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HNSCC remains a substantial health issue, with treatment options including surgery, radiation, and platinum-based
chemotherapy. Unfortunately, despite progress in research, only modest gains have been made in disease control, with
existing treatments resulting in significant functional and quality-of-life issues. The introduction of immunotherapy in the
treatment of HNSCC has resulted in some improvements in outlook for patients and is now standard of care for populations
with both recurrent and metastatic disease. However, despite the early successes, responses to immune checkpoint inhibition
(IC1) remain modest to low, approaching 14%-22% objective response rates. Challenges to the effectiveness of ICl and other
immunotherapies are complex, including the diverse and dynamic molecular plasticity and heterogeneity of HNSCCs; lack

Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most
common cancer globally, with approximately 800,000 new cases and
approximately 450,000 deaths annually (1). Treatment of HNSCC
has made modest advances over the course of decades, consisting
of cytotoxic platinum-based chemoradiation (CRT) or primary
surgical management with risk-adapted adjuvant therapy (i.e.,
radiation and/or chemotherapy). With current treatment strat-
egies, more than 50% of patients experience recurrence within
3 years, while more than 10% experience distant failures (2—-4).
Moreover, surgery, radiation, and chemotherapy all harbor signif-
icant side effects. Unfortunately, HNSCC lacks actionable genomic
targets due to the complex and evolving genomic landscape, with
limited success in targeting EGFR and PIK3CA (5, 6). Therefore,
understanding the molecular mechanisms responsible for HNSCC
pathogenesis and development of effective therapeutic strategies are
substantial hurdles in the management of HNSCC.

The emergence of immune checkpoint inhibition (ICI) rep-
resents a major shift in the treatment paradigm of primary and
recurrent/metastatic (R/M) HNSCC. ICI is now the standard of
care (SoC) for R/M HNSCC (7), but response rates remain mod-
est, around 14%-22% (8, 9). Other immunotherapeutic strategies,
including tumor vaccines and adoptive transfer of antigen-specific
T cells, have also been explored in clinical trials involving patients
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of immunogenic antigens; accumulated suppressive immune populations such as myeloid cells and dysfunctional T cells;
nutrient depletion; and metabolic dysregulation in the HNSCC tumor microenvironment. In this Review, we explore the
mechanisms responsible for immunotherapy resistance, dissect these challenges, and discuss potential opportunities for
overcoming hurdles to the development of successful immunotherapy for HNSCC.

with HNSCC with limited response rates (10, 11). Several potential
factors contribute to these modest responses, including tumor-intrin-
sic molecular heterogeneity and metabolic adaptations, which dimin-
ish antitumor immunity, tumor antigen escape, influx of suppressive
immune cell populations, dysregulated metabolism, and develop-
ment of dysfunctional antitumor T cells (12-16). To overcome these
formidable obstacles and advance the outlook for patients, better
understanding of the mechanisms driving resistance to antitumor
immunity is urgently needed.

In this Review, we provide an update on the current landscape
of immunotherapy in patients with HNSCC, explore potential
mechanisms driving resistance to immunotherapy, discuss major
challenges in the immunotherapy of HNSCC patients, and offer
our perspective on prioritizing development of targets influenc-
ing immunotherapy outcomes.

Current immunotherapeutic strategies in HNSCC
While current immunotherapeutic strategies for HNSCC primar-
ily leverage ICIs, such as o—PD-1 therapies, a variety of approaches
including T cell-based immunotherapy are emerging. The advent of
IClIs, particularly PD-1 inhibitors such as nivolumab and pembroli-
zumab, has transformed the treatment landscape for HNSCC. While
the impact of ICIs in HNSCC has not matched that in melanoma
(17) or cutaneous squamous cell carcinoma (18), the landmark trials
CheckMate 141 and KEYNOTE-040 galvanized the use of ICIs in the
treatment of R/M HNSCC (8, 9). Moreover, forthcoming data from
the KEYNOTE-689 trial will be paradigm-shifting (19). Critical ques-
tions remain at the forefront of ongoing research: What is the optimal
timing for immunotherapy administration — adjuvant or/and neo-
adjuvant? sequential or concurrent? How can predictive biomarkers
refine patient selection? And how can immunotherapies best integrate
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Table 1. Immune checkpoint blockade therapy in HNSCC

Trial Agent Patient cohort Primary
(n) outcomes
ICl immunotherapy
CheckMate 141 Nivolumab (N) vs. SoC 36THNSCC 0S
KEYNOTE-040 Pembrolizumab (Pembro) 494 HNSCC 0S
vs. SoC
KEYNOTE-055 Pembrolizumab 171Pt- and Ctx- Radiographic
pretreated HNSCC  treatment effect
0.~PD-1 plus o~CTLA-4 blockade
CheckMate 651 Nivolumab/ipilimumab 947 R/M HNSCC 0S
(NCT02741570) (N/1) vs. EXTREME
CheckMate 714 Nivolumab/ipilimumab 425 Pt-eligible or ORR
vs. nivolumab Pt-refractory R/M
HNSCC
EAGLE Durvalumab (D) vs. durvalumab/ 697 R/M HNSCC 0S
(NCT02369874) tremelimumab (D/T)
vs. SoC
KESTREL Durvalumab vs. durvalumab/ 823 R/M HNSCC 0S
(NCT02551159) tremelimumab (D/T)

vs. EXTREME

0S ORR Toxicity grade 3-4 Other Refs.
(mo) (%) (%) comments
75 (N) 13.3(N) 13.1(N) (8)
5.1(SoC) 5.8 (SoC) 35.1(SoC)
8.4 (Pembro) 14.6 (Pembro) 13 (Pembro) (9)
6.9 (SaC) 10.1(SoC) 36 (SoC)
Not available 16 15 (191)
13.9 (N/1) 13.9 (N/1) 28.2(N/I) CheckMate 651 (21)
13.5 (EXTREME)  13.5 (EXTREME) 70.7 (EXTREME) did not meet
primary end point
Not available Pt-refractory: Pt-refractory: (22)
13.2(N/1) 15.8 (N/1)
18.3 (N) 14.6 (N)
Pt-eligible: Pt-eligible:
20.3 (N/1) 24.6 (N/1)
29.5 (N) 13.1(N)
76 (D) 179 (D) 10.1(D) (23)
6.5(D/T) 18.2(D/T) 16.3 (D/T)
8.3 (SoC) 17.3 (SoC) 24.2 (SoC)
9.9 (D) 172 (D) 8.9(D) (24)
10.7 (D/T) 21.8 (D/T) 19.1(D/T)
10.3 (EXTREME)  49.0 (EXTREME) 53.1 (EXTREME)

0S, overall survival; ORR, objective response rate; Pt, platinum; SoC, standard of care; Ctx, cetuximab; EXTREME, Ctx/cisplatin/carboplatin + 5-FU

(5-fluorouracil) <6 cycles, then Ctx maintenance.

with established SoC? These challenges reflect the rapidly evolving
landscape of HNSCC immunotherapy. An overview of current evi-
dence and future directions of immunotherapy is provided in Tables
1-5, setting the stage for the next chapter in this transformative field.

