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Introduction
Antimicrobial resistance (AMR) poses a critical global health 
threat that necessitates innovative therapeutic approaches (1, 2). 
Bacteriophages (phages), viruses that infect and destroy bacteria, 
have emerged as a promising therapeutic solution to combat multi-
drug-resistant (MDR) infections (3, 4).

Phage therapy, a concept that originated in the early 20th centu-
ry (5), was largely abandoned in Western Europe and North Amer-
ica following the introduction of  antibiotics in the 1940s, although 
its use continued in Eastern Europe (6). However, the growing 
AMR crisis has rekindled widespread interest in this therapeutic 
modality, with numerous successful cases reported worldwide (7). 
Personalized phage therapy, which involves selecting and optimiz-
ing phages for individual cases, is now being refined at several cen-
ters across Europe, the United States, and Australia.

Recent studies have demonstrated the efficacy of  phage ther-
apy in treating MDR infections. A recent systematic review of  59 
phage therapy studies published between 2000 and 2020 found that 
78.8% of  1,904 patients who received compassionate phage therapy 
experienced clinical improvement, and pathogen eradication was 
achieved in 86.7% of  cases (8). Similarly, a retrospective case series 

of  100 consecutive phage therapy cases reported clinical improve-
ment in 77.2% of  cases and pathogen eradication in 61.3% (9). 
These findings, along with those of  several in-depth, recent review 
articles, highlight the potential and limitations of  phage therapy in 
the ongoing battle against MDR infections (3, 10–15).

This Review seeks to focus on the technical aspects of  current 
phage therapy practices, with a particular emphasis on technology 
development and clinical applications. It also examines the devel-
opment of  phage therapy products and protocols from the perspec-
tive of  the conventional drug development pipeline, providing a 
road map for future research and clinical translation efforts.

Phage preparation and administration
The implementation of  phage therapy involves multiple steps, 
from phage sourcing and characterization through manufactur-
ing, quality control (QC), therapeutic administration, and clinical 
monitoring. While not all steps are universally applied in every 
phage therapy, this section outlines the key stages in preparing and 
delivering phage therapy.

Phage identification and selection
Phage sourcing, storage, and characterization. Phage banks serve as 
essential repositories of  diverse phages for therapeutic and research 
purposes, ensuring long-term viability and swift access when needed 
(Figure 1A) (16, 17). These banks, such as the Eliava Institute, the 
Israeli Phage Bank, the Félix d’Hérelle Reference Center, the Leib-
niz Institute (DSMZ), and the Phage Australia Biobank, employ 
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with phage morphology potentially 
playing a crucial role. The tailed 
phages, particularly myoviruses, 
generally demonstrated superior 
stability (29). Depending on storage 
conditions and phage type, viability 
can range from months to over 32 
years (27, 30).

Characterization of  banked 
phages typically includes mor-
phological examination through 
transmission electron microsco-
py or cryogenic electron micros-
copy, receptor identification via 
mutant libraries and surface-mole-
cule competition assays, and host 
range determination using plaque 
assays (31–33). Additional analyses 
include whole-genome sequencing 
using next-generation platforms, 
biofilm inhibition assessment, and 
regular monitoring of  storage stabil-
ity through titer measurements over 
time under different conditions.

Effective management of  phage 
banks requires multiple storage 
sites, robust backup systems, access 
controls, and efficient inventory 
tracking to ensure the reliability 
and accessibility of  phage stocks for 
therapeutic applications (34, 35).

Phage susceptibility testing. Phage 
susceptibility testing is a crucial step 
in selecting phages with activity 
against target bacteria (Figure 1A). 
It identifies phages for clinical use 
and guides on dosing and admin-
istration strategies (36). Phage sus-
ceptibility is determined by com-
plex molecular interactions between 
the phage and host throughout the 
infection cycle, including phage 
receptor-binding proteins, host sur-

face receptors, intracellular defense mechanisms, and phage lifestyle 
(i.e., either lytic or lysogenic) (37–40). Most current therapies use 
strictly lytic Caudovirales, particularly myoviruses and siphovirus-
es, owing to their broader host ranges and enhanced stability (13). 
While podoviruses are less commonly employed, select members of  
this family have demonstrated therapeutic efficacy (13).

