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SUPPLEMENTARY METHODS  

 

Hyperplexed MACSima imaging and quantitative analysis     
 Multiplex immunofluorescence analyses on formalin-fixed, paraffin-embedded (FFPE) 

sections on human tonsil were performed using the MACSima Imaging Platform (Miltenyi Biotec) 

with the following primary antibodies at 1:50 dilution and 10-minute incubation: CD3 (clone 

REA1151, FITC, catalog no. 130-120-267, REAfinity™ ), CD4 (clone REA1307, PE, catalog no. 130-

127-906, REAfinity™), CD45RO (clone REA611, PE, catalog no. 130-113-559, REAfinity™), CD8α 

(clone REA1024, FITC, catalog no. 130-117-200, REAfinity™), CD279 (PD-1, clone REA1165, PE, 

catalog no. 130-120-382, REAfinity™), CD57 (clone REA769, PE, catalog no. 130-111-810, 

REAfinity™), Ki-67 (clone REAL1047, FITC, catalog no. 130-127-837, REAfinity™), CD271 (NGFR, 

clone REAL709, APC, catalog no. 130-125-057, REAfinity™).Sections, 3 µm thick, were 

deparaffinized, rehydrated, and subjected to heat-induced epitope retrieval using a Preheat PT-

Module with TEC-buffer (pH9; Trizma Base, EDTA, Sodium citrate tribasic dihydrate) at 85°C, 

followed by incubation at 98°C for 20 minutes and cooling at 85°C for an additional 20 minutes. After 

washing with MACSima Running Buffer, sections were mounted on MACSwell Imaging Frames 

(Four-well format), and a DAPI pre-staining was performed prior to initiating the automated imaging 

protocol. The MACSima Imaging System integrates liquid handling with widefield microscopy to 

enable cyclic immunofluorescence (IF), including automated staining, washing, imaging, and signal 

erasure steps via photobleaching. For REAfinity antibodies, signal erasure was achieved via LED-

based photobleaching: blue LED (2 W/cm², 2 min), green LED (0.4 W/cm², 2 min), or red LED (1 

W/cm², 6 min), resulting in >90% reduction in FITC, PE, or APC signal. Imaging was performed with 

epifluorescence optics using three objectives (20× NA 0.75; long-working-distance 20× NA 0.45; and 

2× NA 0.1). Excitation was provided by custom LED sources (infrared, red, green, blue, UV) and 

filtered to narrow the excitation spectrum. Images were captured with a monochromatic sCMOS 

camera. Autofocus was achieved by hardware control and DAPI-based image optimization. The 

MACSima image processing pipeline included HDR image generation, pixel correction, optical profile 

normalization, and subtraction of pre-stain autofluorescence. Processed image datasets were 

visualized and exported using MACS iQ View software (Miltenyi). Quantitative image analysis was 

performed using the HighPlex FL v4.2.3 segmentation-based algorithm within HALO software (Indica 

Labs). Analyses were focused on nine GCs, where DZ and LZ regions were manually segmented 

based on the expression of Ki-67 and CD271. 

 

In situ mRNA hybridization and quantitative immunolocalization analyses 

Four-micrometer–thick human and mouse tissue sections were deparaffinized, rehydrated, and 

unmasked using Novocastra Epitope Retrieval Solutions at pH6 or pH9 (Leica Biosystems) in a 

thermostatic bath at 98°C for 30 minutes. The sections were then brought to room temperature and 

washed in PBS. After neutralization of the endogenous peroxidase with 3% H2O2 and Fc blocking 

with 0.4% casein in PBS (Leica Biosystems), the sections were incubated with primary antibodies. 

For multiple-marker immunostaining, sections were underwent sequential rounds of single-marker 

immunostaining with the binding of primary antibodies revealed using specific secondary antibodies 

conjugated with different fluorophores or enzymes.  

The following primary antibodies were used for immunohistochemistry (IHC) and IF on mouse and/or 

human tissues: rabbit monoclonal p75 NGFR (clone EP1039Y, 1:200 pH6, catalog no. ab52987, 

Abcam), rabbit polyclonal Ki-67 (1:1000 pH6, catalog no. ab15580, Abcam), mouse monoclonal CD8 

(clone 4B11, 1:50 pH9, catalog no. NCL-L-CD8-4B11, Leica Biosystems), rabbit monoclonal CD4 

(clone EPR6855, 1:500 pH9, catalog no. ab133616, Abcam), rabbit monoclonal AICDA (clone 

EPR23436-45, 1:2000 pH9, catalog no. ab269454, Abcam), rabbit polyclonal (p)gHistone 2AX 

(1:1000 pH6, catalog no. ab11174, Abcam), rabbit monoclonal Rad51 (clone EPR4030(3), 1:200 



pH9, catalog no. ab133534, Abcam), rabbit monoclonal pKap1 (clone BL-246-7B5, 1:100 pH9, 

catalog no. ab243870, Abcam), mouse monoclonal SMARCA4/Brg1 (clone G-7, 1:50 pH9, catalog 

no. sc-17796, Santa Cruz Biotechnology), mouse monoclonal EZH2 (clone 6A10, ready to use pH9, 

catalog no. PA0575, Leica Biosystems), rabbit monoclonal CD21 (clone SP186, 1:100 pH9, catalog 

no. ab240987, Abcam), rabbit polyclonal CD3 (1:100 pH9, catalog no. ab5690 Abcam), mouse 

monoclonal TCRδ  (clone H-41, 1:50 pH9, catalog no. sc-100289, Santa Cruz Biotechnology), rabbit 

polyclonal Histone H3 (tri methyl K9)  (1:400 pH6, catalog no. ab8898, Abcam), mouse monoclonal 

