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The germinal center (GC) dark zone (DZ) and light zone represent distinct anatomical regions in lymphoid tissue where 
B cell proliferation, immunoglobulin diversification, and selection are coordinated. Diffuse large B cell lymphomas 
(DLBCLs) with DZ-like gene expression profiles exhibit poor outcomes, though the reasons are unclear and are not 
directly related to proliferation. Physiological DZs exhibit an exclusion of T cells, prompting exploration of whether T 
cell paucity contributes to DZ-like DLBCL. We used spatial transcriptomic approaches to achieve higher resolution of T 
cell spatial heterogeneity in the GC and to derive potential pathways that underlie T cell exclusion. We showed that T 
cell exclusion from the DZ was linked to DNA damage response (DDR) and chromatin compaction molecular features 
characterizing the spatial DZ signature, and that these programs were independent of activation-induced cytidine 
deaminase (AID) activity. As ATR is a key regulator of DDR, we tested its role in the T cell inhibitory DZ transcriptional 
imprint. ATR inhibition reversed not only the DZ transcriptional signature, but also DZ T cell exclusion in DZ-like DLBCL 
in vitro microfluidic models and in in vivo samples of murine lymphoid tissue. These findings highlight that ATR activity 
underpins a physiological scenario of immune silencing. ATR inhibition may reverse the immune-silent state and 
enhance T cell–based immunotherapy in aggressive lymphomas with GC DZ–like characteristics.
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Results
Spatial profiling reveals distinct transcriptional programs in GC DZ and 
LZ regions. Reactive GCs display spatial compartmentalization, 
with a proliferative, Ki-67–dense DZ and a follicular dendritic 
cell–rich (FDC-rich) LZ, bordered by T cell–dense extrafollicu-
lar regions (Figure 1A). Spatial analysis highlighted significant 
exclusion of  CD3+ T cells from the activation-induced cytidine 
deaminase–positive (AID-marked) DZ, evidenced by an increased 
CD3-to-AID distance compared with a random spatial distribu-
tion (Figure 1, B and C, and Supplemental Figure 1A; supple-
mental material available online with this article; https://doi.
org/10.1172/JCI187371DS1). In contrast, CD68+ macrophages 
were uniformly distributed across both zones (Figure 1D and Sup-
plemental Figure 1, B and C), serving as a control that supports the 
specificity of  T cell exclusion from the DZ.

To investigate the molecular programs underlying T cell exclu-
sion from the DZ, we performed spatial transcriptional profiling 
of  reactive GCs. DZ and LZ regions were defined using the B cell 
marker CD20 and the LZ marker CD271/NGFR (Figure 1E). 
Digital spatial profiling was chosen for its ability to capture spa-
tially resolved gene expression while preserving tissue architecture. 
Using the GeoMx Cancer Transcriptome Atlas, we analyzed 1,824 
immune- and tumor-related genes in matched GC DZ and LZ 
regions from human tonsils (n = 10 pairs) (21).

This analysis identified a robust DZ/LZ transcriptional signa-
ture composed of  370 differentially expressed genes (adjusted P < 
0.05), with 169 upregulated in the DZ and 201 in the LZ (Figure 1, 
F and G, and Supplemental Table 1). Pathway enrichment revealed 
functionally distinct profiles: DZ regions were enriched for DDR, 
cell cycle progression, and DNA replication stress, while LZ regions 
were enriched for immune signaling pathways (Figure 1, H and I, 
and Supplemental Table 2). Given their spatial origin, our DZ and 
LZ signatures encompass transcripts from multiple cell types. To 
validate that these signatures adequately represent the biology of  
DZ and LZ B cells, we applied them to a whole-transcriptome sin-
gle-cell RNA sequencing (scRNA-Seq) dataset of  GC B cells (Gene 
Expression Omnibus GSE139891) (Supplemental Figure 1D) (17). 
The signatures effectively distinguished DZ from LZ B cell popula-
tions, confirming that they also capture B cell transcriptional states. 
While this provides orthogonal validation, the primary strength of  
our approach lies in its spatial resolution, enabling analysis across 
the full tissue context — including non–B cell contributions.

As an additional validation, we performed an independent 
whole-transcriptome atlas (WTA) DSP and compared DZ and LZ 
regions. We used 2 gene lists to classify GC B cells into DZ and LZ 
types: the spatial DZ/LZ signature and the differentially expressed 
genes identified through the WTA DSP. The spatial DZ/LZ signa-
ture showed greater predictive power than the WTA differential-
ly expressed genes, confirming its strong discriminatory capacity 
(Supplemental Figure 1E).

Spatial heterogeneity of  T cell distribution within the GC. To investi-
gate the spatial organization of  T cell subsets in lymphoid tissue, we 
applied a single-cell-resolved spatial whole-transcriptome (WTX) 
approach using the CosMx Spatial Molecular Imager (SMI) plat-
form across 9 relative normal human tonsillar GCs. Previous iter-
ations of  CosMx SMI enabled profiling of  up to 6,000 RNA tar-
gets; the latest version allows detection of  over 18,000 transcripts, 

Introduction
Tumors employ diverse strategies to evade the immune system, 
ranging from altering their intrinsic properties to manipulating 
their microenvironment (1). Evasion mechanisms include tumor 
cell expression of  inhibitory immune checkpoint molecules (2), 
recruitment of  immunosuppressive cell subsets (3, 4), and modi-
fication of  the extracellular matrix to impede immune cell func-
tion (5, 6). T cells contribute to antitumor immunity and are also 
central to multiple immunotherapy approaches, including check-
point blockade and adoptive cell therapies (1). Understanding 
the mechanisms that govern T cell exclusion within the tumor 
microenvironment is essential for improving treatment response 
and immunotherapeutic efficacy.

In epithelial cancers, T cell exclusion has been linked to stro-
mal remodeling and activation of  cell-intrinsic pathways such 
as WNT/β-catenin, TGF-β, and PI3K signaling (7–11). In con-
trast, the mechanisms underlying T cell exclusion in hematolog-
ical malignancies like diffuse large B cell lymphoma (DLBCL) 
remain poorly defined. Unlike epithelial tumors, lymphomas 
lack structured tumor-stroma boundaries, posing challenges 
in delineating spatial immune barriers. While several immune 
escape mechanisms in lymphoma have been identified, includ-
ing loss of  MHC molecules and constitutive PD-L1 expression 
(12, 13), the complete range of  strategies these lymphomas use 
to evade T cell–mediated immunity is still unclear. Lymphomas 
with a double-hit gene signature (DHITsig) and poor progno-
sis display fewer T cells (14, 15), but the mechanisms of  this 
are also not fully defined. Similarly, dark zone–like lymphomas 
resemble the dark zone of  the germinal center (GC); thus we 
turned to GCs in lymphoid organs as a model system to explore 
the basis of  T cell exclusion in a homogeneous cellular context 
(16–18). Although not physically separated, the GC is function-
ally organized into 2 distinct regions: the dark zone (DZ), where 
B cells proliferate and mutate their antibody variable genes, and 
the light zone (LZ), where B cells engage other immune cells, 
including T follicular helper cells, to refine antibody affinity 
(19, 20). This natural segregation of  cellular activities within 
the GC provides an ideal setting to study factors influencing  
T cell distribution.