Bacterial cultures from a patient are tested against phages using 
various in vitro culture-based techniques (41, 42). “Spot tests” apply 
phage droplets to bacterial lawns to observe zones of  inhibition after 
overnight incubation. “Plaque assays” use serially diluted phage 
samples to observe countable individual plaques. Plaque assays are 
essential for confirming productive infection, as they distinguish 
true virulent activity from nonproductive lysis phenomena such 
as “lysis from without” (36, 43, 44). “Efficiency of  plating (EOP) 

various storage methods (18, 19). Common techniques include stor-
age in buffer or growth media at 4°C, cryopreservation in glycerol at 
–80°C or liquid nitrogen (either with or without host cells), and lyo-
philization for room temperature or cold storage (19, 20). The most 
accessible and cost-effective method is 4°C storage, typically using 
standard phage preservation media such as SM buffer (100 mM 
NaCl, 8 mM MgSO

4, 50 mM Tris-HCl, pH 7.5) or the original ster-
ile-filtered growth media. Lyophilization, while potentially causing 
initial titer loss, offers advantages for long-term storage and trans-
port by freeze-drying in vacuum-sealed vials, often with stabilizing 
additives like sucrose or polymers (21–26). To further minimize titer 
loss for long-term storage, some facilities also preserve phages with-
in bacterial cells by freezing down cells shortly after phage infection 
but before lysis occurs (27, 28). Storage stability varies among phages 

Figure 1. Development and implementation of phage therapy. (A) A summary of the key steps in phage 
therapy development and clinical implementation. The process typically begins with phage identification and 
selection, including phage bank establishment (sourcing, storage, and characterization of phages), followed by 
susceptibility testing (using spot tests, plaque assays, efficiency of plating [EOP] assays, and growth kinetics 
studies). The manufacturing phase involves phage propagation (using selected bacterial strains in liquid- or 
solid-based systems) and rigorous purification with quality control measures (including endotoxin removal and 
standardized quality protocols). The therapeutic administration phase encompasses clinical applications (con-
sidering various administration routes and dosing strategies) and therapeutic monitoring (tracking treatment 
efficacy, patient response, and monitoring for potential resistance development and adverse events). Note that 
these steps are not universally applied in all phage therapies. (B) Phage therapy approaches can be personal-
ized to individual patients (patient-specific phage preparation), fixed (preformulated), or administered as a 
hybrid of the two approaches. The hybrid model represents an intermediate approach combining elements of 
both personalized and fixed phage therapy strategies.
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propagation strain include optimal growth characteristics, absence 
of  lysogenic phages and virulence factors, and the ability to pro-
duce consistent high-titer yields. As improved strains can be iden-
tified, propagation strains may be updated over time. The propaga-
tion process involves inoculating phages into a growing bacterial 
culture at specific MOIs (10–5–102 phages per bacterial cell), with 
optimal ratios varying by phage type. The culture is then incubated 
for 4–24 hours in liquid or solid media supplemented with calcium 
and magnesium to promote phage binding to host bacteria. The 
resulting lysates undergo centrifugation and filter sterilization, fol-
lowed by testing to determine the concentration of  active phages.

Manufacturing occurs in-house at specialized phage therapy 
centers or is outsourced (54, 60). Numerous centers, including the 
Eliava Phage Therapy Center, the Phage Therapy Unit of  the Polish 
Academy of Sciences, the QAMH, Tailored Antibacterials and Inno-
vative Laboratories for phage (Φ) Research (TAILΦR), the Center 
for Phage Therapy and Biology at Yale, and Phage Australia, operate 
dedicated microbiology labs for patient-specific phage preparation 
(9, 33, 61–64). Some facilities, like the Center for Innovative Phage 
Applications and Therapeutics (IPATH) at UCSD and the Israeli 
Phage Therapy Center (65, 66), focus on testing and clinical appli-
cation while outsourcing phage production. Academic research labs 
also contribute to phage production (67, 68). Most centers produce 
phages at benchtop scale (~50 mL to 1 L), while some companies 
use larger bioreactors, such as the Cellexus Cellmaker (4–50 L) (69).

Phage purification. Purification is a critical step in preparing phag-
es for safe clinical use (Figure 1A), removing contaminants released 
during phage replication and bacterial lysis (34). These contami-
nants, including endotoxins, bacterial nucleic acids, host proteins, 
and media components, cause severe inflammatory responses (70).

Various purification methods (53, 63, 71) typically begin with 
nuclease treatment to degrade bacterial DNA and RNA, followed 
by polyethylene glycol precipitation to eliminate media compo-
nents and host proteins.

A critical focus of  purification is the removal of  endotoxins — 
toxic components of  bacterial cell walls that pose the primary safety 
concern. Multiple approaches have been developed for endotoxin 
removal, including organic solvent extraction and density gradient 
ultracentrifugation (72–75). Column chromatography provides auto-
mated purification capabilities, but these require specialized equip-
ment, expertise, and phage-specific optimization (76, 77). Following 
any purification steps, process-introduced chemicals are eliminated 
via dialysis, filtration, or desalting columns (53). Notably, a recent 
report demonstrated that simpler methods — combining low-speed 
centrifugations, microfiltration, and cross-flow ultrafiltration — can 
effectively reduce endotoxin levels to meet the clinical standard, 
suggesting complex purification methods involving solvents may be 
unnecessary for certain phages and applications (53).