Combination ICI. Initial ICI trials in HNSCC demonstrated
durable treatment responses and overall survival (OS), suggesting
maintenance of immune equilibrium (Table 1). Combination ICI
with multiple coinhibitory molecules may amplify the treatment
response by differentially regulating various cell populations in the
tumor microenvironment (TME) (20). The CheckMate 651 study,
combining o-PD-1 and a—CTLA-4 blockade in R/M HNSCC,
observed no change in objective response rate (ORR) or OS (21).
Similarly, CheckMate 714 observed no change in ORR with o—
PD-1/a—CTLA-4 inhibition over o—PD-1-alone in platinum-re-
fractory R/M HNSCC (22). The phase III EAGLE trial evaluated
durvalumab, an a—PD-L1 monoclonal antibody, versus durvalum-
ab plus tremelimumab (0—CTLA-4) versus SoC in patients with
R/M HNSCC. OS did not differ across groups relative to SoC (23).
In parallel, KESTREL found no benefit to single-agent or combina-
tion a—PD-L1 with or without a—CTLA-4, even noting that patients
with high PD-L1 expression receiving SoC had better ORR com-
pared with durvalumab alone or durvalumab plus tremelimumab
(24). While reinvigoration of cytotoxic T cell function through
coregulatory signal pathway modulation is effective, deeper under-
standing of the mechanisms regulating the fate and response of
effector lymphocytes in TME is critically needed.

:

Radiation therapy in combination with ICI. Ionizing radiation
is under active investigation for enhancing immunotherapeutic
responses. Putative mechanisms supporting this approach are the
activation of cytotoxic lymphocytes, DC activation and T cell prim-
ing, activation of pro-death signaling in tumor cells, and release
of damage-associated molecular patterns (DAMPs) (25). A phase
I study testing the safety of partial tumor irradiation with stereo-
tactic body radiotherapy to oligometastatic disease coupled with
pembrolizumab in advanced solid tumors demonstrated encourag-
ing results (Table 2) (26). In contrast, NRG-HN004 (ClinicalTrials.
gov NCT03258554) compared radiotherapy with concurrent plus
adjuvant durvalumab versus RT/cetuximab, observing no improve-
ment in progression-free survival (PFS) (27). However, irradia-
tion also induces deleterious effects, including increased Treg and
myeloid-derived suppressor cell (MDSC) infiltration, PD-L1 induc-
tion, and activation of prosurvival mechanisms via chronic IFN
signaling (25, 28). The role of radiotherapy in modulating anti-
tumor immunity remains to be elucidated as a tool for enhancing
immunotherapy effectiveness.

Chemoradiotherapy combined with ICI. Building on the advances
of KEYNOTE-040 and CheckMate 141 in R/M HNSCC, excit-
ing advances are on the horizon integrating immunotherapy with
definitive CRT (Table 2). The role of SoC cisplatin chemothera-
py for enhancing ICI is under active investigation, with support
from preclinical data (29, 30). Preclinical and clinical data suggest
that cisplatin promotes immunogenic tumor cell death (30), DC
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Table 2. Chemoradiotherapy coupled with immune checkpoint blockade in HNSCC
Trial Agent Patient cohort Primary 0S ORR Toxicity grade Other Refs.
(n) outcomes (mo) (%) 3-4 (%) comments
KEYNOTE-048  Pembrolizumab (Pembra) 882 HNSCC 0S 11.6 (Pembro) 17 (Pembro) 55 (Pembro) Adverseeventsledto  (33)
vs. Pembro/P/F 13.0 (Pembro/P/F) 36 (Pembro/P/F) 85 (Pembro/P/F)  deathin 8%, 12%, and
vs. Ctx/P/F 10.7 (Ctx/P/F) 36 (Ctx/P/F) 83 (Ctx/P/F) 10% of patients in their
respective groups
KEYNOTE-412 Pembro/CRT 804 HNSCC EFS 24-mo EFS: Not available 92 (Pembro) (34)
vs. placebo/CRT 63% (Pembro) 88 (Placebo)
56% (Placebo)
NCT02777385 Concurrent (C) 80 HNSCC Locoregional  0S (% patients at 4 years):  Not available Not available LRC: (32)
vs. sequential (S) control (LRC) 71% (C) 64% (C)
pembrolizumab CRT 83% (S) 96% (S)
JAVELIN Avelumab/CRT 907 LA-HNSCC PFS 0S: not available Not available 36 (avelumab) Trial discontinued ~ (35)
(NCT02952586) vs. placebo/CRT PFS: not reached for 32 (placebo/CRT)
either group
NCT02684253 Nivolumab (N) 62 HNSCC Radiographic 14.2 (N) 345 (N) 13.3(N) (192)
vs. nivolumab/SBRT treatment effect 13.9 (N/SBRT) 29 (N/SBRT) 9.7 (N/SBRT)
(N/SBRT) (RECIST)
NCT02608385 SBRT + pembrolizumab 97 patients SBRT dose 1-year 0S: 22 (overall) 11.8 (received full SBRT deliveredto ~ (26)
with metastatic ~ recommendation 71% responders 34 (irradiated) radiation dose) oligometastases
solid tumors prior to Pembro 420/2 mixed—resptzjnders 12 (unirradiated) 2.2 ([;(?ce.iver?jpartial Pembro began within
0% nonresponders radiation dose) 7 days following last
fraction of SBRT
12 HNSCC patients,

several other primary sites
represented (e.g., ovarian,
breast, non-small cell
lung, colorectal)

0S, overall survival; ORR, objective response rate; P/F, Pt agent and 5-FU; Ctx, cetuximab; CRT, chemoradiation; EFS, event-free survival; PFS, progression-free

survival; SBRT, stereotactic body radiotherapy.

activation, and antigen-specific T cell killing (31). Data evaluat-
ing concurrent versus sequential pembrolizumab in the definitive
treatment of HNSCC with CRT highlight better outcomes with
sequential immunotherapy (32). The phase III KEYNOTE-048
trial comparing pembrolizumab with and without chemotherapy
with cetuximab plus chemotherapy for R/M HNSCC revealed a
lack of PFS benefit with ICI (33). Pembrolizumab with chemo-
therapy improved OS compared with cetuximab plus chemothera-
py in all subpopulations, independent of PD-L1 combined positive
score (CPS) status. The phase IIl KEYNOTE-412 (NCT03040999)
trial evaluated pembrolizumab plus CRT versus CRT in locally
advanced HNSCC (LA-HNSCCQ), finding no difference in event-
free survival (34). The JAVELIN trial comparing avelumab plus
CRT versus CRT in LA-HNSCC also observed no difference in
PFS (35). Further work is warranted to elucidate the extent to
which chemotherapy can enhance ICI effectiveness.

RTK inhibition and ICI. Combining ICI with RTK inhibition is
promising, though recent trial results were modest (Table 3). EGFR
is an established therapeutic target in HNSCC. There is a propensi-
ty for EGFR copy number amplification and overexpression in car-
cinogen-driven, HPV- HNSCCs. Cetuximab, an EGFR-targeting
mAb, was one of the first immunotherapies approved for HNSCC,
marking a pivotal moment in systemic cancer therapy. Cetuximab
can augment antitumor immunity, promoting DC maturation,
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CD8" T cell priming, NK cell functions, and antibody-dependent
cell-mediated cytotoxicity (ADCC) (36, 37). Compared with SoC
cisplatin, cetuximab offers unique benefits, particularly for patients
unable to tolerate cisplatin, though its utility has been limited by
the side effect of acneiform rash (38). Initial studies demonstrat-
ed the advantages of combining cetuximab with radiotherapy,
showing improved outcomes compared with radiotherapy alone
(39). Promising results were also observed with pembrolizumab
and cetuximab in combination in a phase II trial among patients
with platinum-ineligible or -resistant R/M HNSCC (40). However,
GORTEC-REACH — comparing concurrent cisplatin or cetux-
imab radiotherapy versus radiotherapy with concurrent weekly
cetuximab and avelumab (0—PD-L1) — failed to meet its prima-
ry end point (41). Despite these limitations, cetuximab facilitated
broader adoption of immunotherapies in HNSCC and bridged the
gap to the next generation of immunotherapies, leaving a lasting
legacy in HNSCC treatment.