Using quantitative immunohistochemistry (IHC), digital spa-
tial profiling (DSP), and single-cell spatial transcriptomics, we 
examined the in situ microenvironment of  the GC LZ and DZ 
areas, detailing their relationship with T cell localization and 
phenotype. We identified the LZ-DZ interface as a barrier-less 
constraint limiting homogeneous intra-GC T cell distribution. 
T cell exclusion was recapitulated in DLBCLs expressing a GC 
DZ gene signature, suggesting a link between GC biology and 
tumor immune evasion. Spatial transcriptomics analysis revealed 
preferential activation of  DNA damage response (DDR) path-
ways and suppression of  inflammatory signaling in the DZ, cor-
relating with increased chromatin compaction. We identify the 
ataxia telangiectasia and Rad3 related (ATR) kinase as a central 
regulator of  these pathways, sustaining the DZ transcriptional 
program and promoting T cell exclusion. These findings position 
ATR as a central player in spatial regulation of  the GC reaction 
and point to potential mechanisms that may be co-opted by a 
subset of  DLBCLs to facilitate immune evasion.
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precise mapping of  immune cell populations relative to the DZ-LZ 
boundary (Figure 2C). Most active T cell subsets — Tregs, Tfh 
cells, CD8+ T cells, and memory T cells — were enriched in the 
LZ. In contrast, naive CD8+ and DN T cells showed no compart-
mental preference (Figure 2D). Naive CD8+ T cells were defined 
by high expression of  CD8 and CCR7, and low expression of  
activation- and memory-associated genes, including HLA-DRB1, 
GZMA, LAG3, IFNG, and CD99; all non-naive CD8+ cells were 
classified as CD8+ T cells.

The spatial trends were corroborated at the protein level using 
hyperplexed immunofluorescence (IF) with the MACSima platform, 
which demonstrated significant LZ enrichment for Tfh and memory 
T cell subsets (CD4+ and CD8+), while DN and naive CD4+CD8+ 
T cells showed no significant association with either compartment 
(Figure 2E and Supplemental Figure 2, B and C). The lack of  LZ 
enrichment for naive CD8+ and DN T cells — populations not 

enabling comprehensive spatial transcriptomics at both single-cell 
and subcellular resolution. Cell type annotation was performed via 
label transfer from a well-annotated scRNA-Seq reference dataset 
(HCATonsilData) using MaxFuse, a cross-modality integration 
algorithm. This strategy enabled robust identification of  transcrip-
tionally defined immune populations — including T regulatory 
(Treg), T follicular helper (Tfh), memory, CD8+ effector, naive 
CD8+, and CD4/CD8-double-negative (DN) T cells — within the 
architectural context of  the GC (Figure 2A) (22).

DZ and LZ regions were independently segmented based 
on spatial transcriptomic signatures. We first confirmed that the 
DSP-derived DZ and LZ signatures could accurately define corre-
sponding regions within the CosMx datasets, providing orthogonal 
spatial validation across platforms (Figure 2B and Supplemental 
Figure 2A). With these defined compartments, we next investigat-
ed the distribution of  T cell subsets within each region, enabling 

Figure 1. Spatial profiling uncovers unique transcriptional programs in the dark and light zones of GCs. (A) Representative immunohistochemistry/
immunofluorescence (IHC/IF) micrographs showing Ki-67 (green signal), NGFR (pink signal), CD4 (blue signal), and CD8 (brown signal) expression. Ki-67 
highlights proliferative DZ regions; NGFR marks the LZ. Original magnification, ×200. Scale bar: 100 μm. (B) Representative IF images of CD3+ (green 
signal) and AID+ (red signal) cells within GCs. Original magnification, ×200. Scale bar: 100 μm. (C) Cumulative distribution functions (CDFs) of CD3+–AID+ 
nearest-neighbor distances in observed samples (pink curve) versus randomized controls (black curve). Statistical analysis: Wilcoxon’s test. (D) CDFs of 
CD68+–AID+ nearest-neighbor distances in observed versus randomized samples. Statistical analysis: Wilcoxon’s test. (E) DSP analysis of ROIs from DZ 
(n = 5) and LZ (n = 5) regions defined by CD20 and NGFR expression. (F) Volcano plot showing differentially expressed genes (adjusted P < 0.05) between 
DZ and LZ regions. (G) Heatmap of differentially expressed genes with unsupervised hierarchical clustering across ROIs. (H) Pathway enrichment of 169 
DZ-upregulated genes using the Reactome Pathway database. (I) Pathway enrichment of 201 LZ-upregulated genes using Reactome. 
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RNA-Seq datasets (GSE117556 and GSE32918). Based on the 
expression of  the DZ/LZ spatial signature, we classified the sam-
ples into DZ-like, LZ-like, and intermediate groups. Uniform man-
ifold approximation and projection (UMAP) of  these groups con-
firmed distinct expression patterns (Figure 3B). DZ-like cases were 
associated with significantly shorter overall survival (Figure 3C and 
Supplemental Figure 3A), a trend that remained consistent across 
GC B cell (GCB) and activated B cell (ABC) subtypes (Supplemen-
tal Figure 3, B–E). Analysis of  35 DHL cases revealed that those 
with a high DZ signature exhibited the lowest expression of  the T 
cell signature, further supporting that the GC DZ signature cap-
tures a DZ-like biology in aggressive B cell lymphomas involving 
attenuated T cell infiltration (Supplemental Figure 3F).

To determine whether the inverse correlation between DZ spa-
tial signature expression and T cell infiltration holds true at the level 
of  intratumoral heterogeneity, we performed DSP on 11 regions of  
interest from a single DLBCL lymph node biopsy (Figure 3D and 
Supplemental Table 4). Immune cell composition analysis revealed 
a strong inverse correlation between DZ signature expression and 
T cell abundance (Figure 3, E and F), with no significant associ-
ations detected for other immune cell populations (Supplemental 
Figure 3G). Visualization of  CD3 staining showed reduced T cell 
density in regions with high DZ signature expression, supporting 
the inverse correlation (Figure 3G).

To assess whether this spatial relationship holds across a larg-
er cohort, we analyzed an independent cohort of  103 DLBCL 
tissue microarray samples profiled by DSP whole-transcriptome 
analysis using B cell (CD20+) and T cell (CD3+) morphological 
windows (Figure 3H) (33). Consistent with the intratumoral pro-
filing data, higher DZ signature expression correlated with lower 
abundance of  CD3 area of  interest (AOI) nuclei counts (Figure 
3I). This association was further confirmed by multiplex IHC 
in 79 of  the DLBCL cases, which confirmed that CD20+ tumor 
regions with elevated DZ signature expression displayed reduced 
CD3+ T cell density (Figure 3J).

These results establish a direct association between the DZ spa-
tial transcriptional program and T cell exclusion in both reactive 
GCs and DLBCL.

The GC DZ spatial signature is independent of  AID-induced muta-
genesis. AID plays a crucial role in DNA mutagenesis during 
immunoglobulin somatic hypermutation and contributes to the 
epigenetic heterogeneity of  GC B cells (34). To determine whether 
AID activity is required to maintain the spatial DZ transcriptional 
signature, we analyzed GCs from Aicda-deficient (Aicdatm1(cre)Mnz/J) 
mice, in which the endogenous Aicda coding sequence is replaced 

expected to be actively engaged in MHC-dependent interactions — 
was consistent with the reduced expression of  MHC molecules in 
DZ B cells compared with those in the LZ (Figure 2, F and G, and 
Supplemental Table 3).

Since DN T cells include a substantial fraction of  γδ T cells, 
we further examined their localization within GCs. IHC for 
γδTCR (T cell receptors), a marker of  γδ T cells, revealed rare γδ T 
cells, which were preferentially enriched in the DZ (Supplemental 
Figure 2, D and E) (23).