QC. QC ensures the safety of  therapeutic phage preparations. 
Without phage-specific regulatory guidelines, phage producers 
often develop internal QC protocols for phage identification, char-
acterization, and purity assessment (34, 70, 78). They generally fol-
low FDA-specified endotoxin limits for all injectable products (5 
endotoxin units/kg/h), calculated from the maximum hourly safe 
dosage using standard formulas (79). QC testing typically adheres 
to national pharmacopoeia protocols for endotoxin and sterility 
testing (80). Some jurisdictions, like Belgium, have specific guide-

assays” provide quantitative measurements of  phage lytic activity by 
comparing its performance on test strains relative to a reference host 
(43, 45). Higher EOP values may suggest potential new propaga-
tion hosts, though adoption requires careful consideration of  growth 
characteristics, safety profiles, yield consistency, and purification 
efficiency, especially for therapeutic applications. “Growth kinetics 
assays” complement these methods by monitoring bacterial growth 
inhibition in real-time through optical density measurements. When 
results differ between plaque formation and growth kinetics, each 
assay provides complementary information: plaque assays confirm 
productive infection cycles, while growth kinetics reveal killing rates 
and resistance development patterns (36). These methods are also 
employed to evaluate phage-antibiotic and phage-phage interactions 
during cocktail design, as discussed in detail below.

Recent technological advances include automated optical den-
sity measurement systems (46–48), hydrogel-embedded “ready-to-
screen” plates (49), tablet-embedded ATP release assays (50), and 
automated phage plaque image analysis software (51). However, 
the field continues to lack universally accepted and rapid suscepti-
bility tests (36, 43, 52, 53). This limitation stems from fundamen-
tal challenges, including the potential disconnect between in vitro 
assay results and in vivo conditions (particularly regarding bacterial 
biofilms within the host) and the absence of  standardized criteria 
for categorizing bacterial isolates as “susceptible,” “intermediate,” 
or “resistant.” (54). These factors can substantially impact the 
assessment and prediction of  phage therapy efficacy.

Efforts to establish phage susceptibility testing standards are 
ongoing across multiple institutions. A Belgian consortium, com-
prising KU Leuven, the Queen Astrid Military Hospital (QAMH) 
and Sciensano (Belgium’s Federal Health Agency), has proposed 
standards based on the practices at the Eliava Institute (9). These 
require phages to demonstrate an EOP ≥0.1 on a patient’s strain 
and maintain stable bacterial lysis for 6–48 hours at low multiplici-
ties of  infection (MOIs; 0.0001–0.00001 phages per bacterium) at a 
starting bacterial concentration of  106 CFU/mL. Different criteria 
have been developed by other institutions: the Polish Academy of  
Sciences requires >99% killing within 6 hours, while the Center 
for Phage Technology at Texas A&M considers phages therapeutic 
candidates based on reproducible plaque formation and stability in 
physiological conditions (55, 56). However, comparative data eval-
uating the clinical effect of  these varying standards remains limited.

To achieve these standards, phages are often preadapted to 
patient strains through sequential phage-bacteria coincubation cycles 
to select the fastest-clearing samples for rapid lysis (57). Adapta-
tions modify genes encoding for receptor-binding proteins and tail 
fibers, enhancing phage-host interactions. Additional mutations may 
enhance phage DNA injection, host range, replication, and lysis tim-
ing, with specific changes varying by phage-host combination.

Phage manufacturing
Phage manufacturing involves the production of  therapeutic phag-
es for clinical use. It produces high-titer, pure phage preparations 
that meet safety and potency standards for patient administration. 
Phage manufacturing consists of  three main phases: propagation, 
purification, and QC (58, 59) (Figure 1A).

Phage propagation. Phages require a bacterial host (the “prop-
agation strain”) for multiplication. Key factors for selection of  a 
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loads (92, 93). Lower doses are better suited for chronic infections 
or scenarios where gradual bacterial reduction is desired (92, 93).

As clinical experience grows and as understanding of  phage 
PK improves, more refined and standardized dosing protocols are 
expected to emerge (3).

Therapeutic monitoring. Treatment safety, efficacy, and patient 
response are all assessed during monitoring of  phage therapy (Fig-
ure 1A) (94). The scope and frequency of  monitoring are typically 
determined by the infection site, administration route, and patient’s 
conditions. Clinical monitoring includes symptoms, physical exam-
inations and vital sign assessments before, during, and after phage 
administration. Laboratory monitoring uses blood tests for inflam-
matory markers (e.g., c-reactive protein, erythrocyte sedimentation 
rate), complete blood count, liver function tests, and basic meta-
bolic panels (64). Additional monitoring may include imaging 
studies such as X-ray, CT, MRI, or PET scans. Treatment efficacy 
uses direct monitoring of  target bacteria and phages, using bacte-
rial culturing, plaque assays, and/or quantitative PCR (95). This 
integrated monitoring approach not only ensures patient safety, but 
also generates valuable data for refining treatment protocols and 
improving future therapeutic outcomes.