In addition to cetuximab, VEGF inhibitors, including tyrosine
kinase inhibitors (TKIs), have immunomodulatory properties. A
phase II trial combining pembrolizumab and cabozantinib, a mul-
tikinase TKI, observed a partial response or stable disease in over
half the cohort in conjunction with increased CD8* T cell infil-
trates in responders (42). The ALPHA study combining pembroli-
zumab with afatinib, an irreversible TKI, observed a promising

:
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Table 3. Tyrosine kinase inhibition coupled with immune checkpoint blockade in HNSCC

Trial Agent Patient cohort Primary 0S ORR Toxicity grade Other Refs.
(n) outcomes (mo) (%) 3-4 (%) comments
NCT03082534  Pembrolizumab (Pembro)/Ctx 33 HNSCC Radiographic Not available 45 15 (40)
treatment effect (partial response)
(RECIST)
GORTEC-REACH  Exp (IMRT + Ctx + avelumab) 707 LA-HNSCC 2-year PFS Cisplatin-unfitgroup: ~ Notavailable  Cisplatin-unfit: Two cohorts: (193)
(NCT02999087)  vs. SoC (IMRT with cisplatinin ~ randomized 2-year PFS 44% (Exp), 80% in both arms Patients fit or unfit for
fit patients and with Ct 31% (SoC) Cisplatin-fit: cisplatin SoC IMRT +
in unfit patients) 2-year 05 58% (Exp), Not available cisplatin (fit) or Ctx (unfit)
54% (SoC) Experimental arm:
Cisplatin-fit group: Weekly Ctx and avelumab and
0S not available every 2 weeks during RT, followed
1-year PFS 64% (Exp), by avelumab
73% (SaC) for 12 months
ALPHA Afatinib/pembrolizumab 29 R/M HNSCC ORR Not available 44 379 EGFR amplification predicted ~ (43)
(NCT03695510) higher response rate
Methyladenosine phosphorylase
loss or mutation predicted
lower response rate
KEYNOTE-146 Lenvatinib + pembrolizumab 137 patients with ORR Not available 36 (HNSCC) 67 Included metastatic HNSCC, ~ (44)
(NCT02501096) metastatic renal cell carcinoma, endometrial
solid cancers cancer, melanoma, NSCLC,
(phase Ib/I1) and urothelial cancer

0S, overall survival; ORR, objective response rate; Ctx, cetuximab; IMRT, Intensity-modulated radiation therapy; PFS, progression-free survival; NSCLC,

non-small cell lung cancer.

ORR (43). The KEYNOTE-146 phase IB/II trial of lenvatinib
plus pembrolizumab found an encouraging response rate in the
phase I expansion cohort (44). However, the LEAP-010 phase 11T
study (NCT04199104) combining first-line pembrolizumab with
or without lenvatinib was discontinued after OS failed to improve
(45). Given the variability in these results, a biological approach
to identify and overcome barriers to effective antitumor immunity
in HNSCC is warranted.

Antitumor vaccine therapy. Vaccine-based immunotherapy
for HPV* HNSCC is a logical intervention to target tumor cells
expressing viral antigens (e.g., E6/E7) (46). Several strategies —
including live-vector vaccines (e.g., axalimogene filolisbac secret-
ing the Lm-LLO-HPV E7 fusion protein), peptide vaccines such as
ISA101 in combination with ICI (NCT03669718, NCT04398524,
and NCT04369937), and the DNA vaccine MEDI0457 — have
been developed and tested in patients with HPV* cervical and
oropharyngeal squamous cell carcinoma (OPSCC), with modest
results (Table 4). One hurdle is overcoming T cell dysfunction in
the TME with vaccine-mediated approaches. Several groups are
examining combinations of ICI with anticancer vaccines, includ-
ing a vaccinia virus encoding E6/E7 combined with IL-2 plus
a—PD-L1 (NCT03260023) (47); a liposomal-based HPV16 E6/
E7 peptide vaccine (PDS0101) in combination with pembroli-
zumab (NCT04260126 and NCT05232851) (48); and the SQZ-
PBMC-HPV vaccine in combination with atezolizumab, ipilim-
umab, and nivolumab in patients with R/M HPV16* solid tumors
(NCT04084951). Additionally, a novel fusion protein in combi-
nation with pembrolizumab (HPV16 E7-pHLA-IL2-Fc) is under

:

investigation at several centers (NCT03978689), with results sug-

gesting expansion of E7 . —specific clonotypes (49). Identifying

11-21
high-affinity tumor antigeng while avoiding cross-reactivity with
host proteins and emergence of poorly immunogenic neoantigens
remains a challenge in vaccine-based therapy in HNSCC.

Adoptive T cell therapy. Adoptive T cell therapy (ACT) — infus-
ing tumor-reactive T cells, expanded tumor-infiltrating T cells
(TILs), gene-engineered T cell receptor T (TCR-T) cells, and CAR
T cells — represents an opportunity to leverage antigen specificity
in HNSCC treatment, though there is a paucity of known antigens
in HNSCC (Table 4). Previously, Hinrichs’s group tested ACT
using TILs selected for HPV E6 and E7 reactivity (11). TIL ther-
apy is limited by the lengthy process of isolating and expanding
TILs, as well as the need for surgical tumor excision from patients.
Alternatively, TCR-T cell manufacturing decreases production
time. TCR-T cell therapy has been accomplished in HPV-related
cancers including cervical cancer and OPSCC using autologous
E7 TCR-T cells (50). In a phase I trial of HPV16 E7 TCR-T cell
therapy, 50% of patients responded, including several with a—
PD-1-refractory disease (50). However, limited progress has been
made in the development of CAR T-based therapies in HNSCCs.
Although ACT offers the advantage of specifically targeting tumor
cells compared with the other immunotherapy strategies, it still
faces formidable challenges in the suppressive TME, such as nutri-
ent deprivation, suppressive metabolites, and regulatory immune
cell interactions. Combining tumor-specific T cell therapies with
agents that overcome these limitations in the TME should increase
the effectiveness of this approach.
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Table 4. Other immunotherapeutic strategies in HNSCC
Trial Agent Patient cohort Primary 0S ORR Toxicity grade Other Refs.
(n) outcomes (mo) (%) 3-4 (%) comments
Vaccine therapy
NCT02426892 ISA 101/nivolumab 24 HPV16* Radiographic treatment 175 33 143 (194)
solid tumors effect (RECIST)
NCT03162224 MEDIO457 HPV-16/18 29 R/M HNSCC Radiographic treatment Median 29.2 276 143 (10)
E6/E7 with IL-2 effect (RECIST)
vaccine + durvalumab
Cellular therapy
NCT01585428 HPV-specificTILs 29 metastatic HPV* ORR Not available 18 (noncervical) No autoimmune Myeloablative therapy (1)
+11:2 cancers (5 HNSCC) 28 (cervical) adverse events followed by TIL infusion
NCT02858310 Engineered TCR 12 patients ORR Not available 50 All experienced Starting dose of 1x10° (50)
targeting HPV-16 E7 with metastatic lymphopenia and E7TCRT cells
HPV16* cancers neutropenia due to
myeloablative therapy
Other strategies
NCT04247282 Bintrafusp alfa >T20Corlarynx  Pathologic treatment effect: ~ Notavailable 43 (pPR) 0 2patientsdied  (167)
>NO MO pCR (0%) of complications
MPR (<10%) due to locoregional
pPR (11%-50%) recurrence
NPR (>50%)
NCT02538510 Vorinostat/ 25R/MHNSCCand  Radiographic treatment 1.6 (HNSCC) 32 (HNSCC) 36 (HNSCC and salivary) (168)
pembrolizumab  salivary gland cancer effect (RECIST) 131 (salivary) 16 (salivary)

0S, overall survival; ORR, objective response rate; ISA 101, long-peptide HPV-16 vaccine; pCR, pathologic complete response; MPR, major pathologic

response; pPR, partial pathologic response; NPR, no pathologic response.