HP1α (clone 2HP-1H5, 1:500 ph9, catalog no. MAB3584, Merck Millipore), rat monoclonal CD3 

(clone CD3-12, 1:100 pH9, catalog no. ab11089 Abcam), mouse monoclonal CD68 (clone 514H12, 

ready to use pH9, catalog no. PA0273, Leica Biosystems), rabbit monoclonal Plk1 (clone 208G4, 

1:50 pH9, catalog no. #4513, Cell Signaling Technology), rabbit monoclonal Egr1 (clone EPR15916,  

1:100 pH9, catalog no. ab194357, Abcam), rabbit monoclonal  Cre (clone D7L7L, 1:100 pH9, catalog 

no. #15036, Cell Signaling Technology), rabbit monoclonal CD4 (clone D7D2Z, 1:50 pH9, catalog 

no. #25229, Cell Signaling Technology), rabbit monoclonal CD8α (clone D4W2Z, 1:400 pH9, catalog 

no. #98941, Cell Signaling Technology), rabbit monoclonal MHC-I (clone E8E7N, 1:250 pH6, catalog 

no. #76828, Cell Signaling Technology), rat monoclonal CD20 (clone GOT214A, 1:50 pH9, CNIO 

Monoclonal Antibodies Unit). Immunohistochemistry (IHC) staining was developed using the 

Novolink Polymer Detection Systems (Leica Biosystems) or IgG (H&L)-specific secondary antibodies 

(Life Technologies, 1:500) and DAB (3,3′-Diaminobenzidine, Novocastra) as substrate chromogen.  

Double IHC staining was performed using either the SignalStain Boost IHC Detection Reagent 

alkaline phosphatase-conjugated (anti-rabbit, produced in horse; Cell Signaling Technology) or 

ImmPRESS AP Polymer Detection Reagent (anti-rat, produced in goat; Vector Laboratories), with 

Vulcan Fast Red as the substrate chromogen. Alternatively, SignalStain Boost IHC Detection 

Reagent horseradish peroxidase (HRP)-conjugated (anti-mouse, produced in goat, Cell Signaling 

Technology) was used in combination with PolyDetector HRP Green chromogen. All procedures 

were carried out according to the manufacturers’ instructions. 

For IF multiplex stainings, anti-mouse and anti-rabbit secondary antibodies conjugated with Alexa 

Fluor 488 and 568, respectively, were used. DAPI (4′,6-diamidin-2-fenilindolo) was utilized to 

counterstain the nuclei.  

Hybridization with human IFNγ (NM_000619.2), mouse Ifnb1 (NM_010510.1), and Ifnγ 

(NM_008337.3) probes was performed using RNAscope 2.5 HD Detection Reagent-BROWN 

(Advanced Cell Diagnostic) in accordance with the manufacturer's protocol.  

Slide digitalization was conducted using an Aperio CS2 digital scanner (Leica Biosystems) with the 

ImageScope software (Aperio ImageScope version 12.3.2.8013, Leica Biosystems). 

Quantitative analyses of IHC stainings and in situ mRNA were performed by calculating the average 

percentage of positive cells in twenty non-overlapping human GCs at medium-power magnification 

(x200) using the HALO image analysis software (v3.2.1851.229, Indica Labs) and the output was 

expressed as the “percentage of positive cells".  

In murine mesenteric lymph nodes, the total number of GCs was also quantified and, when 

polarization was clearly identifiable, DZ and LZ areas were segmented and analyzed separately. 

 

Spatial Analyses on quantitative IHC and IF data 

To analyze the infiltration of specific cell populations in different regions of interest within the tissue 

and examine the spatial relationships between different cell populations using the Nearest Neighbor 

analysis tool, the HALO software (v3.2.1851.229, Indica Labs) was instructed to generate spatial 

maps based on the markers of interest. The Mann-Whitney-Wilcoxon test was applied to compare 

positive cell fractions among conditions. 



HALO Infiltration analysis was performed on dual ISH-IHC for IFNγ and AID. Within each GCs, a 

100 μm wide (-50 to +50) LZ/DZ interface was defined, and the density of IFNγ+ infiltrating cells was 

calculated in each region. 

HALO Nearest Neighbor analysis was applied to determine the mean distance and the number of 

unique neighbors between two cell populations of interest, specifically PLK1 or EGR1 with CD4 and 

CD8 T cells.  

For quantitative estimation of cell-cell repulsion, we developed an ad hoc computational approach 

based on resampling (1). This approach was applied to digital images from GCs stained by 

multiplexed IHC and IF. We calculated the distances of each AID-positive cell from the nearest cell 

of the population of interest (i.e., CD3 and CD68). The observed nearest distance distributions were 

compared with the nearest distance distribution calculated on randomized cell spatial projections. 

The Wilcoxon-Mann-Whitney test was used to compare the nearest neighbor distance distributions. 

The cumulative density function (CDF) was used for graphical representation.  

 

In situ Proximity Ligation Assay   

Proximity ligation assay (PLA) was performed with NaveniFlex Tissue MR Red kit (Navinci 

Diagnostics). The following primary antibodies were used: rabbit monoclonal cGAS (clone D1D3G, 

1:100 pH9, catalog no. #15102, Cell Signaling Technology), mouse monoclonal DNA double 

stranded (clone AE-2, 1:100 pH9, catalog no. #MAB1293, Merck Millipore). After primary antibody 

incubation, the secondary antibodies oligonucleotides-conjugated were added to the specimens. 