Bacterial resistance to phages can emerge during treatment and 
may be confirmed through phage susceptibility testing or genome 
sequencing of  resistant isolates (45). This resistance develops 
through several mechanisms, including modifications to surface 
receptors, CRISPR/Cas systems, restriction-modification systems, 
or alterations in membrane transport systems. Importantly, these 
resistance mechanisms often come with fitness trade-offs that impact 
bacterial survival and virulence in patients. Such trade-offs can man-
ifest in bacteria as reduced growth rates, increased antibiotic sus-
ceptibility, or decreased virulence factor expression (3, 96). Under-
standing these fitness costs can have important clinical implications, 

lines for more comprehensive QC of  phage preparations, including 
whole-genome sequencing, potency testing, and pH assessment 
(78). Similar QC protocols are used by phage producers in the Unit-
ed States and Australia. As therapeutic phage applications become 
more widespread, the field is expected to adopt more standardized 
and sophisticated purification and QC methods.

Therapeutic administration
Routes of  administration. Phage therapy delivery methods are tai-
lored to the patient-specific requirements and site of  infection (Fig-
ure 1A). While systemic administration involves intravenous (i.v.) 
delivery, local administration methods vary according to the infec-
tion site. Respiratory tract infections use nebulization (81), urinary 
tract infections may use intravesicular administration (82), pros-
thetic joint infections need intra-articular delivery (83), and skin 
infections and wounds use topical applications (60). Local delivery 
may reach higher phage concentrations at the target site compared 
with i.v. administration (84–86). Some studies suggest that thera-
peutic outcomes may be improved through using both systemic and 
localized delivery methods (12).

Dosing strategies. Phage therapy dosing varies in concentration 
and frequency, ranging from a single dose to multiple daily doses 
(every 6-, 8-, 12-, or 24-hour intervals) (12, 87). Individual doses 
typically contain between 106 and 1010 plaque-forming units (PFU) 
(88). The optimal dosing strategy is determined by multiple factors: 
infection type and severity, phage pharmacokinetics (PK) (including 
absorption, distribution, and excretion patterns), and accessibility to 
the infection site (89, 90). For example, respiratory infections need 
more frequent administration (3–4 times daily) than musculoskeletal 
infections (once daily) (83, 91). High-dose approaches (>109 PFU/
mL) are typically preferred for acute infections requiring rapid bac-
terial clearance or cases involving poor accessibility or high bacterial 

Table 1. Comparative analysis of personalized phage therapy and fixed phage cocktails

Parameter Personalized phage therapy Fixed phage therapy
Phages isolated in advance? Variable Yes
Phages characterized in advance? Variable Yes
Phage-phage interactions known? Variable Yes
Cocktail defined in advance? No (customized per patient) Yes
Phagogram done before treatment? Yes Variable
Therapeutic monitoring during therapy? Variable Variable
GMP production required for compassionate use? Not currently Not currently
GMP production required for scaled-up product? Yes Yes
Cost per patient for compassionate use? Low if non-GMP Low if non-GMP
Cost per patient at scale? High Low (Economies of scale)
Controlled clinical trials completed? No Yes (114)
Success in case reports? Yes (9) Yes (10, 111)
Straightforward regulatory pathway for 
compassionate use?

Yes, in most countries (eIND in USA, Helsinki Declaration  
in Europe; SAS in Australia)

Yes, in most countries (eIND in USA, Helsinki Declaration  
in Europe; SAS in Australia)

Defined regulatory pathway for scaled up drug? No (allowed in Georgia; allowed through magistral phage in Belgium;  
unclear in other countries)

Yes (traditional biologic drug development pathway)

Potential for rapid availability for acute infections? Unlikely Yes

Comparison of key parameters between patient-specific (personalized) and preformulated (fixed) phage therapy approaches, including preparation 
requirements, manufacturing standards, costs, clinical evidence, and regulatory considerations. Numbers in parentheses indicate relevant references. 
GMP, good manufacturing practice; SAS, Special Access Scheme (a program administered by Australia’s Therapeutic Goods Administration that provides a 
pathway for prescribers to access unapproved therapeutic goods for single patients on a case-by-case basis); eIND, Emergency Investigational New Drug.
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broad range of  bacterial species (107–110) (Table 1). This approach 
aligns with traditional biologic drug development pathways, offer-
ing advantages of  standardized, large-scale production that reduces 
per-patient costs and simplifies logistics (109, 111). Development 
of  these cocktails involves strategic phage selection to maximize 
therapeutic coverage, including targeting diverse bacterial receptors 
and using data-driven approaches to identify phages with comple-
mentary host ranges (40, 111–113).