To further assess the spatial positioning of  T cells relative to 
B cell subtypes, we quantified the proximity of  CD4+ and CD8+ T 
cells to PLK1+ DZ B cells and EGR1+ LZ B cells — representative 
markers derived from our spatial transcriptional signatures (Supple-
mental Figure 2, F–I). Both T cell types were located closer to LZ B 
cells, consistent with their LZ enrichment. However, CD8+ T cells 
exhibited markedly shorter distances to DZ B cells than CD4+ T 
cells. This proximity correlated with increased expression of  IFN-γ 
among CD8+ T cells, with IFN-γ+ cells preferentially localized at 
the DZ-LZ interface (Supplemental Figure 2, J–L), suggesting that 
effector CD8+ T cells accumulate at GC boundaries where they 
may be poised for functional engagement.

Together, these findings reveal compartment-specific localiza-
tion of  T cell subsets, with functional CD8+ T cells concentrating 
at the GC interface and naive or DN T cells distributing inde-
pendently of  GC zonation.

The GC DZ spatial signature negatively correlates with T cell gene pro-
grams and clinical outcome in DLBCL. DZ-associated gene signatures, 
including the double-hit signature (DHITsig) and the molecular high-
grade (MHG) signature, are linked to high-grade B cell lymphomas 
with poor prognosis and reduced T cell abundance (14, 15). DHITsig 
was originally identified in high-grade B cell lymphoma with MYC 
and BCL2 rearrangements (HGBCL-DH-BCL2). We have previously 
shown that a spatial GC DZ signature clusters aggressive lymphoma 
types (MHG and DHIT) and correlates with poor prognosis (18). 
To investigate whether lymphomas exhibiting high DZ spatial signa-
ture expression display similar T cell depletion patterns, we analyzed 
transcriptomic data from 3,610 DLBCL cases across 8 independent 
cohorts (GSE32918, GSE98588, GSE87371, GSE10846, Reddy, 
Schmitz, GSE117556, GSE31312) (24–31). Using xCell transcrip-
tional deconvolution (32), we found that DZ-like cases had reduced 
frequencies of most T cell populations, except for CD8+ and γδ T cells, 
recapitulating the patterns observed in reactive GCs (Figure 3A).

Next, we assessed the prognostic significance of  the DZ and 
LZ spatial signatures by analyzing transcriptomic data from 1,078 
aggressive B cell lymphomas, harmonized from 2 well-annotated  

Figure 2. T cell distribution in the GC varies by subset and function. (A) Schematic overview of the CosMx SMI whole-transcriptome (WTX) workflow. 
FFPE tonsil tissues were processed, followed by IF imaging and single-cell segmentation. Spatial transcriptomics was performed for 18,935 RNA targets, 
detecting approximately 900–1,100 transcripts per cell. Data were visualized by uniform manifold approximation and projection (UMAP), and cell type iden-
tities were assigned via label transfer from the HCA tonsil reference dataset. (B) Spatial enrichment maps of DZ and LZ transcriptional signatures across 4 
representative GCs. (C) Spatial distribution of T cell subtypes in GC microregions, highlighting immune cells including Tfh, CD8+, memory, naive CD8+, Treg, 
T helper, γδ T, T follicular regulatory, and DN cells. (D) Quantification of T cell distribution relative to the DZ-LZ boundary. Cells were analyzed within a –100 
μm (DZ) to 100 μm (LZ) range, binned into 10-μm increments. Subtypes analyzed include Treg, Tfh, CD8+, naive CD4+, memory T, DN, and naive CD8+, with 
spatial trends depicted in a line graph. (E) Quantification of T cell subtypes including Tfh, memory CD4+, memory CD8+, DN, naive CD4+, and naive CD8+ 
cells based on MACSima hyperplex analyses to evaluate their differential distribution between DZ and LZ (n = 9 GCs). Statistical analysis was assessed 
using a 2-tailed unpaired Mann-Whitney test. Values are shown as mean ± SEM; *P < 0.05. (F) Volcano plot of differentially expressed genes between DZ 
and LZ B cells, highlighting upregulated genes in each region (adjusted P value < 0.05). (G) Heatmap of HLA class I and II gene expression in DZ versus LZ 
regions, clustered hierarchically by expression pattern.



The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

J Clin Invest. 2025;135(18):e187371  https://doi.org/10.1172/JCI1873716

with a Cre recombinase cassette (35). Cre expression was uniform 
across GC B cells in Aicda–/– mice, confirming effective knockout 
and providing a surrogate marker for Aicda locus inactivation (Fig-
ure 4, A and B). Spontaneous GCs in the mesenteric lymph nodes 
(mLNs) of  Aicda–/– mice were larger and had an increased frac-
tion of  Ki-67+ proliferating cells compared with wild-type (WT) 
controls, consistent with prior findings that loss of  AID results in 
impaired clonal selection and accumulation of  proliferative cen-
troblasts (Figure 4, A and C) (36).

To further investigate the impact of  AID deficiency on the 
DZ signature, we conducted spatial transcriptomic profiling 
using Visium methodology on 1,950 microregions from mLNs of  
WT (n = 1,270) and Aicda–/– (n = 680) mice (Figure 4D). Unsu-
pervised clustering identified 7 transcriptionally distinct regions 
in WT mLNs and 5 in Aicda–/– mLNs (Supplemental Figure 4, 
A–D, and Supplemental Table 5). Differential expression analy-
sis of  follicle/GC clusters revealed 1,007 differentially expressed 
genes (392 upregulated in WT and 615 in Aicda–/– GCs) (Figure 

4, E and F, and Supplemental Table 6). As expected, Igha expres-
sion was elevated in WT GCs, whereas Ighm was upregulated in 
Aicda–/– GCs, consistent with the loss of  immunoglobulin class-
switch recombination in mutant cases.

Importantly, the Aicda–/– follicular/GC microregions were 
globally enriched for the DZ spatial signature compared with WT 
counterparts (Figure 4G, Supplemental Figure 4E, and Supple-
mental Table 7). This enrichment was accompanied by lower T cell 
signature expression (Figure 4H), which was further confirmed by 
IHC staining of  CD4 and CD8 in total GCs and DZ/LZ regions 
(Figure 4, I–L, and Supplemental Figure 4, F and G). These results 
suggest that the DZ transcriptional program is independent of  AID 
activity and that AID deficiency does not prevent T cell exclusion.

To investigate the transcriptional characteristics of  the DZ 
signature independent of  AID activity, we analyzed scRNA-Seq 
data from human GC DZ B cells (GSE139891), stratified into 
AICDA-high (AICDA expression > tertile 2) and AICDA-low 
(undetectable AICDA expression) groups (Supplemental Figure 