Mechanisms diminishing the response to current
immunotherapeutic strategies

Given the limited success with current immunotherapies in HNSCC,
identification of the mechanisms responsible for immunotherapeu-
tic resistance is urgently needed. Potential mechanisms are summa-
rized below and shown in Figure 1.

Molecular and immune heterogeneity of HNSCC. HNSCC tum-
origenesis is driven by HPV (HPV*) and/or carcinogens (e.g.,
smoking and alcohol). Carcinogen-driven (i.e., HPV") HNSCC
is largely mediated by loss-of-function mutations in tumor-sup-
pressor genes (e.g., P53 and CDKN24), whereas HPV* HNSCC
carcinogenesis is driven by viral oncoprotein—mediated inactiva-
tion of tumor-suppressor genes (6). Tumor molecular heteroge-
neity drives different immune pathogeneses via several mecha-
nisms (Figures 1 and 2). While mutation rates do not differ by
HPYV status, there are differences in where mutations tend to
occur (e.g., CpG sites) (6). Genomic heterogeneity and instabil-
ity potentially drive additional mechanisms promoting immune
escape (51). Prevalent somatic mutations and indel-derived
tumor-specific neoantigens partially account for this heterogene-
ity. Implications for antitumor immunity include the emergence
of dominant tumor antigens that suppress the function of other
TCR clonotypes (52). Moreover, cancer immunoediting results
in persistent poorly immunogenic cancer cells that can escape
the equilibrium phase (53, 54).

More nuanced differences between HPV* and HPV- HNSCCs
also drive variable immune phenotypes and responses, as illustrat-
ed in Figure 2. HPV* and HPV- HNSCCs share some immune fea-
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tures, such as a metabolic milieu detrimental to antitumor immu-
nity (55), chronic antigen stimulation, and variable Treg infiltrates
(55-57), but also possess distinct features. HPV- HNSCCs have a
more immune-suppressed TME, with high frequencies of PD-1-
expressing CD4* Thl cells, accumulation of tumor-associated
macrophages (TAMs) and MDSCs, and high MHC expression
and tumor immunogenicity of tumor antigens (56-61). HPV*
HNSCCs are unique in that the causal agent also accounts for
immunogenic antigens provoking tumor-specific responses. HPV*
tumors are notable for enrichment of conventional CD4* and CD8*
T cells, B cell subsets, and stromal cells and enriched HPV-specific
T cells, as well as exhausted T cells (62-66) (Figure 2). Emerging
data reveal that HPV gene expression is variable across HPV*
HNSCCs, which may represent another mechanism of immune
evasion by these tumors (12). Further work is needed to define
the unique molecular and biochemical features driving immune
pathogenesis in HPV* and HPV- HNSCCs.

Suppressive tumor-infiltrating immune cell populations. Malignant
tumors can recruit and/or develop different types of suppressive
cells in the TME, such as Tregs (14), tumor-associated neutrophils
(TANSs) (67), MDSCs (15), TAMs (16), and cancer-associated fibro-
blasts (CAFs), which promote cancer progression and immune
escape, and induce immunotherapy resistance in HNSCC (Figure 1).

CAFs. An abundance of CAFs is found in the stroma, constitut-
ing up to 80% of the cellular composition in late-stage HNSCC (68).
CAFs play an important role in HNSCC tumor growth, facilitating
proliferation, invasion, migration, and angiogenesis, and promoting
treatment resistance (13). Several subtypes of CAFs accumulate in

:
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Table 5. Neoadjuvant immunotherapy in HNSCC

Trial Agent Patient cohort Primary 0S ORR Toxicity grade Other Refs.
(n) outcomes (mo) (%) 3-4 (%) comments

NCT02296684 Neoadjuvant 36 resectable 1-year relapse rate in 0S: not available Not available None after 22%pTR-2;  (150)

pembrolizumab HPV-unrelated high-risk pathology 1-year relapse rate: neoadjuvant downstaging

HNSCC pTR-2in surgical 16.7% pembro of tumor occurred
specimen in 19% of patients

IMCISION Neoadjuvant nivolumab/ 20 HNSCC Pathologic response 0S: Not available 35 38 (153)
(NCT03003637) ipilimumab
NCT02919683 Neoadjuvant Nivolumab (N) 29 untreated > T2 Volumetric response 1-year 0S: 89% 50 (N) 14.2(N) (151)

vs Neoadjuvant ocscc 1-year PFS: 85% 53 (N+I) 333 (N+)

Nivolumaby/Ipilimumab Volumetric response:
(N+) 50% (N) 53% (N+1)
NCT03341936 Nivolumab/lirilumab 28 HNSCC 1-year DFS 0S: Not available 43 MPRor pPR 125 Nograde4  (195)
undergoing salvage 1-year DFS: toxicities
surgery 55.2% patients

LCCC1621 Neoadjuvant carboplatin/ 39 resectable locally Pathologic response Not available 78 MPRorpPR  Notavailable (196)
(NCT03174275) nab-paclitaxel/durvalumab ~ advanced HNSCC
Lietal Induction docetaxel/Pt/5-FU (IC) 98 (IC) ORR Not available 684 (I0) 153(IC) (197)

+ sintilimab (ICS) 65 (ICS) 84.6 (I9) 18.5(ICS)
Zhangetal. Neoadjuvant paclitaxel/ 30 HNSCC pCR Not available 37pCR 6.7 (198)

cisplatin/camrelizumab 741MPR

0S, overall survival; ORR, objective response rate; pTR-2, >50% of the overall tumor bed with tumor necrosis, keratinous debris, and giant cells/histiocytes;
DFS, disease-free survival; MPR, major pathologic response; pPR, partial pathologic response; pCR, pathologic complete response.

HNSCCs, with most exhibiting protumoral function, such as myo-
fibroblasts with high a—smooth muscle actin (a-SMA) expression,
extracellular matrix—expressing (ECM-expressing) CAFs, and MHC
II* CAFs (69, 70). Furthermore, exploration of another phenotype
of CAFs expressing elastic fiber differentiation genes revealed a
negative prognostic impact on HPV* HNSCC (69, 70). CAFs can
affect tumor cells and immune cells in the TME via multiple mech-
anisms: (i) The signaling regulatory loop of CAF-derived HGF and
HNSCC-derived basic FGF (bFGF) increases oxidative phosphor-
ylation (OXPHOS) in CAFs and glycolysis in HNSCC cells (68);
(ii) CAFs and their supernatants suppress T cell proliferation and
promote Treg functions (71); (iii) CAFs induce immunotherapy
resistance via CD8* T cell exclusion (72); (iv) CAFs secrete a num-
ber of factors that induce protumoral and immunosuppressive mac-
rophage differentiation from monocytes, which suppresses T cell
proliferation (73); and (v) CAF-derived TGF-f3 promotes cetuximab
resistance in HNSCC preclinical models (74).