Fixed phage cocktail trials have shown limited success to date. A 
recent systematic review revealed that only two of  seven efficacy tri-
als demonstrated therapeutic success (114). This approach faces sev-
eral inherent challenges. First, the need to predict target pathogens 
in advance affects both product development and clinical implemen-
tation. Most fixed cocktails target only a single bacterial species — 
primarily Staphylococcus aureus or Pseudomonas aeruginosa — despite at 
least 30 different bacterial species being involved in difficult-to-treat 
infections. This narrow targeting creates recruitment challenges and 
affects trial efficacy when actual infections do not match cocktail 
specificity (9, 60, 115, 116). Additional technical hurdles include 
maintaining therapeutic phage concentrations during long-term stor-
age and distribution of  premade cocktails. Current trials are attempt-
ing to address these limitations through improved design strategies, 
such as incorporating preliminary bacterial susceptibility screening 
phases. However, more rigorously designed trials are needed to prop-
erly evaluate the potential of  fixed phage therapy (16, 60, 115–119).

Emerging hybrid models. Hybrid models have emerged that com-
bine key strengths of  both personalized and fixed phage therapy 
approaches. For example, centers producing personalized phage 
preparations have begun to administer the same phage preparations 
to multiple patients, while still often performing the patient-specif-
ic phage susceptibility testing, analysis of  phage-resistant mutants, 
and/or therapeutic monitoring that is characteristic of  the “person-
alized” approach (9, 62, 66, 120). This strategy can bring the econ-
omies of  scale and streamlined logistics of  preprepared cocktails 
without sacrificing the benefits of  the personalized approach.

However, integrating phage therapy into the current regula-
tory framework for licensed medicinal products presents signifi-
cant challenges. Traditional pharmaceutical regulations, designed 
for static drug products, are poorly suited to accommodate phage 
therapy’s dynamic nature, particularly the need for rapid updates 
to counter bacterial evolution. Several key regulatory hurdles exist: 
the requirement for extensive premarket safety and efficacy data 
from large clinical trials is especially challenging for such a target-
ed therapeutic, while current manufacturing standards and QC 
requirements are difficult to satisfy given the biological complexity 
and natural variation inherent in phage products. Moving forward, 
new regulatory frameworks may be necessary, potentially drawing 
inspiration from existing models used for other complex biological 
products, such as fecal microbiota transplants, blood safety proto-
cols, and the annual updating process for seasonal flu vaccines.

Gaps in phage therapy development
Despite advances in phage therapy, substantial knowledge gaps 
persist. These challenges may best be understood through the 
lens of  a drug development pipeline, which includes lead dis-
covery and optimization, preclinical development, and clinical 
development (Figure 2).

as they may influence treatment outcomes and bacterial persistence, 
and can inform phage therapeutic strategies. For example, phages 
have been strategically deployed to select for phage-resistant bacte-
rial populations that show increased antibiotic susceptibility (97).

Throughout and following the treatment course, clinicians care-
fully monitor patients for both mild and serious adverse events (64). 
While serious adverse events are rare, documented effects include 
transient fever and other inflammatory responses after initial doses, 
localized inflammation at infection sites, and occasional endotox-
in-related reactions during Gram-negative bacterial infections (64). 
Some treatment centers implement immunological monitoring pro-
tocols, including measurement of  antiphage antibodies and anal-
ysis of  immune response genes, to better assess patients’ response 
to phage therapy (95). The immune responses to phage treatment 
appear to be both phage specific and dependent on the patient’s 
immune status, with different phages eliciting varying responses — 
from formation of  neutralizing antibodies against phages to secre-
tion of  antiinflammatory markers triggered by phages (98, 99).

Comparative analysis of phage therapy 
approaches
Phage therapy in clinical settings is primarily deployed through 
two main approaches: personalized phage therapy and fixed phage 
therapy (100–102) (Figure 1B). However, recent developments have 
revealed a more nuanced landscape of phage therapy implementa-
tion. In this section, we highlight advantages and limitations of per-
sonalized, fixed, and emerging “hybrid” approaches to phage therapy.

Personalized phage therapy. Personalized phage therapy involves 
selecting phages to target the specific bacterial strain(s) responsible 
for a patient’s infection (11, 12, 15, 65–72) (Table 1). This approach 
is typically implemented at a “phage therapy center,” which often 
constitutes academic-medical institutions providing phage treat-
ments to patients primarily on a compassionate use basis. Some 
examples include the Eliava Phage Therapy Center, the Phage 
Therapy Unit of  the Polish Academy of  Sciences, QAMH, the 
Center for Phage Biology and Therapy at Yale, TAILOR, IPATH, 
the Israeli Phage Therapy Center, Phage Australia, and the Mayo 
Clinic Phage and Lysins Program.