The control experiments were performed for each combination by omitting one of the primary 

antibodies. The PLA signals were quantified in ten non-overlapping GCs at medium magnification 

(x200) using the HALO image analysis software (v3.2.1851.229, Indica Labs). 

 

Computational pipelines to characterize the chromatin states of DZ and LZ cells 

To characterize the chromatin states of cells the pipeline first range-normalizes the individual images 

to correct for differences in the illumination of the individual images. Thereby, the normalized 

intensity I(x,y) of each image I were computed as  

 

𝐼(𝑥, 𝑦)  =  
𝐼′(𝑥, 𝑦)  −  𝑄1(𝐼) 

𝑄99.8(𝐼) − 𝑄1(𝐼)
, 

 
where I'(x,y) is the raw intensity of the DAPI image of the pixel at position (x,y) and Q_p (I) is the p-

th percentile of the intensity distribution of the image within the selected microregion or GC. 

Next, individual nuclei were segmented using a pre-trained StarDist model from(2) with the proposed 

default parameters. Finally, the nuclei masks and the normalized DAPI images were used to extract 

a number of features for each nucleus jointly characterizing their nuclear morphology and chromatin 

organization patterns, i.e. their chromatin states. To this end, we used the python package 

chrometrics from (3). 

To identify the cell-types of the individual cells within the GCs, we first generated approximate cellular 

masks following an approach proposed in (4). The method obtains the cellular masks by expanding 

the nuclear boundaries of the individual cells for a maximum of 1.6 microns or until the boundary 

was seen to overlap with those of another cell. Next, we identified cells that were positive or negative 

for the DZ marker AID and CD3 by analyzing the cellular mean intensity of these markers in the IF 

images for each cell. Cells were identified as positive for the respective marker if their mean intensity 

exceeded an image-specific threshold. The threshold was calculated as the average of the means 

of a two-component Gaussian mixture model fitted to the mean intensity values. The accuracy of the 

classification was visually validated. Finally, we identified dark-zone B-cells (i.e. cells positive for 



dark-zone B-cell marker AID and negative for CD3), light-zone B-cells (i.e. cells both negative for 

AID and CD3) and T-cells (negative for AID and positive for CD3). 

To assess whether the chromatin states of the B-cells in the LZ differ from those in the DZ, we first 

selected 9,197 LZ B-cells uniformly at random from all LZ B-cells of across all of the 11 selected 

GCs (n = 16,182). This was done to match the total number of DZ B-cells across all GCs and thus 

obtain a balanced subsample. Each of the B-cells was described by 60 chrometric features which 

we selected as a subset of the 177 measured features by removing all features correlated with an 

absolute Pearson correlation of above 0.8 when considering all cells in the data set. 

We next evaluated the separability of the LZ and DZ B-cells based on their chromatin states 

characterized by the chrometric features by training a random forest classifier to classify the two 

types of B-cells given the chrometric states. A Random Forest classifier is a tree-based classification 

algorithm that fits an ensemble of decision trees and aggregates the output of the individual trees to 

enable robust classification of samples into a predefined set of classes (5). We evaluated the 

performance of the class separability LZ and DZ B-cells by assessing the average balanced 

accuracy (6) of the classifier in a 10-fold stratified cross-validation setup. To this end, we applied the 

default parameterization of the scikit-learn (7) python package that we used to perform the analysis. 

The classifier was able to distinguish between the two types of B-cells given the chrometric features 

with an average accuracy of 0.6256 (+/- 0.0419). Thereby, the minimum intensity was the most 

discriminative feature as measured by the Gini importance. In alignment with this result, we found 

the mean of this chrometric feature to differ significantly (p-values < 10-125, Welch t-test). 

To correlate the chromatin state of cells in the selected microregions with the measured DZ 

expression signature we computed the median of all measured chrometric features for all cells in the 

selected microregions (n = 11). The correlation of the median of the chrometric features and the DZ 

signature expression was assessed using the Pearson correlation coefficient. Thereby, the ratio of 

the heterochromatin to euchromatin content was seen to be highly correlated with the DZ expression 

signature (Pearson r: 0.8843, p-value < 0.0124, non-parametric permutation test, (Supplementary 

Figure 5G). The heterochromatin content was quantified as the area of the regions of the segmented 

nuclei where the DAPI intensity was more than one standard deviation above the mean DAPI 

intensity. Other regions within the nuclei were classified as euchromatin and the sum of their area 

quantified the euchromatin content of the cells. 

Differences of means of the chrometric features in given cell populations were tested for using the 

Welch t-test. The statistical significance of the correlation measures was identified by applying a 

non-parametric permutation test using b=100,000 permutations for the correlation analyses of the 

chromatin state and the DZ gene expression signature respectively b=1,000,000 for the analyses of 

the chromatin state of B-cells in the context of their distance to the interface. The permutation tests 

were performed using the python package netneurotools 

(https://github.com/netneurolab/netneurotools).  