TAMs. TAMs are a major tumor-infiltrating immune cell subset
in HNSCC, playing a key role in tumor growth (75, 76). M2 mac-
rophage infiltrates correlate with aggressive tumor features, lymph
node metastases, and poor prognosis in HNSCC (76-78). TAMs
also correlate with aggressive clinicopathologic features in HNSCC
(16). Under hypoxic stress, TAMs secrete TNF-o, IL-1, IL-6, IL-8,
VEGF, GM-CSF, TGF-B, and MMP, promoting tumor angio-
genesis and invasion (79). TAMs are the major source of PD-L1
and other immune checkpoint ligands in the HNSCC TME (69).
PD-L1* TAMs are closely associated with CD8* T cell function,
suggesting regulatory cell-cell interactions in HNSCC (69). In addi-
tion, TAMs express PD-1, which decreases their phagocytic and
cytotoxic potency (80).

MDSCs. Infiltration of MDSCs is increased in oral cavity squa-
mous cell carcinoma (OCSCC) and correlates with pathological
markers and prognosis (81). The inhibitory molecules PD-L1 and
CD155 are highly coexpressed on MDSCs from HNSCC patients
and associated with tumor progression and decreased cytotoxic
T cell infiltrates (82). MDSCs can be phenotypically subdivided
into two groups, polymorphonuclear MDSC (PMN-MDSC) and
monocytic MDSC (M-MDSC). Increased M-MDSC infiltrates are
associated with tumor burden after boron neutron capture ther-
apy for HNSCC (83). PD-L1 is expressed to a greater degree on
M-MDSCs than on PMN-MDSCs (84).

TANs. Neutrophils play a crucial role in HNSCC (67). How-
ever, the prognostic significance of TANs in HNSCC is poorly
understood (85), which may be related to the variability neutrophil
phenotypes, including a cytotoxic antitumor “N1” state and an
immunosuppressive protumor “N2” state. The diversity and plas-
ticity of neutrophils contribute to variable immune control, though
there is much to be learned.

Tregs and Bregs. Tregs are present in the systemic circulation
and tumors of patients with HNSCC, and are associated with
HNSCC outcomes (86-88). A spectrum of Treg phenotypes likely
exists in HNSCC. Neuropilin 1 (NRP1) is preferentially expressed
on intratumor Tregs in HNSCC, and NRP1* Tregs are more sup-
pressive and associated with worse outcomes (86). TIM3* Tregs
inhibit T cell proliferation, while TIM3 antagonism relieves
Treg-mediated immunosuppression in HNSCC (89, 90). CTLA-4
and CD39 are coexpressed on the majority of tumor-infiltrating
Tregs, with a greater capacity for suppression than circulating
Tregs in HNSCC. CTLA-4* Tregs can suppress cetuximab-medi-
ated ADCC, while their depletion restores NK cytolytic function
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Figure 1. Mechanisms driving resistance to immune checkpoint blockade therapy in HNSCC. The potential mechanisms driving resistance to
antitumor immune responses are illustrated. Overcoming immune-suppressive populations including Tregs, Bregs, tumor-associated macrophages
(TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), and cancer-associated fibroblasts (CAFs), as well as immune
plasticity, will be critical for enhancing the response to immunotherapy and antitumor immunity. Defining cell-intrinsic features of HPV-related and
carcinogen-driven (e.g., smoking) HNSCC will also be fundamental for reducing their tumor-intrinsic immune-suppressive capacity and immune escape
mechanisms. Dysfunctional T cells generated by chronic antigen stimulation or T cell senescence induced by the tumor metabolome, proteome, and
chemokine/cytokine milieu also impair the effectiveness of the immune response in HNSCC. Inadequate T cell costimulation drives T cell anergy,
further impairing this response. Less-well-understood mechanisms driven by metabolic dysregulation impact the antitumor immune response in the

tumor microenvironment, for which further work is warranted.

(14, 91). In addition to Tregs, Bregs with potent immunosuppres-
sive function were identified in HNSCC (discussed below) (92).

T cell exhaustion. Exhausted T cell infiltrates are associated with
poor outcomes in HNSCCs (93, 94). PD-1- and CTLA-4—express-
ing T cells are increased in the systemic circulation of HNSCC
patients (95). Two subsets of exhausted T cells, CD8*PD1*TCF1*
progenitor exhausted T cells (Tex¢) and CD8'PD-1*TCF1 termi-
nally exhausted T cells (Tex*™) have been identified in HNSCCs.
Tex'™ T cells were associated with Treg abundance in TME (96).
Furthermore, HPV status correlates with PD-L1 expression and T
cell exhaustion in HNSCC (Figure 2). T cells in HPV* HNSCCs
express higher levels of exhaustion markers, including PD-1,
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TIM3, LAGS3, and TIGIT, compared with those in HPV- HNSCC
(97). PD-1* T cells are associated with a favorable outcome in
HPV* HNSCC, perhaps serving as a proxy for activated infiltrating
T cells responding to the viral antigens (98, 99). In contrast, HPV~
HNSCC:s tend to have a higher frequency of dysfunctional PD-1*
TILs, correlating with a worse overall prognosis (94).

T cell senescence. T cell senescence is another important dys-
functional state with a distinct phenotype and function in chronic
infections and cancers (100, 101). Senescent T cells highly express
senescence associated P-gal but downregulate the costimulatory
molecules CD27 and CD28. Senescent T cells are in a state of
cell-cycle arrest, with increased cell cycle-regulatory molecules p16,
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Figure 2. Features driving distinct immune
pathogenesis in HPV* versus HPV- HNSCC. Unique
etiologies of HNSCC drive differential immune
responses and pathogenesis. HPV* HNSCCs are driv-
en by dominant viral antigens (e.g., E6/E7), altered
immune checkpoint signaling, and diminished
cytosolic DNA-sensing functionality resulting in
high levels of T lymphocyte infiltrates and germinal
center B cells. In comparison, carcinogen-driven
HNSCCs harbor a myeloid-rich, immune-suppressive
tumor microenvironment driven by release of regu-
latory signaling molecules, genomic heterogeneity,
and a lack of highly immunogenic neoepitopes. In
HPV* HNSCCs, viral oncoproteins promote loss of
tumor suppressor gene expression and viral pro-
tein-mediated impairment of immunogenicity and
antigen presentation. In HPV- HNSCCs, carcinogens
such as those found in tobacco smoke impair CD8*
T cell function. Collectively, these differences are
associated with generally better survival outcomes
in HPV* HNSCC compared with HPV- HNSCC. cDC2,
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p21, and p53; however this cell population remains metabolically
active, producing high amounts of the proinflammatory cytokines
IL-2, TNF, and IFN-y, as well as the suppressive cytokines IL-10
and TGF-f (101). Senescent T cells have been found among TILs
in HNSCCs and other cancers (101-103). HNSCC cell lines can
directly induce T cell senescence in vitro (103). Importantly, these
tumor-induced senescent T cells exert potent suppressive effects on
T cell proliferation and function (103). The phenotypic and func-
tional characteristics of senescent T cells may contribute to dimin-
ished ICI responses in HNSCC. Improving our understanding of
the mechanisms involved in the induction and regulatory role of
senescent T cells in HNSCC may lead to novel immunotherapies.
Metabolic dysregulation in the TME. Metabolic dysfunction
in cancer impacts both tumor and immune cells in HNSCC
(104), with the TME characterized by nutrient depletion (105),
hypoxia (55), acidity, and suppressive metabolites (106, 107).
Tumors manipulate central carbon metabolism, producing lac-
tate through aerobic glycolysis, which can support suppressive
Tregs (104) while blunting T and NK cell immune surveillance
(108). Tumors also exploit glutamine and lipid metabolism, cre-
ating vulnerabilities that hinder T cell function. Furthermore,
dysregulated metabolism of glycerolipids, glycerophospholipids,
and sphingolipids and upregulation of cholesterol synthesis in