Figure 3. The GC DZ spatial signature in aggressive B cell lymphomas is associated with reduced T cell infiltration. (A) DZ enrichment scores correlating DZ 
gene expression and xCell T cell cytotype scores calculated in 8 DLBCL datasets. Positive DZ enrichment values indicate a positive association between the 
DZ spatial signature and the xCell cytotype scores, while negative values indicate a negative association. Statistical significance is shown with Wilcoxon’s 
adjusted P values. (B) UMAP projection of 1,078 harmonized DLBCL cases classified based on the DZ/LZ spatial signature; DZ-like cases (red), LZ-like cases 
(light blue), intermediate cases (green). (C) Kaplan-Meier survival plot showing overall survival (OS) of DZ-like, LZ-like, and intermediate groups from the 
harmonized dataset (1,078 cases). (D) DSP images of 11 ROIs selected within CD20 (green signal) and CD3E (red signal) infiltrates of a lymph node with 
DLBCL. Total expression of the DZ signature is shown from low (pink) to high (red). Original magnification, ×50. Scale bar: 250 μm. (E) Pie charts showing 
SpatialDecon cytotype scores across 11 ROIs, ranked by DZ signature expression. (F) Scatterplot with correlation line of DZ spatial signature expression 
and SpatialDecon T cell score across 11 ROIs (Kendall’s correlation, P < 0.05). (G) DSP images of lowest DZ signature expression ROI (001) and highest DZ 
signature expression ROI (004). (H) Schematic of DLBCL tissue microarray (TMA) consisting of 103 patient samples, analyzed using DSP WTA with DAPI, 
CD20 (red signal​), and CD3E (cyan signal) to observe T cell content and DZ signature expression. (I) Box plot comparing CD3 AOI nuclear count percentages 
between high and low DZ signature groups. Statistical analysis was performed using a 2-tailed unpaired Mann-Whitney test. Values are shown as mean ± 
SEM; ****P < 0.0001. (J) Scatterplot with correlation line of DZ spatial signature expression within the CD20+ segment and the percentage of CD3+ cells per 
ROI across 79 DLBCL samples. Statistical significance was assessed using Spearman’s correlation coefficient (R) and P value.
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4H). AICDA-high DZ cells exhibited significantly higher expres-
sion and enrichment of  the DZ spatial signature compared with 
AICDA-low DZ cells (Figure 4M and Supplemental Table 7). 
Pathway analysis revealed that AICDA-high DZ B cells were 
enriched for genes involved in the G2/M cell cycle phase (Figure 
4N, Supplemental Figure 4I, and Supplemental Table 8), whereas 
AICDA-low DZ B cells showed enrichment in DNA replication 
machinery genes and ATR-mediated replication stress pathways 
(Figure 4O and Supplemental Table 8).

These results suggest that ATR-mediated replication stress may 
contribute to the DZ transcriptional program and its associated T 
cell exclusion, independent of  AICDA-induced mutagenesis.

ATR inhibition rewires DZ programs, enabling a T cell–permissive 
environment. Given the potential importance of  ATR in maintain-
ing DZ identity in an AID-independent manner, we further evalu-
ated ATR-dependent pathways within the GC. DZ transcription-
al profiling revealed an ATR-dependent activation of  DDR and 
repair pathways. ATR is a key regulator of  the cellular response 

Figure 4. The spatial signature of DZ cells is independent of AICDA-related mutational processes. (A) Representative photomicrographs of H&E and IHC 
for Cre+ and Ki-67+ cells on mesenteric lymph nodes from WT and Aicda–/– mice. Original magnification, ×200. Scale bars: 100 μm. (B and C) Quantitative 
analyses of Cre+ (B) and Ki-67+ (C) cells in WT and Aicda–/– GCs (n = 20). Statistical analysis was assessed using a 2-tailed unpaired Mann-Whitney test. 
Values are shown as mean ± SEM; ***P < 0.001, ****P < 0.0001. (D) Representative photomicrographs of H&E-stained sections from WT and Aicda–/– 
mesenteric lymph nodes involved in the Visium spatial transcriptome experiment profiling. Original magnification, ×50. Scale bars: 250 μm. (E) Spatial 
visualization of WT and Aicda–/– follicle/GC clusters. (F) Volcano plot showing differentially expressed genes between WT cluster 4 and Aicda–/– clusters 1 
and 3 (Wilcoxon’s rank sum test adjusted P values < 0.05, absolute log fold change > 0.025). (G and H) Spatial projection of DZ spatial signature (G) and T 
cell signature (H) total expression in WT and Aicda–/– samples. (I–L) Representative photomicrographs of triple IHC staining for DZ Ki-67+ (cyan signal), LZ 
CD21+ (pink signal), and CD4+ (I) or CD8+ cells (K) (brown signal) and quantitative analyses of the percentage of CD4+ (J) or CD8+ (L) T cells in WT and Aicda–/– 
GCs (n = 10 WT GCs; n = 10 Aicda–/– GCs). Original magnification, ×400. Scale bars: 50 μm. Statistical analysis: 2-tailed unpaired Mann-Whitney test. Mean 
± SEM is shown. (M) Gene set enrichment analysis (GSEA) of DZ spatial signature in AICDA-high and AICDA-low DZ B cells. (N) Pathway enrichment of 257 
AICDA-high signature genes using Reactome Pathway library. (O) Pathway enrichment of 127 AICDA-low signature genes using Reactome Pathway library.
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patient-derived tumor xenografts (PDXs). Among 22 PDX tumor 
samples, two were selected based on their DZ/LZ spatial signa-
ture expression: one DZ-like sample (high DZ, low LZ expres-
sion) and one LZ-like sample (low DZ, high LZ expression) 
(Figure 5M and Supplemental Methods). T cells were expand-
ed by coculturing of  PBMCs with corresponding irradiated (10 
Gy) PDX cell lines, and the expanded T cells were subsequently 
harvested. T cell killing assays were performed across a range of  
effector-to-target ratios, in which LZ-like DLBCL cells displayed 
greater sensitivity to T cell–mediated killing compared with the 
DZ-like DLBCL cells. Importantly, ATRi pretreatment (1 μM and 
5 μM) remarkably enhanced T cell killing of  DZ-like DLBCL cells 
(Figure 5N), whereas LZ-like DLBCL cells (Figure 5O), which 
were already sensitive, showed no further improvement.

These results show that ATR inhibition reprograms DZ-like 
DLBCLs and attenuates their immune-silent state, facilitating 
increased T cell interaction and susceptibility to cytotoxicity.

ATR inhibition promotes T cell infiltration in the GC microenvi-
ronment. To validate these findings in vivo, we treated a total of  
14 BALB/c mice with 25 mg/kg ATRi (n = 4 per time point) or 
vehicle control (n = 2 per time point) for either 2 or 5 consecu-
tive days, and harvested mLNs the following day. After 5 days 
of  treatment, ATRi-treated mice exhibited a significant increase 
in CD3+ T cell infiltration within chronic, spontaneously formed 
mLN GCs compared with vehicle-treated controls (Supplemen-
tal Figure 7A).

In a complementary experiment, C57BL/6 mice were immu-
nized with the T cell–dependent antigen NP-OVA to induce GC 
formation (Figure 6A). Two days after immunization, mice 
(n = 5 per group) were treated with either 50 mg/kg ATRi or 
vehicle control for 5 consecutive days, and lymphoid tissues 
were harvested the following day. IHC staining of  mLN sections 
for Ki-67 and CD3 revealed a higher number of  CD3+ T cells per 
GC in ATRi-treated mice relative to controls (Figure 6, B and C, 
and Supplemental Figure 7, B and D).

Triple staining for CD3, CD21, and Ki-67 enabled spatial 
mapping of  T cells within GC compartments, distinguishing the 
DZ (Ki-67+CD21–) from the LZ (CD21+). This analysis revealed 
that T cell infiltration occurred predominantly in the DZ, with 
no significant increase in the LZ (Figure 6D). Additional stain-
ing for CD4 and CD8 was performed to define the subset of  
infiltrating T cells, revealing increased numbers of  both T 
cell subsets within GCs across both mouse models, with DZ- 
infiltrating T cells primarily composed of  activated Ifnγ+ CD8+ 
cytotoxic T cells (Figure 6, B and E–G, and Supplemental Figure 
7, C, E, and F).