 

Library preparation and sequencing of the Visium spatial transcriptomics 

RNA extraction from mouse mesenteric lymph node FFPE blocks was performed using the RNeasy 

FFPE Kit (Qiagen) according to the manufacturer’s instructions. The RNA concentration was 

determined using a Nanodrop-one spectrophotometer (Thermofisher Scientific), and the average 

fragment size was estimated using an Agilent Bioanalyzer 2100 (Agilent) with the RNA 6000 Nano 

kit (Agilent). Samples with a DV200 value greater than 50% were considered suitable for the spatial 

transcriptomics experiment. The selected samples were sectioned to a thickness of 4 μm, placed on 

Visium slides and arranged as within the capture area (6.5 × 6.5 mm). Hematoxylin and eosin 

staining sections were performed and images were acquired using an Aperio CS2 digital slide 

scanner (Leica Biosystems). Libraries were prepared according to the Visium Spatial Gene 

Expression for FFPE User Guide, and their quality was assessed using an Agilent Bioanalyzer 2100 



with the Agilent High Sensitivity DNA Kit (Agilent). The libraries were sequenced on a NextSeq 2000 

Sequencing System (Illumina) using paired-end, dual-indexed sequencing run type, following the 

sequencing instructions specified in the Visium User Guide. 

Bulk-RNA was sequenced following the RNASeq RiboZero - Illumina Stranded Prep protocol   on 

the NextSeq 550 platform. The sequencing parameters were set to 2x75 nt, with a read depth of 50 

million reads.           

 

qPCR and RNAseq on ATRi-treated and control DLBCL cell lines 

3x106 HT or SUDHL-5 cells were cultured in 5 mL of RPMI-1640 (Euroclone) plus 10% of Fetal 

Bovine Serum (FBS), 1% glutamine and 1% of antibiotic-antimycotic solution in the presence of 1 

μM ATRi or vehicle (DMSO), as control, for 48 hours at 37°C, 5% CO2. Cell viability was assessed 

by MTS assay: 1x103 HT or SUDHL-5 tumor cells were cultured in 200 µL of fresh medium in flat 96-

well plates (Corning Inc.) in the presence of 1 μM ATRi or DMSO as control. At 24 hours and 48 

hours, 20 µL of 3-(4,5-dimethylthiazol-2-yl)-5- (3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium (MTS) (Promega CellTiter 96 AQueous Nonradioactive Cell Proliferation Assay Kit, 

Thermo Fisher Scientific) were added to each well. The plates were incubated for 1 hour at 37°C in 

5% CO2, after which absorbance was measured in a spectrophotometer at a wavelength of 490 nm. 

For qPCR analyses, HT and SUDHL-5 cells were pelleted, washed twice with ice-cold 1X PBS, and 

RNA extraction was performed for each sample using the RNAeasy Mini kit according to 

manufacturer instructions. cDNA was prepared for each sample starting from 1μg of RNA using the 

High-Capacity cDNA Reverse Transcription Kit according to the manufacturer’s instructions. cDNA 

samples were finally treated with 1μl RNAse H (Promega) for 20 minutes at 37°C and stored at -80 

°C. For RNAseq, RNA extraction was performed using the miRNeasy Tissue/Cells Advanced Mini 

Kit (Qiagen) following the manufacturer’s instructions. For each cell line and treatment conditions, 

three replicates were profiled. The libraries were constructed using the SureSelect XT HS2 mRNA 

Library Preparation and SureSelect Poly-A Selection Module kits (Agilent), following the 

manufacturer's instructions. The libraries were then sequenced using the NextSeq 2000 sequencer 

with a P3 card, setting the read coverage to 30,000,000 paired-end reads. The processed data were 

analyzed using the nf-core/rnaseq pipeline, which is available online at https://nf-co.re/rnaseq. The 

pipeline was run with all default parameters and Ensembl version 109. Gene quantification was 

performed using the Star-Salmon tool. The GRCh38 genome annotation was considered. The BAM 

files were converted into read counts using the function summarizeOverlaps from the 

GenomicAlignments R package(8). log2-counts-per-million normalization was applied using the cpm 

function of the R limma package. 

 

Quantitative analysis of micronuclei formation in DLBCL cell lines upon ATRi treatment 

 HT and SUDHL-5 cells treated with ATRi 1μM or DMSO for 48 hours were seeded by 

centrifugation (5 minutes at 1500 rpm) on 8-well glass-bottom slides (Lab-Tek II) previously coated 

with poly-D-lysine (for 1 hours at 37°C followed by three washes in sterile 1X PBS). Cells were then 

washed once with PBS and fixed with 4% formaldehyde (15 minutes at RT), washed 3 times with 

PBS (10 minutes each) then permeabilized with 0.5% Triton-X-100 in PBS (5 minutes at RT), blocked 

with 3% BSA in 0.1%triton-X-100 PBS for 1 hour (blocking buffer), incubated with anti-Lamin B1 

(1:200 in blocking solution, Synaptic Systems) primary antibody for 2 hours at RT, followed by three 

PBS washes and then incubated with secondary antibodies (1:400 in blocking solution) for 1 hour in 

dark at RT followed by three PBS washes. DAPI staining was added in PBS for 5 minutes at RT 

followed by other 2 washes with PBS. Samples were mounted with Mowiol and stored at 4°C until 

imaging acquisition. Random fields were acquired from each condition on a Leica Sp8 confocal 

microscope or, alternatively, on an Olympus Spinning Disk CSU. Z-stacks were acquired for each 

field of view using 63x oil-immersion objective (NA 1.4) or a 40X oil immersion objective (for the 



CSU). The images were then processed using ImageJ and the number of micro-nucleated cells were 

scored. 