Personalized phage therapy requires extensive screening of  
phage libraries and/or environmental samples, coupled with phage 
preadaptation to infection conditions (4, 63, 103–106). This approach 
often involves iterative cycles of  phage testing and preparation to 
address phage-resistant bacterial isolates, and most centers employ 
therapeutic monitoring during treatment. While clinical outcomes 
have been promising, with reported improvement rates of  77.2% in 
treated cases (8, 9), the approach faces several challenges, including 
lack of  standardization, time-consuming patient-specific prepara-
tion protocols (limiting utility in acute cases), and regulatory ambi-
guity. In the United States, treatments are conducted through the 
FDA’s emergency investigational new drug (eIND) program, which 
requires comprehensive documentation of  phage preparation, safety 
testing, and treatment rationale. Some institutions have established 
FDA master files to streamline this process. Despite encouraging 
case reports and studies, controlled clinical efficacy trials using the 
personalized approach have yet to be published (8, 9, 16).

Fixed phage therapy. Fixed phage therapy uses preformulated 
phage preparations, often as phage cocktails, designed to target a 
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Lead discovery and optimization
Phage cocktail design. Designing optimally effective phage cocktails 
remains a considerable challenge in phage therapy development. 
Phage-phage interactions can be synergistic or antagonistic, species 
dependent, and difficult to predict. The optimal number and ratio 
of  phages in a cocktail is unclear, and standardized protocols for 
interrogating phage-phage combinations are lacking. Consequently, 
phage cocktails are often selected empirically (116, 121).

Several models for phage cocktail design exist (112), including 
strain-based and genomic algorithms (108, 122). Strain-based algo-
rithms use analysis of  host range data across large bacterial strain 
collections and prediction of  minimum phage combinations pro-
viding maximum strain coverage. Genomic algorithms incorporate 
additional layers of  analysis, such as evaluation of  bacterial recep-
tor genes and prediction of  phage-host interactions based on recep-
tor recognition patterns, and then assessment of  potential resis-
tance mechanisms through genome mining. These computational 
approaches can be used individually or in combination to optimize 
cocktail composition. Alternative approaches include experimental-
ly matching phages to each individual bacterial strain in a collection 
(123–125). However, scaling up these approaches to encompass the 
vast diversity of  bacteria in clinical settings is challenging.

Bacterial receptors play a crucial role in determining phage host 
range (40), and theoretically, creating cocktails that target all pos-
sible bacterial receptor specificities could provide broad coverage. 
Cocktails containing phages using different receptors have explored 
this strategy (113), though they have typically been limited to a few 
strains and have not consistently achieved bacterial eradication. 

Challenges regarding cocktail design include insufficient coverage 
of  receptor types, emergence of  cross-resistance between phages, 
and inadequate phage concentrations to prevent resistant subpop-
ulations from emerging (108). Recent attempts combining phages 
targeting multiple nonredundant receptors have been successful 
in biofilms and in an animal wound infection model against large 
numbers of  diverse clinical isolates of  P. aeruginosa and S. aureus 
(111). While this approach offers a promising direction for future 
phage cocktail design, some bacterial species may still develop resis-
tance. For some species, exploiting trade-offs associated with phage 
resistance, such as reduced virulence or antibiotic resensitization, 
may thus be necessary alongside cocktail design strategies (3).

Phage-antibiotic interactions. Notable gaps remain in optimizing 
phage-antibiotic interactions for clinical use. Some phages act syner-
gistically with antibiotics (8, 117, 126, 127). Some antibiotics enhance 
phage activity at subinhibitory concentrations (87, 128, 129), while 
some can completely suppress phage resistance development at high 
concentrations (127). Phages can also resensitize antibiotic-resistant 
bacteria by targeting resistance mechanisms such as efflux pumps or 
outer membrane components as receptors (9, 97, 130–132). How-
ever, some antibiotics, particularly protein synthesis inhibitors, can 
antagonize phage activity by interfering with phage replication (133). 
The specific pairing of  phage and antibiotic is challenging to predict 
but crucial for optimizing treatment efficacy (109, 127).

Both personalized and fixed phage therapy often incorporate 
combination therapy with antibiotics to enhance efficacy and miti-
gate resistance development (126–128, 134). In vitro assessment of  
phage-antibiotic synergy is a common practice to guide combination 

Figure 2. Gaps in phage therapy through the perspective of a drug development pipeline. The drug development pathway consists of three major 
phases: lead discovery and optimization, preclinical development, and clinical development. In lead discovery and optimization, key areas requiring further 
research include phage cocktail design (understanding phage host range and phage-phage interactions), phage-antibiotic interactions (investigating both 
synergistic and antagonistic effects), and genomic engineering (developing phage genomic editing techniques and synthetic phage genomes). Preclinical 
development encompasses in vitro studies (focusing on phage stability), in vivo studies (addressing formulation for delivery and phage pharmacology), 
and toxicity tests (evaluating toxicity pathways and dose-response models). The clinical development phase involves multiple critical components: 
establishment of manufacturing processes, regulatory review and approval procedures, safety monitoring protocols, optimization of dosage and duration 
regimens, efficacy evaluation, and postrelease monitoring. Addressing these knowledge gaps will be necessary for successful implementation of clinical 
phage therapy and to broaden applications for phage-based strategies.