Consistent with increased cytotoxic T cell infiltration, mRNA 
in situ hybridization (ISH) revealed induced Ifnb1 expression in DZ 
B cells of  ATRi-treated mice (Figure 6, F and H, and Supplemental 
Figure 7, C and G), indicating activation of  a localized type I inter-
feron response within the DZ microenvironment. Given the role of  
type I interferons in promoting antigen presentation, we assessed 
MHC class I protein expression by quantitative IHC. ATRi-treated 
mice exhibited a significant MHC-I enrichment in GC DZ regions, 
supporting a role for ATR in maintaining immune silencing by 
restricting CD8+ T cell recognition (Figure 6, F and I, and Supple-
mental Figure 7, C and H).

to replication stress, playing a pivotal role in preserving chromatin 
organization and in restraining activation of  the cGAS/STING 
pathway (37–39). ATR likely controls these key components of  
the DZ spatial signature (Supplemental Figure 5, A and B, and 
Supplemental Table 9).

Consistent with this, DZ B cells exhibited enrichment for 
chromatin remodeling and nuclear stability markers, including 
RAD51, γH2AX (phospho–S139-H2AX), phospho–S824-KAP1, 
SMARCA4 (BRG1), EZH2, and heterochromatin-associated 
markers H3K9me3 and HP1 (Supplemental Figure 5C). Further-
more, DZ B cells displayed features of  chromatin compaction, 
as indicated by higher minimum DAPI intensity extracted from 
nuclear morphology and chromatin organization (NMCO) fea-
tures in DAPI-labeled GCs (Supplemental Figure 5, D and E) 
(40). Heterochromatin features were predictive of  DZ identity — 
as a random forest model trained on NMCO features accurately 
classified DZ and LZ B cells (Supplemental Figure 5F) — and 
correlated positively with DZ signature expression in DLBCLs 
(Supplemental Figure 5G).

Nuclear stability restricts cGAS/STING pathway activa-
tion, and we found that DNA and RNA sensing pathways were 
predominantly LZ restricted (Supplemental Figure 5H and Sup-
plemental Table 9). Proximity ligation assay confirmed cGAS 
localization to the LZ, with minimal activity in the DZ (Sup-
plemental Figure 5, I and J), supporting the notion that the 
DZ is an “immune-cold” environment, relatively resistant to  
inflammatory stimuli.

To investigate the role of  ATR in maintaining the DZ tran-
scriptional program, we treated two DZ-like lymphoma cell lines, 
HT and SUDHL-5 (Supplemental Figure 6A), with the ATR 
inhibitor (ATRi) ceralasertib (AZD6738) or DMSO control for 
48 hours (Figure 5A and Supplemental Table 10). At 1 μM con-
centration, ATR inhibition did not impact cell viability (Supple-
mental Figure 6, B and C). ATRi treatment significantly increased 
micronuclei formation, a precursor to cGAS/STING activation 
(Figure 5, B and C) (41). Moreover, ATRi-induced transcrip-
tional changes (Supplemental Table 11) included upregulation 
of  interferon-stimulated genes and MHC-I/II transcripts, revers-
ing the immune-evasive profile of  DZ-like DLBCLs (Figure 5D 
and Supplemental Table 7). Notably, ATRi-treated DLBCL cells 
revealed a shift in transcriptional identity, with enrichment of  the 
LZ spatial signature and suppression of  the DZ spatial signature, 
suggesting that ATR activity reinforces the DZ transcriptional 
program (Figure 5E and Supplemental Table 7).

Next, to explore the potential impact of  ATR inhibition on 
immune cell recruitment, we performed a competitive microflu-
idic assay (42, 43), coculturing peripheral blood mononuclear 
cells (PBMCs) from healthy donors with ATRi- or DMSO-treat-
ed HT and SUDHL-5 DZ-like DLBCL cells (Figure 5F). After 
24 and 48 hours, PKH26-labeled PBMCs showed significant-
ly increased infiltration into ATRi-treated chambers (Figure 
5, G–J). Fluorescence microscopy revealed direct interactions 
between infiltrating CD3+ T cells and ATRi-treated DLBCL 
cells (Figure 5, K and L).

To evaluate the effect of  enhanced T cell recruitment through 
ATR inhibition in a model representing the patient DLB-
CL immune context, we used primary cell lines derived from 
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Figure 5. ATRi allows immune permeation of a DZ-like DLBCL in vitro. (A) Schematic of ATRi treatment (ceralasertib, AZD6738) in HT and SUDHL‑5 cells: cells 
treated with DMSO or AZD6738 (1 µM) for 48 hours. (B) Representative IF images of HT and SUDHL‑5 nuclei after 1 µM ATRi for 48 hours (green: lamin B1). 
Arrows indicate micronuclei. Scale bars: 5 µm. (C) Quantification of micronuclei formation (relative to IF analysis in B). (D) GSEA on ATRi and DMSO samples 
using the MHC and IFN‑γ signature. (E) GSEA on ATRi and DMSO samples using DZ and LZ spatial signatures. (F) Schematic of competitive microfluidic device. 
PKH26‑labeled PBMCs loaded into the central chamber; HT or SUDHL‑5 cells embedded in Matrigel with ATRi or DMSO and loaded in lateral chambers. (G–J) 
Visualization and quantification of red fluorescent PBMCs in HT (G and H) and SUDHL‑5 (I and J) chambers at 24 and 48 hours. (G and I) Scale bars: 125 µm. Mean 
± SD from 3 replicates using PBMCs from different donors (n = 3). (K) Confocal microscopy of ATRi-treated DLBCL gel chamber at 48 hours. Arrows show inter-
actions between CD3+ (green), PKH26+ (red) T cells and DAPI+ (blue) HT cells. Visible‑light image (left) and Z‑stack (right) shown. Scale bars: 50 µm (top left), 
5 µm (bottom left and right). (L) Box plot showing distances between PBMCs and tumor cells in DMSO vs. ATRi chambers, measured in X, Y, Z coordinates in 
the microfluidic chip. (M) Schematic of experimental protocol. Primary tumor cells from DLBCL PDXs were selected based on spatial gene expression (DZ-like or 
LZ-like). Tumor cells pretreated with ATRi AZD6738 (1 or 5 µM) were used in T cell–mediated cytotoxicity assays. (N, O) Dose–response curves of T cell–mediated 
killing across indicated target/effector ratios for DZ-like (N) or LZ-like (O) DLBCL PDX-derived cells treated with 1 or 5 µM ATRi. Statistical analysis was assessed 
using a 2-tailed unpaired Mann-Whitney test (C, H, J, and L). Values are shown as mean ± SEM; *P < 0.05, **P < 0.01, ****P < 0.0001.
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replication stress response in the GC DZ, preserving nuclear 
integrity during rapid proliferation (39). It has also been implicat-
ed in modulating immune responses in other cancers, where ATR 
inhibition can promote T cell recruitment and enhance immune 
activation (46, 47). However, its specific role in shaping the 
immune landscape of  the GC — and of  DZ-like lymphomas —  
has not been previously defined. In vivo, ATR inhibition dis-
rupted the immune-silent character of  the GC DZ, reinforcing 
its role as a key regulator of  T cell exclusion. Treatment with 
ATR inhibitors led to selective infiltration of  CD4+ and CD8+ T 
cells into the DZ, accompanied by activation of  cytotoxic CD8+ 
T cells and induction of  type I interferon signaling. Notably, this 
was associated with increased MHC-I expression on DZ B cells, 
suggesting that ATR normally functions to suppress antigen pre-
sentation and limit local immune activation (48). These findings 
support a model in which ATR activity reinforces the prolifera-
tive, immune-protected state of  the DZ by actively suppressing 
cues that would otherwise recruit and engage T cells. By lifting 
this suppression, ATR inhibition reprograms the DZ into an 
immune-permissive environment, enhancing T cell access and 
effector function. This mechanism may extend to DZ-like DLB-
CLs, which similarly exhibit low T cell infiltration, and high-
lights ATR inhibition as a rational strategy to sensitize these 
tumors to T cell–based immunotherapies.