 

Competitive migration assay in microfluidic devices 

Before loading the cells, the devices were sterilized under ultraviolet light in a laminar flow hood for 

15 minutes and then placed on ice to contrast gel solidification during the filling process. HT and 

SUDHL-5 tumor cells were resuspended in 2.5 mg/ml Matrigel (Corning). Where indicated, at the 

cell-matrigel mixture 1μM ATR inhibitor (AZD6738 57693 Selleckchem) or vehicle DMSO were 

added. Five μL of tumor cell-matrigel mix were loaded in each narrow side chamber, corresponding 

to 2x104 cells per channel. The devices were incubated at 37°C for 30 minutes to allow gel 

solidification. Peripheral blood mononuclear cells (PBMC) were isolated from the buffy coat of 

healthy donors by Lymphosep separation (Aurogene) (9). PBMCs were labelled with PKH26 Red 

Fluorescence Cell Tracker (Sigma Aldrich), resuspended in RPMI complete medium and loaded (1 

x 106 cells in 10 µl) into the central chamber of the device. The lateral chambers were filled with 

medium to keep fluid equilibrium and the devices were placed in a 37°C, 5% CO2 incubator. Phase 

contrast, visible and fluorescence photomicrographs were generated at definite time points (0, 24, 

48 hours) by using EVOS-FL fluorescence microscope (Life Technologies) provided with built-in 

imaging software for imaging overlays. Fluorescence analysis of PBMC migration towards and into 

tumor cell lateral chambers was performed using ImageJ software (National Institutes of Health, 

Bethesda, MD, USA). Representative regions of interest were analyzed for each device to quantify 

PBMC migration. 

To detect the spatial interaction of CD3+ T cells with DLBCL cells in the microfluidic device, 

immunofluorescence labeling of T cells infiltrating the tumor cell chamber containing ATRi was 

performed. At the end of incubation (48 hours), medium was removed from the lateral reservoirs and 

the central channel to eliminate residual PBMC that did not migrate into the tumor chamber. Each 

channel was washed with 50 µl PBS and then with 50 µl 1% BSA in PBS. Staining of T cells within 

the tumor gel chamber containing ATRi was carried out using an anti-human CD3 antibody 

(Biolegend) diluted 1:200 in PBS for 45 minutes at 4°C, followed by Streptavidin-AlexaFluor488 

(Thermo Scientific) (1:100) for 45 minutes at 4°C. The chips were then washed with PBS and fixed 

with 2% PFA+1% glutaraldehyde solution for 20 minutes. Finally, a DAPI (Invitrogen) staining 

solution (1:250) was added to label nuclei. Images were taken on a confocal microscope Zeiss LSM 

900 (Carl Zeiss) in Airyscan mode. Excitation light was obtained by diode lasers: 405, 488, 561 and 

640 nm. Optical thickness varies according to the objective used from 0.50 mm with 20x objective to 

0.20 mm with 63x objective. Images have been treated and analysed by the Zen Blue (3.2) software 

(Carl Zeiss GmbH, Jena Germany) and ImageJ (1.53) software (NIH, USA - http://imagej.nih.gov/ij). 

LSCM Airyscan mode was also used to measure the distances between HT cells and T cells. 

Different Z stacks inside the DMSO and ATRi chambers of the microfluidic devices were acquired. 

We used these stacks to determine the 3D distance between DAPI+PKH26+CD3+ and/or 

DAPI+PKH26+CD3- PBMCs and HT cells (DAPI+ only). Each distance measure is characterized by 

two points (X, Y, Z coordinates): the centroid of the PBMC and that of the neighboring tumor cells 

(by using the DAPI fluorescence). We calculated these distances through the three-dimensions 

Pythagorean theorem9. 

 

Statistical and bioinformatics analyses 

Differential expression analysis: Upregulated/downregulated genes were selected by calculating the 

limma moderated statistic (10) and applying the Benjamini-Hochberg correction on p-values (BH 

adjusted p-values < 0.05). 

Unsupervised hierarchical clustering: The ward.D2 algorithm was used for unsupervised hierarchical 

clustering on the z-score normalized gene expression. The heatmaps were used for the clustering 

http://imagej.nih.gov/ij


representation. The heatmaps titled with the pathway names (Supplementary Figures 5A,B,H) refer 

to the gene pathways selected using the Nanostring Panel Pro tool 

(https://nanostring.com/products/ncounter-assays-panels/panel-selection-tool/). 

Pathway enrichment analysis and quantitative gene set enrichment analysis (GSEA): The Reactome 

Pathway library was considered for the pathway enrichment analysis applied to differentially 

expressed genes (Figures 1H-I, 4N-O). The enrichment p-values were calculated through the 

ReactomePA R package(11) and adjusted for multiple comparisons (BH adjusted p-values < 0.05). 

For GSEA analysis, we run the GSEA software(12) (v 4.2.3) considering the DZ/LZ spatial signature, 

Nanostring Panel Pro pathways, and the Reactome pathways as input gene sets. The GSEA 

“iceberg” enrichment plots were used for the enrichment representation (Figures 4M, 5D-E, 

Supplementary Figure 4E). The plots were generated in GraphPad Prism using the normalized 

enrichment score (NES) obtained from the GSEA output. The GSEA p-values were calculated using 

the gene set method with 5000 permutations. 