HNSCC affect antitumor immune responses (109-111). Tumors
can leverage homeostatic mechanisms by release of immuno-
suppressive metabolites and ions (e.g., spermidine, K*) (112,
113), favoring regulatory immune cells, and suppress antitumor
responses (55, 104, 114, 115). Glutaminase and glutamate are
enriched in HNSCCs (116) and can be targeted with differential
effects on cancer cell and immune function, given the metabolic
plasticity of T cells (115). Competition for fatty acids and dys-
regulated lipid metabolites in the TME diminish CD8" T cell
responses (109-111, 117). Knowledge of differential dependen-
cies on metabolites and nutrients in the TME could equip us with
tools to impair tumor cell viability while enhancing antitumor
immunity and abrogating immunotherapeutic resistance.

Emerging challenges impacting HNSCC response
to immunotherapeutic strategies
Potential mechanisms diminishing immunotherapy responses in
HNSCC are discussed above. However, several emerging concepts
in tumor immunity are being uncovered, which are critical for
enhancing immunotherapy against HNSCC.

Characterizing novel tumor-infiltrating immune cell populations.
Accumulating studies have uncovered the function of certain
immune cell types in HNSCC, but there are still cell types whose
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Figure 3. Novel strategies for overcoming immunotherapy resistance in HNSCC. (A) ICl can be enhanced by decreasing inhibitory T cell receptor signal-
ing, reinvigorating dysfunctional T cells, and modulating metabolic pathways in cancer cells and suppressive immune populations. Neoadjuvant ICl can
increase the antitumor immune response and debulk tumors prior to ablative surgery or cytotoxic therapy. Combining cytotoxic therapies with immuno-
therapy may also improve the antitumor immune response via dendritic cell activation and T cell priming, activation of pro-death signaling in tumor cells,
and release of DAMPs. (B) Reversing T cell senescence may also be accomplished through MAPK pathway inhibition, lipid metabolism modulation, and
DNA damage blockade. Inhibiting the ability of cancer cells and Tregs to induce T cell senescence offers a novel opportunity for increasing ICl responses.
(€) Metabolic reprogramming of tumor cells and Tregs also provides novel strategies for HNSCC treatment. (D) Targeting suppressive immune and stromal
populations will be critical for altering the overall balance of cytotoxic/effector to regulatory responses in the TME.

functions or identity remain unknown or controversial. For exam-
ple, several studies have demonstrated the existence of yd T cells
in the HNSCC TME, which are associated with poor survival in
patients with HNSCC (118-120). However, others found that high-
er levels of yd T cells were correlated with lower clinical stages and
better OS in HNSCC patients (121). Thus, the precise role of yo T
cells in HNSCC pathogenesis has yet to be elucidated.

Bregs are another poorly defined cell population in HNSCC.
Bregs primarily drive immunosuppression, but their effects on
tumor progression depend on their phenotypes. Tumor-infiltrating
Bregs with a CD19*CD38'CD1d*'IgM*CD147* phenotype have
been identified and express key regulatory molecules including
IL-10, CD25, and IDQO, contributing to suppression of antitumor
immune responses (122). CD19*CD244CD38" Bregs preferen-
tially localize in tumor tissue rather than peripheral blood and
exhibit higher density in the HNSCC TME relative to CD16" B
cells (123). Adenosine-producing Bregs (CD39*CD73") suppress
effector B cells by inhibiting Bruton’s tyrosine kinase phosphory-
lation via adenosine (124). Notably, increased CD19*IL-10" Bregs
in OCSCC were associated with CD4* T cell differentiation into
Tregs and worse survival outcomes in patients (125). Increased
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frequencies of atypical memory (CD27IgMIgD") B cells in
OCSCC were associated with lower lymph node metastasis, while
CD24hCD38" Bregs were associated with higher stage and nodal
metastases (126). Deeper understanding of their function is nec-
essary to develop potential treatment combinations that could
improve HNSCC outcomes.

Dynamics and plasticity of immune cell subsets. Tregs exhibit a
range of phenotypes and variable associations with outcomes in
HNSCC patents (56, 127). Various Treg subsets are found in the
TME, including thymic selection—derived Tregs (tTregs), periph-
erally converted Tregs (pTregs), tr-Tregs (tissue-resident Tregs),
and follicular Tregs (Tfr Tregs). The functions of these Treg sub-
sets on antitumor responses remain unclear (128). However, the
TME augments Treg phenotype, stability, and plasticity, enabling
them to switch phenotypic and functional states. Hypoxia in TME
affects Treg function and stability. HIF-1a can repolarize Tregs
into Th17 cells by upregulating RORyt while attenuating Treg
development (129). Nrpl is required to maintain the stability and
function of tumor-infiltrating Tregs. Nrpl~'~ Tregs produce IFN-y,
which undermines the function of WT Tregs. Hypoxia in the
HNSCC TME may drive IFN-y-induced Treg fragility through
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HIF-1a (130). Comprehensive understanding of the immunolog-
ical mechanisms responsible for the control of Treg functional-
ity, plasticity, and instability in TME represents a challenge for
HNSCC immunotherapy.

TAMs and TANs exhibit phenotypic plasticity, which can be
detrimental to tumor control (131). TME induces the polarization
of macrophages and TAMs predominantly exhibiting an M1 phe-
notype at early tumor stages, when antigen presentation drives anti-
tumor CD8* T cell and NK cell recruitment (132). In the HNSCC
TME, tumor cell-derived cytokines and chemokines including IL-6,
IL-10, and CCL2 can drive polarization of TAMs toward the M2
phenotype (133). Increased TANs and neutrophil-to-lymphocyte
ratio (NLR) were associated with poor prognosis in patients with
HNSCC (134, 135). TANs exhibit phenotypic plasticity regulated
by TME factors and can be distinguished by an antitumorigenic
N1 phenotype or protumorigenic N2 phenotype. TGF-f stimulates
N2 and inhibits N1 polarization, while IFN-f promotes N1 and
inhibits N2 polarization in the TME. Migration of neutrophils to
tumor-draining lymph nodes in HNSCC shapes antitumor immuni-
ty in a stage-dependent manner (136). In NO (without lymph node
metastasis) HNSCC, neutrophils can prime T cells, with neutrophil
accumulation in T cell-rich zones associated with improved surviv-
al. In contrast, neutrophils become immunosuppressive in patients
with lymph node metastases and are associated with a poor progno-
sis. Further understanding of how TAMs and TANs dynamically
regulate antitumor immunity is needed to strategically target these
cells for enhancing immunotherapeutic responses in HNSCC.