Methods

Sex as a biological variable
Our study examined both male and female human reactive tonsil sam-

ples and animals in a balanced manner. Animals of  both sexes were 

randomly assigned to experimental groups to ensure unbiased repre-

sentation. Throughout the course of  the study, no significant sex-de-

pendent differences were observed in any of  the measured parameters.

Collection and handling of human tissue samples
Formalin-fixed, paraffin-embedded (FFPE) samples of  human tonsils 

with reactive follicular hyperplasia (n = 20) were selected from the 

archives of  the Tumor Immunology Unit, University of  Palermo, for 

in situ quantitative IHC and IF, mRNA in situ hybridization (ISH), and 

proximity ligation assay analyses. One FFPE lymph node tissue sample 

involved by DLBCL was collected from the archives of  the Pathology 

Together, these in vivo results indicate that ATR inhibition 
perturbs the immune-silent status of  the GC DZ, inducing local 
type I interferon, enhanced MHC expression, and cytotoxic  
T cell recruitment.

Discussion
In this study, we used high-resolution spatial transcriptomics to 
interrogate the immune architecture of  the GC, with a particular 
focus on T cell positioning. Using single-cell-resolved WTX via 
the CosMx platform, we uncovered substantial spatial hetero-
geneity in T cell distribution across the GC. Most T cell subsets 
— including Tfh cells, Tregs, and memory CD8+ T cells — were 
preferentially enriched in the LZ, while CD4/CD8-DN and 
naive CD8+ T cells showed no zone-specific enrichment. These 
findings were confirmed at the protein level using hyperplexed 
immunofluorescence (MACSima), reinforcing the idea that the 
LZ serves as the primary site of  T cell–B cell interaction within 
the GC, whereas the DZ remains largely T cell excluded.

To understand the molecular basis of  this compartmental 
organization, we leveraged digital spatial profiling to derive a spa-
tially accurate signature for the DZ and LZ regions based on tran-
scriptional profiling. Our analysis revealed distinct transcriptional 
programs in these zones, with the DZ marked by upregulation 
of  DNA damage response, cell cycle, and DNA replication stress 
pathways, while the LZ was enriched in immune signaling net-
works. These spatial gene expression programs, coupled with the 
exclusion of  T cells from the DZ, suggested a functional compart-
mentalization that may be retained in GC-derived lymphomas.

DHIT and MHG B cell lymphomas — which exhibit DZ-like 
transcriptional features — tend to have reduced T cell infiltration 
(14, 44); however, the contribution of  spatially defined DZ signa-
tures to this immune-cold phenotype had not been directly exam-
ined. Using our GC-derived DZ signature, we stratified DLBCL 
cases and found that tumors with high DZ signature expression 
were consistently associated with low T cell abundance. These 
results suggest that DZ-like lymphomas may be intrinsically 
resistant to T cell–mediated immunotherapies, such as bispecific 
antibodies and CAR T cells, owing to an underlying biology of  
immune exclusion rooted in their spatial programming (45).

A key mechanistic insight from our work involves the DNA 
damage response kinase ATR. ATR is known to orchestrate the 

Figure 6. Functional impact of ATRi treatment on GC response. (A) Schematic representation of experimental protocol. In one experiment on ten 
C57BL/6J mice, immunization with NP-OVA in alum on day 0, followed by treatment with vehicle (n = 5) or AZD6738 (50 mg/kg, n = 5), was performed 
from day 2 to day 6. mLNs were harvested on day 7 for analysis. (B) Box plots showing quantitative analysis of CD3+, CD4+, and CD8+ T cell infiltration in 
indicated numbers of total GCs and DZ and LZ compartments in vehicle-treated (CTRL) versus ATRi-treated mice. (C) Representative photomicrographs 
of double-marker IHC for Ki-67+ (brown) and CD3+ (pink) cells in mLN GCs from vehicle-treated (CTRL) and ATRi-treated mice. Original magnification, 
×400. Scale bars: 50 μm. (D) Combined IHC/IF staining for CD3+ (brown), CD21+ (pink), and Ki-67+ (cyan) cells in mLN GCs from vehicle-treated (CTRL) and 
ATRi-treated mice, showing spatial distribution of T cells in DZ and LZ compartments. Original magnification, ×400. Scale bars: 50 μm. (E) Combined IHC/
IF staining for CD4+ (pink), CD8+ (brown), and Ki-67+ (cyan) cells in mLN GCs from vehicle-treated (CTRL) and ATRi-treated mice, illustrating phenotype of 
infiltrating T cells. Original magnification, ×400. Scale bars: 50 μm. (F) Box plots showing quantitative analysis of Ifnγ+CD8+ T cells, Ifnb1+CD20+ B cells, 
and MHC-I expression in indicated numbers of total GCs and DZ and LZ compartments in vehicle-treated (CTRL) versus ATRi-treated mice. (G) Repre-
sentative images of combined mRNA ISH for Ifnγ (brown) and double-marker IHC for CD8 (pink) and Ki-67 (cyan) in mLN GCs from vehicle-treated (CTRL) 
and ATRi-treated mice, showing localization of activated CD8+ T cells. Original magnification, ×400 and ×630 (insets). Scale bars: 50 μm and 25 μm. (H) 
Representative images of combined mRNA ISH for Ifnb1 (brown) and double-marker IHC for CD20 (pink) and Ki-67 (cyan) in vehicle-treated (CTRL) and 
ATRi-treated mice, highlighting induction of type I interferon response in the DZ. Original magnification, ×400 and ×630 (insets). Scale bars: 50 μm and 25 
μm. (I) Representative IHC staining for MHC-I (brown) or MHC-I (brown) and Ki-67 (violet) in vehicle-treated (CTRL) and ATRi-treated mice, demonstrating 
increased MHC-I expression in the DZ in response to ATR inhibition. Original magnification, ×400 and ×630 (insets). Scale bars: 30 μm. Box plot statistical 
analysis: 2-tailed unpaired Mann-Whitney test. Mean ± SEM is shown; *P < 0.05, **P < 0.01, ***P < 0.001.
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treated for 48 hours with clinical-grade ATRi ceralasertib (AZD6738, 

S7693 Selleckchem; 1 μM) and DMSO for the untreated control. Cell 

lines were obtained from the ATCC and tested for mycoplasma con-

tamination, with negative results. Additional information on micro-

nuclei analysis, RNA extraction, quantitative PCR, and RNA-Seq is 

available in Supplemental Methods.

Competitive migration assay in microfluidic devices
Microfluidic devices were fabricated in polydimethylsiloxane (PDMS), a 

biocompatible silicon elastomer, as previously reported (50). The device 

allowed visualization of  preferential PBMC migration toward ATRi- 

or DMSO-treated HT and SUDHL-5 cells embedded in 3D hydrogels. 

Additional information on cell loading, labeling, and quantitative analy-

sis is available in Supplemental Methods.