DZ/LZ Single-cell RNAseq analysis: The single-cell analysis was performed on Holmes et al. data 

from GEO (GSE139891). DZ cells (GSM4148372) and LZ cells (GSM4148374) were 

considered. Seurat (4.3.0)(13) was used for the analysis of the single-cell datasets. We filtered low-

quality cells that have unique feature counts over 5000 or less than 200 and have >5% mitochondrial 

counts. To compare the predictive power of the spatial DZ/LZ signature and the differentially 

expressed genes (DEGs) identified through the WTA DSP, we combined Holm's normalized 

expression of DZ and LZ genes. Based on this score we classified germinal center B cells into DZ 

and LZ categories (a detailed description of the score is provided later in this paragraph). 

DLBCL gene expression datasets: We considered 8 DLBCL cohorts, Visco et al. (GSE31312)(14), 

Lenz et al. (GSE10846)(15), Dubois et al. (GSE87371)(16), Sha et al. (GSE117556)(17), Barrans et 

al. (GSE32918)(18), Reddy et al.(19), Schmitz et al.(20), and Chapuy et al. (GSE98588)(21). The 

Visco, Lenz, Dubois, Chapuy, and Sha datasets have been downloaded from GEO using the 

GEOquery R package(22). All the datasets have been independently analyzed. The datasets of Sha, 

Barrans, Schmitz, and Reddy have been analyzed maintaining the normalization proposed by the 

authors. Regarding the Affymetrix datasets of Visco, Lenz, Dubois, and Chapuy; the expression 

matrices have been obtained from the CEL files available on GEO and then have been normalized 

using the gcrma R package(23). The few outlier DLBCL samples based on PCA analyses were 

excluded. After verifying the affinity of Sha et al. and Barrans et al. datasets in terms of normalized 

gene expression distribution, Sha at al. and Barrans et al. datasets were harmonized using the 

removeBatchEffect function of the limma package. We have verified the absence of batch effect in 

the Illumina harmonized dataset running a PCA analysis. 

Immune and stromal deconvolution analysis: The SpatialDecon algorithm(24) was applied to the 

DSP dataset to estimate the cell fractions considering the safeTME matrix as reference of the 

SpatialDecon algorithm. The xCell algorithm(25) was used for immune and stromal deconvolution 

estimation of cytotype scores on bulk RNA-seq samples. The DZ enrichment score in Figure 3A 

indicates the association between DZ gene expression and xCell cytotype scores. The DZ 

enrichment score is calculated as the log2-FC of the xCell score from the comparison between the 

low DZ expression and high DZ expression DLBCL groups. The low DZ expression and high DZ 

expression groups were obtained by dividing the cases of each DLBCL dataset into 3 groups based 

on DZ gene expression tertiles. The Mann-Whitney-Wilcoxon test was used to statistically compare 

low DZ expression and high DZ expression groups. The p-values were adjusted for multiple 

comparisons (BH adj. p-values < 0.05). 

LZ-like/DZ-like sample classification: The LZ-like, DZ-like, and intermediate groups were obtained 

by ranking the samples based on the following score: 



 
with,  

 
 

  
where FCi is the fold-change of the gene-i from the DZ/LZ spatial signature, xi is the expression of 

gene-i in the dataset under exam, and n is the number of genes of the DZ/LZ spatial signature. The 

tertile approach was applied to this score to obtain the three-group separation: the LZ-like patients 

have a high expression of LZ genes and a low expression of DZ genes, the DZ-like patients have a 

high expression of DZ genes and a low expression of LZ genes, and the intermediate patients have 

an intermediate expression of both DZ and LZ genes. The PDX sample classification into DZ-like 

and LZ-like groups was further investigated through a GSVA analysis(26). The GSVA results were 

consistent with our classification. Moreover, we also applied the tertile approach on the total 

expression of the DZ spatial signature to obtain the high DZ expression and low DZ groups compared 

in Supplementary Figure 3B-E. 

Survival analysis on DLBCL datasets: The overall survival (OS) and the progression-free survival 

(PFS) were compared among the DLBCL groups. Kaplan-Meier method was used to estimate the 

survival functions among groups. The log-rank test was used to test the differences in the OS and 

PFS among groups. The cox-pzh test was applied to test the proportional hazard assumption. The 

survival and survminer R packages were used for the data analysis. 

The cytotoxic CD8 T cells signature [CD8A, CD8B, PRF1, GZMA, GZMB] and T-cells signature 

[CD3D, CD3E, UBASH3A, CD2, TRBC2] were supervised selected. To assess the specificity of 

those signatures, we compared their overall expression levels between T-cell and non-T-cell 

populations in the TABULA SAPIENS Immune dataset(27). We found that those signatures clearly 

discriminate T-cell populations from non-T-cell populations (data not shown). 

Visium spatial transcriptomics analysis: Visium ST (10x Genomics) samples were aligned using 

Space Ranger (10x Genomics) and mapped to the reference genome. The gene expression count 

matrices were analyzed through Seurat(28) (v.4.3.0). We separately normalized the two samples 

using the SCTransform. Clustering was performed using the FindClusters function. Cluster markers 

were identified using the two-sided Wilcoxon rank-sum test of the FindAllMarkers function. P values 

were adjusted by Benjamini-Hochbergh correction (BH adj. p-value < 0.05, log-FC > 0.25). 

 

Software 

Statistical analyses were performed using R software (v 4.3.0) (http://www.R-project.org). GSEA (v 

4.2.3) was used for calculating NESs and enrichment p-values. The chromatic features analysis and 

the machine learning approach were implemented using the Python software (v. 3.12.2). The figures 

were produced using the R software, Python software, and Prism GraphPad (v 10.0.1). 
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Supplementary Figure 1 

A, Example of observed and randomized spatial distribution.   

