enhanced glycolysis characteristic of  HNSCC appear to 
make HNSCC susceptible to targeted therapies involving glycolytic 
inhibitors (179). Key molecules in glycolysis such as HK, PKM2, 
and GLUT are promising targets for HNSCC treatment. The HK2 
inhibitor 2-DG decreases glycolysis and inhibits cell proliferation 
in HNSCC cell lines (180). Upregulated mTOR signaling is asso-
ciated with metabolic dysregulation and increased expression of  
PKM2, PDK1, HIF-1α, LDH, and GLUT1 in HNSCC (181). Inhi-
bition of  mTOR signaling with rapamycin reduces tumor growth 
in HNSCC (182). An oral antihyperglycemic agent, metformin, can 
affect cell proliferation and antitumor activity in HNSCC through 
AMPK activation and mTOR inhibition by targeting mitochondri-
al complex I in HNSCC cells (183). Altering tumor cell metabo-
lism in combination with immune modulation may enhance ICI in 
HNSCC. A phase II therapeutic trial (NCT04114136) of  metformin 
or rosiglitazone combined with α–PD-1 therapy in solid tumors is 
currently recruiting participants, aiming to determine whether these 
compounds synergize with α–PD-1 therapy. Notably, more-selective 
strategies specifically targeting metabolism in tumor cells will need 
to avoid inadvertent impairment of  tumor-specific cytolytic T cell 
function. Furthermore, effective metabolic interventions can syner-
gize with immunotherapy and offer novel and promising strategies 
for enhancing the effectiveness of  ICI.

Lipid metabolism reprogramming is also a critical hallmark of  
HNSCC linked to the carcinogenesis and development of  HNSCC 
(109). Fatty acid synthase (FASN) is overexpressed and associated 
with aggressiveness, prognosis, and risk of  metastasis in OCSCC. 
Inhibitors targeting FASN, including TVB-3166, C75, and tri-
closan, have anticancer effects on OCSCC cell lines, with decreased 
proliferation, migration, and invasion (184, 185). The FASN inhib-
itor orlistat reduces the volume of  primary tumors and lymph node 
metastases in an orthotopic OCSCC mouse model (186). Notably, 
metabolic differences between HPV-related and carcinogen-driven 
HNSCCs should be taken into account to identify the optimal met-
abolic treatment strategy, although targeting energetic metabolism 
is a promising anticancer therapy for HNSCC treatment (187).

Future perspectives
Immunotherapy is a promising strategy in HNSCC. However, sev-
eral hurdles remain. Potential mechanisms of  ICI resistance include 
molecular and immune heterogeneity coupled with high levels of  reg-
ulatory immune cell populations, T cell dysfunction, and metabolic 
dysregulation in the TME. To enhance ICI, more effort is needed to 
define the function and role of  novel tumor-infiltrating immune cell 
populations, the tumor-intrinsic adaptations that promote immune 
suppression, the developmental trajectories and plasticity of  immune 
cell populations, and strategies for overcoming metabolic dysregula-
tion. Overcoming challenges to ICI by targeting novel combinations 
of  immune checkpoint molecules and reinvigorating dysfunctional T 
cells will also be important. Leveraging novel techniques, including 
single-cell RNA sequencing, spatial multispectral imaging, and mul-
tiomics strategies to better understand the TME at a single-cell and 
molecular resolution will aid these endeavors.

Identification of  reliable biomarkers for predicting immuno-
therapy response in HNSCC remains a critical area of  research. 
PD-L1 expression has been the most widely studied biomarker and 

lagimod with pembrolizumab in second-line metastatic HNSCC 
observed encouraging antitumor activity (166). Two clinical studies 
(NCT04080804 and NCT04326257) are treating HNSCC patients 
with the combination of  relatlimab and nivolumab, or nivolum-
ab and ipilimumab, to assess clinical activity. Combined TIGIT 
and PD-1/PD-L1 blockade is also under investigation, including 
the combination of  neoadjuvant tiragolumab and atezolizumab 
(NCT03708224 and NCT04665843); α-TIGIT humanized mAbs 
MK-7684 (NCT05007106) and ASP8374 (NCT03260322) in com-
bination with pembrolizumab; and BMS-986207 in combination 
with nivolumab (NCT02913313). Additional novel immunothera-
py strategies have targeted TGF-β or combined ICI with histone 
deacetylase inhibition (167, 168) (Table 4). A deeper understanding 
of  T cell activation signaling should drive the rational implementa-
tion of  forthcoming trials to test for evidence of  optimized combi-
nations in HNSCC immunotherapy.