The Journal of Clinical Investigation   R E V I E W

7J Clin Invest. 2025;135(5):e187996  https://doi.org/10.1172/JCI187996

therapy (135), and successful outcomes using this approach have 
been reported in several studies (136). For instance, in a study of  100 
cases employing personalized phage therapy, phages were deployed 
alongside antibiotics in approximately 70% of cases, resulting in great 
outcome (9). Further research is needed to understand the long-term 
phage-antibiotic-bacterial dynamics and develop predictive models 
for optimizing phage-antibiotic therapy in clinical settings.

Phage genome engineering. Wild-type phages demonstrate ther-
apeutic potential (137) but have challenges, including narrow host 
ranges, lysogenic conversion, immunological clearance, and variable 
stability (87). To overcome these, researchers use genetic engineer-
ing approaches. Recent progress focuses on two approaches: editing 
phage genomes and synthesizing new ones (4, 138). For genome 
editing, CRISPR/Cas systems and methods like BRED (Bacterio-
phage Recombineering of  Electroporated DNA) have been devel-
oped (139–143). Production of  synthetic phage is also advancing 
rapidly toward the goal of  chemical synthesis of  entire phage 
genomes in bacteria or cell-free systems (35, 144, 145). This syn-
thetic approach could markedly improve scalability and safety by 
eliminating bacterial components from the manufacturing process.

The regulatory landscape for engineered phages varies by 
jurisdiction. In the United States, engineered phages fall under 
FDA oversight as biological products, while the European Medi-
cines Agency considers them Advanced Therapy Medicinal Prod-
ucts. Several engineered phages have been successfully proceeded 
through eIND provisions, including modified lysogenic phages with 
deleted lysogeny genes and phages engineered for enhanced stability 
or biofilm degradation (146). However, owing to safety consider-
ations, regulatory frameworks generally favor strictly lytic phages for 
therapeutic applications over lysogenic or engineered phages (147).

The future of  phage engineering will likely focus on both opti-
mizing therapeutic applications and expanding into new frontiers, 
including targeted delivery of  gene editing payloads and micro-
biome modulation (4). Advances in DNA synthesis will enhance 
flexibility in designing synthetic phages, improving properties like 
efficacy, stability, delivery, and safety profiles (144). Additionally, 
generative AI models trained on phage genomic sequences (148) 
open new possibilities for designing and synthesizing phages with 
desired properties from scratch. However, successful implementa-
tion of  these approaches will still require in-depth understanding 
of  phage biology (149), and thus continued research will remain 
crucial for advancing phage engineering.

Preclinical development
Phage stability. Substantial gaps remain in controlling phage sta-
bility, which encompasses titer in solution and physical integrity 
over time. Basic principles include stability at physiological pH 
(150–152) and the importance of  cations for stability and activi-
ty (153–156). However, many factors contributing to stability loss 
are poorly understood and phage specific. Phages are commonly 
formulated in buffered, cation-supplemented saline solutions (157), 
but various factors can reduce phage titer over time. These include 
adsorption to surfaces (e.g., storage containers, catheters) (158) and 
interactions with bacterial components such as lipids, membrane 
debris, or vesicles (159–161). Some phages are more stable when 
purified, while others maintain better stability in lysates, highlight-
ing the need for phage-specific optimization.

Physical factors impact phage stability, including temperature 
extremes that cause denaturation, aggregation, or structural loss 
(162–165). Oxidative stress creates aggregates and fragments (166–
169), while UV light exposure degrades phage particles (163, 170). 
Common mitigation strategies include controlled temperatures, 
cryoprotectants, and UV-protective additives (171). The phage- 
specific nature of  these environmental stressors highlight the chal-
lenges in developing universally effective storage protocols.

Phage stability is measured through plaque assay titers and 
qPCR. However, these methods do not capture physical changes 
like aggregation or degradation. Recent advancements, such as 
using dynamic light scattering, offer new ways to rapidly assess 
changes in phage bioactivity (163), but more work is needed to 
develop comprehensive, standardized stability assessment methods 
across diverse therapeutic applications.

Phage formulation for clinical applications. While clinical appli-
cations of  phage formulations show safety (105, 172–175), crucial 
gaps persist in optimizing formulations for diverse administration 
routes and clinical scenarios.