B-C, Representative microphotographs, quantitative analyses of double-marker IHC for CD68⁺ 

(brown signal) and AID⁺ (pink signal) cells (n GCs = 20). Original magnification, x200. Scale bars, 

100 μm. Statistical analysis: two-tailed unpaired Mann-Whitney test (C). Statistical analysis was 

assessed using a two-tailed unpaired Mann-Whitney test. Values are shown as mean ± standard 

error. 

D, UMAP projection of GC B cells from Holmes et al. (GSE139891), clustered by expression of the 

spatial DZ/LZ signature. DZ and LZ signature–based clusters (orange and green) overlap with 

annotated DZ (red) and LZ (blue) populations. 

E, Comparison of the predictive power of the spatial DZ/LZ signature and the WTA-derived DZ/LZ 

DEGs in classifying germinal center B cells into DZ and LZ types. The spatial signature demonstrates 

higher accuracy, confirming its strong discriminatory capacity. 

 
 
 
 
 
 



 
 
Supplementary Figure 2 

A, DZ and LZ spatial signature and boundary line mapping on nine GCs analysed by CosMx WTX. 

B-C, Hyperplexed MACSima image (B) and spatial plot (C) of a representative germinal center. A 

subset of markers including CD279, CD8α, CD3, CD4, CD45RO, CD57, was used to identify and 

spatially resolve distinct T cell populations. Original magnification, x100. Scale bars, 200 μm.   



D-E, Representative microphotograph (D) and quantitative analyses (E) of double-marker IHC for 

γδTCR⁺ (brown signal) and AID⁺ (pink signal) cells showing different spatial enrichment and 

expression in DZ and LZ (n GCs = 20). Original magnification, x100 and x630 (insets). Scale bars, 

200 μm and 25 μm.  

F, Representative microphotographs of nearest neighbor average distance showing the proximity of 

PLK1⁺ (brown triangle) to CD4⁺ (pink circle) and CD8⁺ cells (blue circle). Original magnification, x100 

and x200. Scale bars, 200 μm and 100 μm.  

G, Quantification of nearest neighbor distances in (F).  

H, Representative microphotographs of nearest neighbor average distance showing the proximity of 

EGR1⁺ (brown triangle) to CD4⁺ (pink circle) and CD8⁺ cells (blue circle). Original magnification, 

x100 and x200. Scale bars, 200 μm and 100 μm.  

I, Quantification of nearest neighbor distances in (H).  

J, Representative microphotographs of combined mRNA in situ hybridization of IFNG (brown signal) 
and double-marker immunohistochemistry of CD4 (pink signal) and CD8 (green signal). Original 

magnification, x200 and x630 (insets). Scale bars, 100 μm and 25 μm.   

K-L, In situ detection for IFNG mRNA (brown signal) and IHC for AID (pink signal) representative 

images (K), DZ/LZ infiltration analysis representation and quantitative analyses of the average 

density of IFNG cells infiltrating the inside and outside of the interface (L). (n GCs = 10). Original 

magnification, x200 and x630 (insets). Scale bars, 100 μm and 25 μm. 

Statistical analysis: two-tailed unpaired Mann-Whitney test. Mean ± standard error shown; *, P < 

0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 



Supplementary Figure 3 

A, Overall survival values over DZ-like, LZ-like, and intermediate patients from the harmonized 

dataset (1078 cases). 

B-E, Overall survival curves and values in 618 GCB (B, D) / 305 ABC (C,E) DLBCL harmonized 

cases for high DZ expression and low DZ expression patient groups obtained from tertile separation 

of the DZ spatial signature expression.  

F, Expression of T-cell signatures over DLBCL patients and the double-hit lymphoma cases (DHL). 

Wilcoxon p-values have been calculated to compare the T-cell gene expression between DZ high 

expression and DZ low expression patients. Statistical analysis: two-tailed unpaired Mann-Whitney 

test. Mean ± standard error shown. 

G, Association between DZ spatial signature expression and SpatialDecon cytotype scores across 

11 IG ROIs (Kendall's correlation, p-value < 0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Supplementary Figure 4 

A-B, Unsupervised clustering of spatial microregions in WT (A) and Aicda⁻/⁻ (B) mLNs.  

C-D, UMAP projection of the spatial microregions in WT (C) and Aicda⁻/⁻ (D) mLNs. Colors reflect 

the unsupervised cluster classification.  

E, GSEA enrichment analysis on follicular-GC microregions. The spatial DZ spatial signatures 

significantly enriches follicular-GC regions of the Aicda-/- sample (p-value < 0.001). 

F-G, Quantitative analyses of the percentage of CD4⁺ (G) or CD8⁺ (H) T cells in DZ and LZ GCs. (n 

= 10 WT GCs; n = 10 Aicda⁻/⁻ GCs). Statistical analysis: two-tailed unpaired Mann-Whitney test. 

Mean ± standard error shown. 

H, UMAP projection of 4.082 cells from the Holmes et al. dataset. The cells are classified as low, 

intermediate, and high AICDA gene expression. While low indicates the absence of expression, and 

high indicates an expression greater than the 2nd tertile.  

I, Volcano plot showing differentially expressed genes between AICDA-high and AICDA-low cells 

from the Holms et al. single-cell dataset (Wilcoxon Rank Sum test adj. p-value < 0.05, abs-logFC > 

0.25). 

 

 

 

 



 
 

Supplementary Figure 5 

A, Expression of DNA Damage Response genes in DZ and LZ ROIs. The left bar indicates the 

significant DEGs between DZ and LZ ROIs. 