Hyperplexed MACSima analysis
Multiplex IF analyses were performed on FFPE tonsil sections using 

the MACSima platform (Miltenyi Biotec) (51). Tissue sections were 

processed and stained in a fully automated manner, with sequential 

immunolabeling, imaging, and quantification analyses. Further details 

on the protocol and antibody panel are provided in Supplemental 

Methods.

Quantitative ISH and immunolocalization analyses
Single and multiplexed IHC and IF stainings and in situ mRNA ISH 

were performed on FFPE human or murine tissue sections as previously 

described (52). The detailed protocol and antibodies adopted are included 

in Supplemental Methods. IHC-stained slides were digitalized using an 

Aperio CS2 digital slide scanner (Leica Microsystems), and IF-stained 

slides were analyzed and imaged under a Zeiss Axioscope-A1 equipped 

with wide-field fluorescence module and Axiocam 503 Color camera 

(Zeiss). Quantitative analyses were performed using HALO image analy-

sis software for cell segmentation and signal quantification (v3.2.1851.229, 

Indica Labs) as detailed in Supplemental Methods.

In situ proximity ligation assay
Proximity ligation assay (PLA) was conducted on FFPE sections 

from human tonsil samples using the NaveniFlex Tissue MR Red kit 

following the manufacturer’s instructions (Navinci Diagnostics). The 

antibodies adopted for test and control PLA assays are listed in Supple-

mental Methods. Quantitative analysis of  PLA signals was performed 

through HALO image analysis software (v3.2.1851.229, Indica Labs) 

as detailed in Supplemental Methods.

In situ transcriptional analyses
Ten DZ and LZ regions of  interest (ROIs) within morphologically nor-

mal FFPE human tonsillar GCs were profiled using the GeoMx Dig-

ital Spatial Profiler (NanoString Technologies). Tissue sections were 

stained with CD271/NGFR and CD20, as described in our previous 

work (21). The selected and segmented DZ and LZ ROIs were analyzed 

for the expression of  1,824 curated genes included in the Cancer Tran-

scriptome Atlas (CTA) panel (NanoString).

Spatial transcriptomics of  DLBCL tissues was performed using 

the GeoMx Whole Transcriptome Atlas (WTA) kit (NanoString), 

according to the manufacturer’s protocol. FFPE tissue sections were 

processed on the Leica Bond Max automated system, followed by ISH. 

Sections were stained with CD3 and CD20 to visualize T and B cells, 

Unit of  the University of  Brescia for quantitative IF analyses and digital 

spatial profiling of  microregions from DLBCL-infiltrated areas.

Murine models
Aicdatm1(cre)Mnz/J (JAX:007770) and wild-type C57BL6/J mice were 

obtained from The Jackson Laboratory. Animals were regularly mon-

itored by veterinary personnel throughout the duration of  the experi-

ments. Mice were checked at least 3 times a week for signs of  illness and 

any reduction or impairment in motility. The experimental mice were 

followed until they reached 28–32 weeks of  age. At this point they were 

euthanized to collect mesenteric lymph nodes for histopathological, 

immunolocalization, and spatial transcriptomic analyses.

Male BALB/c mice (InVivos Singapore) were randomly assigned 

to vehicle control (n = 2) or ATR inhibitor (ATRi) treatment (n = 4) 

groups. AZD6738, an ATRi, was dissolved at 2.5 mg/mL in a vehi-

cle solution containing 10% DMSO, 40% propylene glycol, and 50% 

deionized sterile water. Mice in the treatment group received 25 mg/

kg AZD6738 by oral gavage daily for either 2 or 5 consecutive days. 

Tissues were harvested on day 3 or day 6, respectively. Control mice 

received an equivalent volume of  vehicle solution.

In a separate experiment, 6-week-old male C57BL/6J mice 

(The Jackson Laboratory) were immunized intraperitoneally with 

4-hydroxy-3-nitrophenylacetyl–conjugated ovalbumin (NP-OVA) 

adsorbed on alum. Two days after immunization, mice (n = 5 per 

group) received 50 mg/kg AZD6738 daily by oral gavage for 5 con-

secutive days. Spleens and mesenteric lymph nodes were harvested 

24 hours after the final dose. All harvested tissues were immediately 

fixed in cold 10% neutral-buffered formalin for 12 hours, followed 

by standard paraffin embedding procedures.

PDX-derived primary cell lines and in vitro killing assay
Twenty-two primary DLBCL tumor samples were implanted subcuta-

neously into NSG-S mice (The Jackson Laboratory) to generate PDX 

models (49). Once tumors reached the appropriate size, they were 

excised, enzymatically and mechanically digested, and cultured in 

RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS) 

and IL-2. After stabilization in vitro, samples were ranked based on the 

expression of  the DZ and LZ signatures, from which 1 DZ-like and 1 

LZ-like sample were used for downstream experiments. T cells were 

expanded by coculturing of  PBMCs with 10-Gy-irradiated DLBCL 

tumor cells in RPMI 1640 supplemented with 10% FBS, IL-2, IL-7, 

and IL-15. Expanded T cells were harvested and used in cytotoxicity 

assays. PDX-derived DLBCL cells were treated with the ATRi ceral-

asertib (AZD6738) at 2 concentrations (1 μM and 5 μM) or DMSO 

for 4 days. After treatment, 1 × 105 tumor cells were plated per well in 

96-well plates. Expanded T cells were added at varying effector-to-tar-

get ratios. After 72 hours of  coculture, cells were stained with anti-CD3, 

anti-CD19, and DAPI, and analyzed by flow cytometry to quantify T 

cell–mediated tumor killing.

DLBCL cell culture and treatment
HT and SUDHL-5 cell lines were obtained from the ATCC and 

selected based on the high expression of  the DZ spatial signature 

according to the 23Q2 DepMap gene expression dataset. HT and 

SUDHL-5 cells were cultured in RPMI medium supplemented with 

1% glutamine, 10% FBS, and penicillin-streptomycin. Suspension 

cultures were maintained in flasks in 5% CO2, at 37°C. The cells were 
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from previous DZ/LZ classification. Edges were created between 

nodes based on Euclidean distance, capturing the local neighbors of  

each cell. The pairwise Euclidean distances between all cells were pre-

computed using the SciPy function cdist, (https://docs.scipy.org/doc/

scipy/reference/generated/scipy.spatial.distance.cdist.html) generat-

ing a distance matrix for all cell pairs, allowing for efficient identifica-

tion of  neighboring cells within a fixed spatial threshold.

In each iteration, neighbors of  each cell within the GC will be 

checked and reannotated based on a predetermined fraction of  dissimilar 

neighbors. Cells with an intermediate phenotype were reannotated based 

on the most common phenotype of  their immediate neighbors. The iter-

ative process was repeated until no further changes to cell annotations 

were made. To maintain an accurate representation of  the DZ and LZ 

regions, the DZ region was required to contain at least 70% DZ cells, and 

similarly, the LZ region was required to contain at least 70% LZ cells. 

Once this condition was met, the boundary between the two regions was 

established and retained for subsequent downstream spatial analyses.

Label transfer by MaxFuse. Cell type annotation was achieved by label 

transfer from a well-annotated reference scRNA-Seq HCATonsil dataset. 

Label transfer was done using MaxFuse (https://github.com/shuxiaoc/

maxfuse) which could integrate data across different modalities such 

as spatial and suspension single-cell RNA datasets, through cross-mo-

dality matching and iterative smoothed embedding. To ensure robust 

label transfer, the top 5,000 highly variable genes common to both the 

scRNA-Seq and CosMx WTX spatial datasets were identified and used 

as matched pairs. After label transfer, spatial distributions of  subpopula-

tions of  T cells were analyzed within the DZ and LZ regions of  the GCs.