For systemic administration, phages are often reconstituted in 
saline or pH-balanced buffers (83, 176–178), though optimal for-
mulation varies by infections. Recent advances in formulation tech-
nologies, particularly spray-drying, show promise for enhancing 
stability and shelf-life (148), offering improved solutions for storage, 
transport, and administration.

Oral phage therapy may necessitate protection from stomach acid, 
using encapsulation or coadministration with pH-raising additives (93, 
179, 180). Animal studies demonstrate improved bioavailability when 
phages are coadministered with agents that overcome the stomach 
acid barrier (181). Notably, a diverse range of formulation methodol-
ogies has emerged, including microencapsulation, nanocarriers, and 
advanced polymer-based delivery systems (182). However, formula-
tions ensuring consistent oral bioavailability are yet to be determined.

Wound phage therapy has primarily relied on two approach-
es: topical solutions or phage-impregnated dressings, albeit with 
variable efficacy (183–186). For respiratory applications, delivery 
options include nebulized suspensions, dry powders, and soft mist 
inhalers, with dry powder formulations offering improved half-life 
(187) and soft mist inhalers providing superior lung delivery (188).

Preclinical studies are exploring various excipient strategies, 
including ionic hydrogels, microparticles, and liposomes for rapid 
burst-release, while fibrin glue and dynamic covalent cross-linked 
hydrogels enable extended-release dynamics (189–197). Despite 
these advances, further research is needed to optimize phage formu-
lations to maximize therapeutic benefit while maintaining safety 
across different administration routes and infection types.

Phage pharmacology. Understanding the PK and pharmacodynam-
ics (PD) of phages is crucial for optimizing therapeutic efficacy in 
clinical settings (93, 177, 198). However, achieving a comprehensive 
understanding of PK/PD for phage therapy is challenging owing to 
the complex three-way interactions between phages, bacteria, and the 
human host. Since nearly every phage-bacteria-patient combination 
may exhibit a unique PK/PD profile, developing standardized mod-
els applicable across diverse clinical scenarios remains challenging.

PK in phage therapy involves studying the absorption, distribu-
tion, metabolism, and excretion of  phages in the body (199, 200). 
Administration routes present distinct challenges: oral adminis-
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while innovating on past approaches to finally evaluate if, when, 
and how phage therapy can be efficacious in the clinic.

Phage therapy is not alone in requiring innovations on tra-
ditional clinical trial design to demonstrate efficacy. CAR T cell 
therapy has successfully demonstrated efficacy for personalized 
cancer treatments despite patient-specific requirements (211). 
Palliative care research has employed “n of  1 trials” to address 
challenges in patient recruitment and high interpatient variability 
(212). Although these approaches could inform phage therapy trial 
designs, the distinctive economic challenges in antimicrobial devel-
opment may necessitate further innovations to balance scientific 
rigor with cost-effectiveness in clinical trials.

Conclusion
The need for therapeutics against MDR infections is growing, 
and the field of  phage therapy is rapidly advancing to meet this 
challenge. In recent years there has been substantial refinement in 
approaches for phage selection, production, and delivery. Improve-
ments in phage technology are enabling personalized phage thera-
py, while advancements in AI and bioengineering seem poised to 
create substantial therapeutic and commercial opportunities.

Nonetheless, numerous challenges remain. While the gener-
al steps required for successful clinical phage therapy implemen-
tation are becoming clearer, widespread availability still depends 
on addressing key challenges across all approaches. These include 
optimizing phage cocktail design, standardizing phage susceptibil-
ity testing, developing PK/PD methods, and improving stability 
and formulation. Determining optimal parameters for specific clin-
ical indications while reducing preparation time will be critical in 
improving outcomes and broadening the applicability. Many acute 
infections like sepsis are extremely time sensitive, which may limit 
the applicability of  personalized phage therapy. Chronic infections 
often involve biofilms, which can limit phage efficacy and are not 
well accounted for in standard susceptibility testing. Nonetheless, 
despite these challenges, reported clinical benefits still have exceed-
ed 70% in treated cases in several recent series.

While we are encouraged by the recent progress in the field, it is 
clear that a drug development pipeline for phage therapy is needed 
and that this is likely to emerge only with government support. For-
tunately, several national governments, including those of  Belgium, 
Australia, the United States, and Great Britain, have recognized the 
promise of  phage therapy and have contributed to bringing it to its 
current state. However, given the broken economics of  antimicrobi-
al development, increased government involvement through direct 
funding and regulatory changes is needed. Legislation like the pro-
posed PASTEUR Act, which would authorize the US government 
to enter into subscription contracts for critical-need antimicrobials, 
as well as provide $6 billion in funding, could support this pipeline. 
Such initiatives could provide the necessary incentives for drug devel-
opers to invest in phage therapy development, ultimately renewing 
our arsenal against infectious diseases for future generations.
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