B, Expression of Epigenetic Regulation and Chromatin Remodeling/Organization genes in DZ and 

LZ ROIs. The left bar indicates the significant DEGs between DZ and LZ ROIs. 

C, Quantitative analyses of RAD51, γH2AX, pKAP1, SMARCA4, EZH2, H3K9me3 or HP1α 

expression to assess the different enrichment between DZ and LZ. (n GCs = 20).  



D, Representative microphotographs of a GC showing the AID (red signal) and CD3 (green signal) 

staining. Original magnification x100. Scale bar, 200 μm. 

E, Violin plot showing the distribution of the “minimum DNA intensity” among the DZ/LZ B-cell 

populations (Welch’s t-test, p-value < 1e-124). 

F, Average of the row-normalized confusion matrices of the RFC trained to distinguish between LZ 

and DZ B-cells. The average is obtained by evaluating the RFC in a 10-fold stratified cross-validation 

setup for a balanced random subsample of DZ and LZ B-cells (n = 9,197). The prediction accuracy 

(Acc = 0.635) is significantly higher than the No Information Rate (NIR = 0.5, p-value 0.0025, one-

sided Wilcoxon signed-rank test) (top). Visualization of the prediction performance of the RFC for a 

GC sample. The true cell-type labels are shown on the left. Cell type labels predicted by an RFC 

when holding out the respective nuclei during training of the RFC are shown on the right.  

G, Scatterplot shows the measured DZ gene signature expression of the ROIs (n = 11) plotted 

against the median heterochromatin-to-euchromatin (HC/EC) ratio of the nuclei in those regions. 

The black line shows the fit of a linear regression model which visualises the significant correlation 

of the two quantities (Pearson r=0.8843, p-value = 0.0180, permutation test). A 95% confidence 

interval computed using 1,000 bootstrap samples for the regression line is shown as the shaded 

region in grey (bottom).  

H, Expression of “DNA and RNA sensing” genes in DZ and LZ ROIs. The left bar indicates the 

significant DEGs between DZ and LZ ROIs.  

I-J, Representative microphotographs and segmentation image (I) and quantitative analyses (J) 

showing cGAS/dsDNA interactions (red signal) detected by fluorescent in situ proximity ligation 

assay (n GCs = 10) and showing scattered elements in the LZ regions. Original magnification, x200 

and x630 (insets). Scale bars, 100 μm and 10 μm. Statistical analysis: two-tailed unpaired Mann-

Whitney test. Mean ± standard error shown; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

Supplementary Figure 6 

A, Lymphoma cell line ranking based on the total expression of DZ spatial signature genes. The 

SUDHL5 and HT cell lines are in the top-ranking positions. 

B-C, MTT assay show that the viability of HT (B) and SUDHL-5 (C) DZ-like DLBCL cells was not 

selected along 48h culture with ATRi treatment (1 micromolar). Statistical analysis: two-tailed 

unpaired Mann-Whitney test. Mean ± standard error shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 



Supplementary Figure 7 

A, Schematic of ATRi or vehicle control treatment for 2 or 5 consecutive days in BALB/c mice.  

B, Quantitative analyses of the number of CD3⁺ T cells per GCs area, expressed in µm², in control 

and ATRi-treated mice.  

C, Quantitative analysis of the number of CD4⁺, CD8⁺, Ifnγ⁺CD8⁺, Ifnb1⁺CD20⁺, and MHC-I⁺ cells 

per GC area (expressed in µm²) in vehicle control and ATRi-treated mice at day 3 and day 6. 

Statistical analysis: two-tailed unpaired Mann-Whitney test. Mean ± standard error shown; *, P < 

0.05; **, P < 0.01; ***, P < 0.001. 

D, Double-marker IHC of Ki-67⁺ (brown signal) and CD3⁺ (pink signal) cells, in vehicle control and 

ATRi-treated mice at day 3 and day 6. Original magnifications x400. Scale bar, 50 μm. 

E, Triple immunohistochemical staining for CD4⁺ (pink signal), CD8⁺ (brown signal) and Ki-67⁺ cells  

(cyan signal) in vehicle control and ATRi-treated mice at day 3 and day 6. Original magnifications 

x200. Scale bar, 100 μm. 

F, Representative microphotographs of combined mRNA in situ hybridization of Ifnγ (brown signal) 

and double-marker immunohistochemistry of CD8 (pink signal) and Ki-67 (cyan signal) or Ifnγ (brown 

signal) and Ki-67 (cyan signal) in vehicle control and ATRi-treated mice at day 3 and day 6. Original 

magnification, x400 and x630 (insets). Scale bars, 50 μm and 25 μm. 

G, Representative microphotographs of combined mRNA in situ hybridization of Ifnb1 (brown signal) 

and double-marker immunohistochemistry of CD20 (pink signal) and Ki-67 (cyan signal) or Ifnb1 

(brown signal) and Ki-67 (cyan signal) cells in vehicle control and ATRi-treated mice at day 3 and 

day 6. Original magnification, x400 and x630 (insets). Scale bars, 50 μm and 25 μm.  

H, Representative images of IHC for MHC-I (brown signal) or double-marker IHC of MHC-I (brown 

signal) and Ki-67 (pink signal) in vehicle control and ATRi-treated mice at day 3 and day 6. Original 

magnification, x400 and x630 (insets). Scale bars, 50 μm and 25 μm. 
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