Distinct metabolic dysregulation in tumor and immune cells. While
we provided a broad overview of metabolic features of TME that
impair antitumor immune responses and immunotherapy effec-
tiveness above, several unknowns persist. For example, glycolysis,
pentose phosphate metabolism, tricarboxylic acid cycle, and glu-
tamine metabolism are upregulated in HNSCC (137), but we do
not know how specific cells such as TILs use these metabolites and
what functions they serve in immune evasion. Moreover, tumors
can leverage homeostatic metabolites to dysregulate antitumor
immunity through unclear mechanisms (114). Distinct metabolic
spatial phenotypes have been identified (138); however, the role of
these spatial features in driving metastasis, treatment resistance,
and immune evasion in HNSCC is unknown. Dysregulated lipid
metabolism is also present in HNSCC (139-141). Preclinical data
suggest that inhibiting cholesterol synthesis may enhance immu-
notherapy responses (141). Therefore, additional work is needed
to parse the specific mechanisms, substrates, and enzyme kinet-
ics involved in cell-intrinsic metabolism, immune evasion, and
response to immunotherapies in HNSCC.

HPYV and HPV-specific immunity in HNSCC pathogenesis. While
much is known about the pathogenesis, progression, and thera-
peutic outcomes in HPV* HNSCC (142), the molecular processes
regulating HPV-mediated immune evasion and responses to immu-
notherapy remain under investigation (Figure 2). Although HPV
viral antigens represent a tumor-specific biomarker, the distribution
of viral antigen expression in tumor cells and molecular controls of
viral antigen expression must be defined (143, 144). Furthermore,
there are several challenges to targeting viral antigens, including
MHC-restricted cytotoxic T cell dysfunction and viral molecular
mimicry of human proteins (e.g., of HPV16 E7), which could be
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due to HPV-mediated disruption of antigen processing and pre-
sentation (145, 146) and disruption of chemokine and cytokine
expression (147, 148). There are likely numerous other undiscov-
ered mechanisms through which HPV drives immune escape, such
as metabolic dysregulation, chronic T cell stimulation, impaired
coactivation, or genomic alterations. Identifying these mechanisms
will equip us to strategically target HPV-intrinsic mechanisms for
HNSCC treatment (149).

Novel therapeutic strategies and combinations
Despite the aforementioned challenges in enhancing antitumor immune
responses to immunotherapy, forthcoming therapeutic options target
specific cell populations, patient- and TME-specific immunotherapy
combinations, and metabolic reprogramming (Figure 3).

Neoadjuvant immunotherapy. Neoadjuvant immunotherapy is
poised to revolutionize HNSCC management in the definitive and
R/M treatment settings, with the groundbreaking phase III KEY-
NOTE-689 trial setting the stage for the next era of HNSCC ther-
apy. Multiple neoadjuvant immunotherapy studies have been com-
pleted or are ongoing (150-153) (Table 5). Neoadjuvant ICI may
enhance long-term tumor control by (i) rejuvenating tumor-specific
cytotoxic lymphocytes and trafficking to micrometastatic depos-
its while enhancing DC presentation of tumor antigens to T cells
(154); (ii) increasing antigen-specific responses to a diverse neoan-
tigen repertoire (52); and (iii) increasing systemic immunity (155).
Patients in KEYNOTE-689 (NCT03765918) were randomized to
receive either neoadjuvant pembrolizumab followed by surgery and
adjuvant pembrolizumab or standard surgical resection with adju-
vant SoC therapy (156). Unpublished findings prelude improve-
ments in key primary and secondary outcomes (19). Other innova-
tive approaches such as neoadjuvant bintrafusp alfa, an engineered
fusion protein targeting PD-L1 and TGF-f signaling, demonstrate
enhanced systemic immunity and antigen-specific T cell respons-
es (155). Neoadjuvant a—PD-1/0—CTLA4 therapy using HNSCC
samples from the IMCISION trial identified a decrease in activat-
ed Tregs and dysfunctional CD8" T cells (157). Leveraging sam-
ples from a phase II trial of neoadjuvant nivolumab or nivolum-
ab/ipilimumab in patients with untreated oral OCSCC illustrated
increased local and systemic antitumor immunity (151, 158). Neo-
adjuvant immunotherapy (159), neoadjuvant chemoimmunother-
apy (160, 161), and neoadjuvant radiation coupled with immuno-
therapy (NCT03635164, NCT03247712) (162, 163) in combination
are under investigation. Further studies are urgently needed to dis-
sect the mechanisms and optimize treatment combinations driving
responses to neoadjuvant immunotherapy in HNSCC.

Immunotherapy combinations. Strategically targeting multiple
limbs of the immune response may enhance outcomes. Trials
testing inhibition of immune-regulatory signaling molecules (e.g.,
LAG3, TIGIT, TIM-3, CD266, PVRIG, STING, and CD96) are
currently underway (Figure 3). These approaches are intended to
overcome compensatory upregulation of known and unknown
immune-regulatory checkpoint molecules, which may drive adap-
tive resistance to ICI (164). In one clinical case report, a patient
with SoC-refractory HNSCC was successfully treated with the
combination of nivolumab and ipilimumab (165). Clinical studies
of eftilagimod and relatlimab (LAG-3 inhibitors) for HNSCC are
underway. The TACTI-002 trial (NCT03625323) combining efti-
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lagimod with pembrolizumab in second-line metastatic HNSCC
observed encouraging antitumor activity (166). Two clinical studies
(NCT04080804 and NCT04326257) are treating HNSCC patients
with the combination of relatlimab and nivolumab, or nivolum-
ab and ipilimumab, to assess clinical activity. Combined TIGIT
and PD-1/PD-L1 blockade is also under investigation, including
the combination of neoadjuvant tiragolumab and atezolizumab
(NCT03708224 and NCT04665843); o-TIGIT humanized mAbs
MK-7684 (NCT(05007106) and ASP8374 (NCT03260322) in com-
bination with pembrolizumab; and BMS-986207 in combination
with nivolumab (NCT02913313). Additional novel immunothera-
py strategies have targeted TGF- or combined ICI with histone
deacetylase inhibition (167, 168) (Table 4). A deeper understanding
of T cell activation signaling should drive the rational implementa-
tion of forthcoming trials to test for evidence of optimized combi-
nations in HNSCC immunotherapy.

Targeting senescent T cells in the TME. Targeting T cell senescence
is an emerging concept in tumor immunotherapy (Figure 3) (100,
101, 169). Tregs and tumor cells can induce T cell senescence by
triggering effector T cell DNA damage (169-173). Blockage of
DNA damage in T cells can prevent T cell senescence and enhance
antitumor immunity in both melanoma and breast cancer tumor
models (172). Importantly, combining o—PD-L1 checkpoint block-
ade with DNA damage inhibition to abrogate T cell senescence can
synergistically enhance antitumor immunity in those models (172).
In addition, activation of MAPK signaling is another important
molecular process responsible for development of T cell senescence
induced by Tregs and tumor cells in the TME (170-172). Blocking
MAPK signaling can also prevent T cell senescence and promote
the antitumor efficacy of o—PD-L1 therapy in melanoma and breast
cancer tumor models (172). These studies indicate that prevention
of senescence in T cells could be an important checkpoint and
effective strategy for enhancing HNSCC immunotherapy.