Targeting senescent T cells in the TME. Targeting T cell senescence 
is an emerging concept in tumor immunotherapy (Figure 3) (100, 
101, 169). Tregs and tumor cells can induce T cell senescence by 
triggering effector T cell DNA damage (169–173). Blockage of  
DNA damage in T cells can prevent T cell senescence and enhance 
antitumor immunity in both melanoma and breast cancer tumor 
models (172). Importantly, combining α–PD-L1 checkpoint block-
ade with DNA damage inhibition to abrogate T cell senescence can 
synergistically enhance antitumor immunity in those models (172). 
In addition, activation of  MAPK signaling is another important 
molecular process responsible for development of  T cell senescence 
induced by Tregs and tumor cells in the TME (170–172). Blocking 
MAPK signaling can also prevent T cell senescence and promote 
the antitumor efficacy of  α–PD-L1 therapy in melanoma and breast 
cancer tumor models (172). These studies indicate that prevention 
of  senescence in T cells could be an important checkpoint and 
effective strategy for enhancing HNSCC immunotherapy.

Targeting suppressive myeloid cell and stromal cell populations. Immu-
nosuppressive myeloid cell populations can promote tumorigenesis 
and contribute to the therapy resistance in HNSCC. SX-682, an 
inhibitor of  the myeloid chemokine receptors CXCR1 and CXCR2, 
inhibited MDSC trafficking and accumulation but enhanced NK 
cell infiltration, activation, and function in a mouse HNSCC model 
(174). Immunosuppressive neutrophils upregulate CD36 and fatty 
acid transport protein 2 (FATP2), which are involved in lipid traf-
ficking in the tumor-bearing mice and human HNSCC. Targeting 
neutrophil lipid metabolism through FATP2 inhibition reduces the 
suppressive activity of  neutrophils in preclinical models (175). Tar-
geting of  the CD47/SIRPa axis on TAMs is another novel oppor-
tunity to promote antitumor immunity (176). This is currently being 
assessed in phase II clinical trials in HNSCC (NCT04854499 and 
NCT04675294) and oropharynx cancer (NCT05787639). Strategies 
targeting CAFs in HNSCC are also developing, including CAF rever-
sion or normalization, CAF depletion, targeting ECM, and blocking 
the immunomodulatory effect of  secreted molecules from CAFs or 
relevant downstream pathways (177). Collectively, these suppressive 
myeloid and stromal cell–mediated therapeutic responses and should 
be considered in personalized treatment of  HNSCC.

Leveraging metabolism to reprogram the TME. A major challenge 
in treating HNSCC is overcoming metabolic changes in the 
TME that promote cancer cell–intrinsic treatment resistance and 
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microenvironment differences and heterogeneity between HPV+ 
and HPV– HNSCC will elucidate the mechanisms by which tumors 
evade the endogenous immune response. In parallel, it will be 
important to define how other viruses such as Epstein-Barr virus 
influence the tumor immune landscape in HNSCC. Finally, target-
ing metabolic vulnerabilities such as lactate, glutamine, polyamine, 
and lipid metabolism is urgently needed in HNSCC (114, 115, 171). 
Mounting data highlight the plasticity and adaptability of  immune 
cells — such as Tregs’ use of  lactate as a fuel source and alternative 
T cell nutrient utilization — while tumor cells succumb to metabol-
ic disruption (115). Identifying how metabolites and nutrients are 
differentially used by tumors and immune cells will permit strategic 
development of  novel therapies.
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is routinely used to guide the use of  ICIs. However, its utility is 
limited due to variable expression thresholds and response rates. 
Tumor mutational burden (TMB) and microsatellite instability 
(MSI) are additional biomarkers that have shown promise in other 
cancer types, but their predictive value in HNSCC has been less 
robust (188, 189). Emerging biomarkers, such as circulating tumor 
DNA (ctDNA), and the composition of  the TME, including densi-
ty and activity of  infiltrating T cells and regulatory cells, are being 
investigated. Additionally, expression of  HPV-related viral antigens 
may guide immunotherapies such as tumor vaccines or engineered 
TCR T cells (50). Advances in multiomics profiling and artificial 
intelligence are facilitating the discovery of  composite biomarkers 
that integrate genetic, transcriptomic, and proteomic data, which 
may enhance the precision of  immunotherapy in HNSCC.

Developing novel combination therapies targeting regulatory 
cell subsets, dysfunctional T cells, and the dysregulated metab-
olite and nutrient milieu of  the TME will also be important for 
advancing immune responses and long-lasting systemic immunity 
to HNSCC. Reversing T cell exhaustion secondary to chronic anti-
gen stimulation will require a detailed understanding of  how the 
frequency of  antigen-positive tumor cells and strength of  the pep-
tide/MHC-TCR interaction influence T cell fate (190). Developing 
computational and bench models to identify and quantify putative 
neoantigens and test their binding affinity may help us understand 
which T cell infiltrates require reinvigoration via immune check-
point antagonism versus those that would benefit from targeting 
regulatory cell subsets. Furthermore, overcoming the nutrient-de-
pleted, acidic, hypoxic TME will further optimize responses to 
these therapies. In addition, dissecting the fundamental immune 
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