Spatial distribution of  T cells. Using the DZ and LZ boundary line 

as reference, we assessed the distribution of  T cell subpopulations 

from –100 μm (DZ) to 100 μm (LZ) from the reference line. Cells were 

binned into 10-μm increments based on their distance from the bound-

ary, and the mean enrichment level of  each T cell subtype for each bin 

was computed, providing a continuous spatial profile of  T cell subtype 

enrichment across the boundary. Linear regression coefficient of  the 

observed slope line was used as a measure of  spatial distribution pat-

tern across the boundary. To determine whether the observed enrich-

ment trend was significantly different from a random distribution, we 

performed 10,000 Monte Carlo simulations in which cell positions of  

each subtype were randomly shuffled while ensuring that its total cell 

count remained fixed. For each iteration, a new linear regression was 

fitted to the randomized enrichment-distance relationship, generating 

a null distribution of  slopes, under the assumption of  complete spatial 

randomness. The Monte Carlo confidence envelope was plotted as a 

shaded region, representing the range of  slopes expected under random 

conditions. A 95% CI was constructed from these simulations: (a) If  the 

observed slope fell above the upper 95% CI, enrichment of  the T cell 

subtype was significantly increasing with distance from DZ into LZ. (b) 

If  the observed slope fell below the lower 95% CI, enrichment of  the 

T cell subtype was significantly decreasing with distance from DZ into 

LZ. (c) If  the observed slope remained within the Monte Carlo enve-

lope, enrichment variation was consistent with randomness.

Computational pipelines to characterize the chromatin states of DZ 
and LZ cells
Computational analyses were conducted on digital images derived 

from 2 datasets: 15 manually identified GCs from AID/CD3 immu-

nofluorescence–stained tissues and 11 DSP-profiled DLBCL ROIs 

respectively. ROIs were selected based on pathologist recommenda-

tions and analyzed using the GeoMx DSP platform. CD3+ and CD20+ 

signal masks were generated and submitted for downstream sequenc-

ing and data processing. Full details of  the DSP workflow, including 

ROI selection, library preparation, sequencing, and data normaliza-

tion, are provided in our previous work (33).

Additionally, 11 ROIs were selected from a DLBCL-infiltrated 

FFPE lymph node tissue sample based on CD20 and CD3 staining and 

profiled using the same CTA panel. Further information on DSP data 

analysis is provided in the “Statistical and bioinformatics analyses” sec-

tion below, and in Supplemental Methods.

For murine tissue analysis, spatial transcriptomics was performed 

on FFPE mesenteric lymph nodes using the 10x Genomics Visium 

platform, following the manufacturer’s instructions. Details regarding 

library preparation, sequencing, and data analysis for the Visium exper-

iment are available in Supplemental Methods.

CosMx Whole Transcriptome Atlas
Processing of  data. CosMx SMI Whole Transcriptome (WTX) was shared 

with us by Bruker Spatial Biology as a Seurat object. The quality control 

(QC) filters were applied, retaining cells with nFeature_RNA counts less 

than 3,000 and nCount_RNA greater than 400. The filtered dataset was 

then converted to the AnnData format for downstream analysis with 

Python-based Scanpy (https://scanpy.readthedocs.io/en/stable/). The 

final dataset had 132,676 cells across 18,935 targets.

Data normalization. The top 5,000 highly variable genes were iden-

tified with the scanpy.experimental.pp.highly_variable_genes function, 

which uses Pearson residuals as basis for selection. The data were 

then log-transformed and scaled. Scaled values were subjected to prin-

cipal component analysis (PCA) for linear dimension reduction. A 

nearest-neighbor network was created based on Euclidean distances 

between cells in a multidimensional PC space (the first 50 PCs were 

used). For visualization, the uniform manifold approximation and pro-

jection (UMAP) technique was used.

Annotation of  germinal centers. Germinal centers (GCs) were iden-

tified based on expression of  7 GC B cell markers (BCL6, AICDA, 

CD38, LMO2, MEF2B, PIM1, ST6GAL1, and EZH2) and DAPI 

intensities derived from IF images in the CosMx experiment. The 

expression levels of  GC B cell markers and DAPI intensities were 

visualized in Napari, (https://napari.org/stable/) where GC regions 

were manually annotated. Annotation was based on circular clusters 

exhibiting high GC B cell marker expression and reduced DAPI signal 

relative to the surrounding cells. In total, nine GCs were identified.

DZ and LZ segmentation. The 169-gene DZ signature and the 201-

gene LZ signature were scored in the dataset and visualized. It was 

observed that the GCs were polarized based on the DZ and LZ sig-

natures. To determine the DZ or LZ status of  each individual cell, we 

subtracted the LZ signature score from the DZ signature score to form 

a combined DZ-LZ score. A highly positive DZ-LZ score (> 0.3) cor-

responds to a DZ phenotype (termed DZ cells), and a highly negative 

DZ-LZ score (< –0.3) corresponds to an LZ phenotype (termed LZ 

cells). Remaining cells were allocated to an intermediate phenotype.

To identify putative DZ and LZ regions within each GC, an itera-

tive graph-based cell neighbor analysis was performed. Briefly, a spatial 

graph G was constructed to represent cellular relationships. Each node 

in G corresponded to a cell, with attributes including x and y coordi-

nates representing its spatial location and a phenotype label derived 
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stained for CD20 and CD3. DZ and LZ B cells were classified based 

on nuclear chrometric features by application of  a random forest 

classifier. The relationship between chrometric states and the DZ 

signature was evaluated in the selected in situ transcriptionally pro-

filed microregions. Additional information on pipeline implementa-

tion, image processing, and statistical analyses is available in Sup-

plemental Methods.

Statistics
The spatial DZ and LZ signatures were obtained by comparison of  

the gene expression of  paired human tonsil DZ and LZ GC ROIs (n 

= 10) profiled by NanoString digital spatial profiling as previously 

reported (21). Upregulated/downregulated genes were selected using 

the limma moderated statistic (Benjamini-Hochberg adjusted P val-

ues < 0.05) (53). The Reactome Pathway library was used for path-

way enrichment analysis (ReactomePA R package) (54). The Euclid-

ean distance and the Ward.D2 method were used for unsupervised 

clustering. The SpatialDecon algorithm (55) was adopted to estimate 

cell fractions on DSP data, while the xCell algorithm (32) was used 

to estimate selected immune and stromal cell type enrichment scores 

on bulk RNA-Seq samples. Additional information on unsupervised 

hierarchical clustering, pathway and gene set enrichment analyses, 

DZ/LZ scRNA-Seq analysis, adopted DLBCL gene expression data-

sets, immune and stromal deconvolution, survival analysis on DLB-

CL datasets, and Visium spatial transcriptomics analysis is available 

in Supplemental Methods.
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Data availability
All data generated in the present work have been made publicly avail-

able. The DSP data relative to 11 profiled DLBCL ROIs are reported 

in Supplemental Table 4. The human bulk RNA-Seq FASTQ files 

were deposited in the NCBI’s Sequence Read Archive under acces-

sion code PRJNA1082634, while the read counts are reported in 

Supplemental Table 10. The raw and processed data of  Visium spa-

tial transcriptomics were deposited in the NCBI’s Gene Expression 

Omnibus (GEO) database under accession code GSE260998. The 

DSP RNA-Seq data profiled on tonsil GC DZ and LZ ROIs are pub-

licly available (21). Values for all data points in graphs are reported 

in the Supporting Data Values file.
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