Targeting suppressive myeloid cell and stromal cell populations. Immu-
nosuppressive myeloid cell populations can promote tumorigenesis
and contribute to the therapy resistance in HNSCC. SX-682, an
inhibitor of the myeloid chemokine receptors CXCR1 and CXCR2,
inhibited MDSC trafficking and accumulation but enhanced NK
cell infiltration, activation, and function in a mouse HNSCC model
(174). Immunosuppressive neutrophils upregulate CD36 and fatty
acid transport protein 2 (FATP2), which are involved in lipid traf-
ficking in the tumor-bearing mice and human HNSCC. Targeting
neutrophil lipid metabolism through FATP2 inhibition reduces the
suppressive activity of neutrophils in preclinical models (175). Tar-
geting of the CD47/SIRPa axis on TAMs is another novel oppor-
tunity to promote antitumor immunity (176). This is currently being
assessed in phase II clinical trials in HNSCC (NCT04854499 and
NCT04675294) and oropharynx cancer (NCT05787639). Strategies
targeting CAFs in HNSCC are also developing, including CAF rever-
sion or normalization, CAF depletion, targeting ECM, and blocking
the immunomodulatory effect of secreted molecules from CAFs or
relevant downstream pathways (177). Collectively, these suppressive
myeloid and stromal cell-mediated therapeutic responses and should
be considered in personalized treatment of HNSCC.

Leveraging metabolism to reprogram the TME. A major challenge
in treating HNSCC is overcoming metabolic changes in the
TME that promote cancer cell-intrinsic treatment resistance and
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impair antitumor immunity (178, 179). The increased glucose
uptake and enhanced glycolysis characteristic of HNSCC appear to
make HNSCC susceptible to targeted therapies involving glycolytic
inhibitors (179). Key molecules in glycolysis such as HK, PKM2,
and GLUT are promising targets for HNSCC treatment. The HK2
inhibitor 2-DG decreases glycolysis and inhibits cell proliferation
in HNSCC cell lines (180). Upregulated mTOR signaling is asso-
ciated with metabolic dysregulation and increased expression of
PKM2, PDK1, HIF-1a, LDH, and GLUT1 in HNSCC (181). Inhi-
bition of mTOR signaling with rapamycin reduces tumor growth
in HNSCC (182). An oral antihyperglycemic agent, metformin, can
affect cell proliferation and antitumor activity in HNSCC through
AMPK activation and mTOR inhibition by targeting mitochondri-
al complex I in HNSCC cells (183). Altering tumor cell metabo-
lism in combination with immune modulation may enhance ICI in
HNSCC. A phase II therapeutic trial NCT04114136) of metformin
or rosiglitazone combined with a—PD-1 therapy in solid tumors is
currently recruiting participants, aiming to determine whether these
compounds synergize with o—PD-1 therapy. Notably, more-selective
strategies specifically targeting metabolism in tumor cells will need
to avoid inadvertent impairment of tumor-specific cytolytic T cell
function. Furthermore, effective metabolic interventions can syner-
gize with immunotherapy and offer novel and promising strategies
for enhancing the effectiveness of ICI.

Lipid metabolism reprogramming is also a critical hallmark of
HNSCC linked to the carcinogenesis and development of HNSCC
(109). Fatty acid synthase (FASN) is overexpressed and associated
with aggressiveness, prognosis, and risk of metastasis in OCSCC.
Inhibitors targeting FASN, including TVB-3166, C75, and tri-
closan, have anticancer effects on OCSCC cell lines, with decreased
proliferation, migration, and invasion (184, 185). The FASN inhib-
itor orlistat reduces the volume of primary tumors and lymph node
metastases in an orthotopic OCSCC mouse model (186). Notably,
metabolic differences between HPV-related and carcinogen-driven
HNSCCs should be taken into account to identify the optimal met-
abolic treatment strategy, although targeting energetic metabolism
is a promising anticancer therapy for HNSCC treatment (187).

Future perspectives
Immunotherapy is a promising strategy in HNSCC. However, sev-
eral hurdles remain. Potential mechanisms of ICI resistance include
molecular and immune heterogeneity coupled with high levels of reg-
ulatory immune cell populations, T cell dysfunction, and metabolic
dysregulation in the TME. To enhance ICI, more effort is needed to
define the function and role of novel tumor-infiltrating immune cell
populations, the tumor-intrinsic adaptations that promote immune
suppression, the developmental trajectories and plasticity of immune
cell populations, and strategies for overcoming metabolic dysregula-
tion. Overcoming challenges to ICI by targeting novel combinations
of immune checkpoint molecules and reinvigorating dysfunctional T
cells will also be important. Leveraging novel techniques, including
single-cell RNA sequencing, spatial multispectral imaging, and mul-
tiomics strategies to better understand the TME at a single-cell and
molecular resolution will aid these endeavors.

Identification of reliable biomarkers for predicting immuno-
therapy response in HNSCC remains a critical area of research.
PD-L1 expression has been the most widely studied biomarker and
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is routinely used to guide the use of ICIs. However, its utility is
limited due to variable expression thresholds and response rates.
Tumor mutational burden (TMB) and microsatellite instability
(MS]) are additional biomarkers that have shown promise in other
cancer types, but their predictive value in HNSCC has been less
robust (188, 189). Emerging biomarkers, such as circulating tumor
DNA (ctDNA), and the composition of the TME, including densi-
ty and activity of infiltrating T cells and regulatory cells, are being
investigated. Additionally, expression of HPV-related viral antigens
may guide immunotherapies such as tumor vaccines or engineered
TCR T cells (50). Advances in multiomics profiling and artificial
intelligence are facilitating the discovery of composite biomarkers
that integrate genetic, transcriptomic, and proteomic data, which
may enhance the precision of immunotherapy in HNSCC.
Developing novel combination therapies targeting regulatory
cell subsets, dysfunctional T cells, and the dysregulated metab-
olite and nutrient milieu of the TME will also be important for
advancing immune responses and long-lasting systemic immunity
to HNSCC. Reversing T cell exhaustion secondary to chronic anti-
gen stimulation will require a detailed understanding of how the
frequency of antigen-positive tumor cells and strength of the pep-
tide/MHC-TCR interaction influence T cell fate (190). Developing
computational and bench models to identify and quantify putative
neoantigens and test their binding affinity may help us understand
which T cell infiltrates require reinvigoration via immune check-
point antagonism versus those that would benefit from targeting
regulatory cell subsets. Furthermore, overcoming the nutrient-de-
pleted, acidic, hypoxic TME will further optimize responses to
these therapies. In addition, dissecting the fundamental immune
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microenvironment differences and heterogeneity between HPV*
and HPV- HNSCC will elucidate the mechanisms by which tumors
evade the endogenous immune response. In parallel, it will be
important to define how other viruses such as Epstein-Barr virus
influence the tumor immune landscape in HNSCC. Finally, target-
ing metabolic vulnerabilities such as lactate, glutamine, polyamine,
and lipid metabolism is urgently needed in HNSCC (114, 115, 171).
Mounting data highlight the plasticity and adaptability of immune
cells — such as Tregs’ use of lactate as a fuel source and alternative
T cell nutrient utilization — while tumor cells succumb to metabol-
ic disruption (115). Identifying how metabolites and nutrients are
differentially used by tumors and immune cells will permit strategic
development of novel therapies.
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