Supplementary Appendix

Supplement to: Lovegrove CE, Goldsworthy M, Haley J, et al. Genetic variants predisposing to increased risk of kidney stone disease

This appendix has been provided by the authors to give readers additional information about the work.

Contents

Supplementary Figure S1: Quantile-quantile plot of observed vs. expected p-values for genome-wide association study (GWAS) of 11,186 kidney stone disease cases and 390,488 controls in the UK Biobank
Supplementary Figure S2: Manhattan plot for genome-wide association study (GWAS) of 11,186 kidney stone disease cases and 390,488 controls in the UK Biobank
Supplementary Figure S3: Quantile-quantile plot of observed vs. expected p-values for a kidney stone disease genome-wide association study meta-analysis in the UK Biobank and FinnGen R12 Study
Supplementary Figure S4: Locus zoom plots showing genetic coordinates from which regional and drug-target Mendelian randomization instrumental variables were selected.7
Supplementary Figure S5: Forest plot demonstrating regional Mendelian randomization estimates for independent serum calcium and phosphate index-associated variants (±500kb) on liability to kidney stone disease in a meta-analysis of the UK Biobank and FinnGenR12 study and each constituent study9
Supplementary Figure S6: Multiple protein sequence alignment of DGK δ 10
Supplementary Figure S7: Proposed role of diacylglycerol kinase delta (DGKD) in the calcium sensing receptor signaling pathway11
Supplementary Figure S8: Expression of DGK δ variants in HEK293 cells
Supplementary Figure S9: Functional characterization of kidney stone-associated DGK δ variants
Supplementary Figure S10: Predicted effects of kidney stone-associated DGK δ variants based on the predicted structure of DGK δ isoform 2, (AF-Q16760-F1-mod(2, 3) AlphaFold)16
Supplementary Table S1: Inclusion criteria for kidney stone disease association analyses in the UK Biobank
Supplementary Table S2: Variants associated with kidney stone disease at genome-wide association study in the UK Biobank24
Supplementary Table S3: Heritability estimates for GWAS in UK Biobank and in UK Biobank-FinngenR12 GWAS meta-analysis25
Supplementary Table S4: Variants associated with kidney stone disease from meta-analysis of genome-wide association studies in the UK Biobank and FinnGenR12 study
Supplementary Table S5: MAGMA gene association test for meta-analysis of genome-wide association studies in the UK Biobank and FinnGenR12 study
Supplementary Table S6: MAGMA Gene-set analysis in meta-analysis of genome-wide association studies in the UK Biobank and FinnGenR12 study
Supplementary Table S7: Estimate of bias for Mendelian randomization with sample overlap in the UK Biobank
Supplementary Table S8: Causal effects of lead variants from mineral metabolism GWAS (±500kb) with evidence of colocalization on kidney stone risk

Supplementary Table S9: 95% credible sets for genomic regions with evidence for causal effects on kidney stone risk and colocalization in UK Biobank-FinnGenR12 genome-wide association study meta-analysis
Supplementary Table S10: 95% credible sets for genomic regions with evidence for causal effects on kidney stone risk and colocalization in the UK Biobank
Supplementary Table S11: 95% credible sets for genomic regions with evidence for causal effects on kidney stone risk and colocalization in the FinnGenR12 study
Supplementary Table S12: Variants predicted to increase risk of kidney stones via effects on serum mineral metabolism44
Supplementary Table S13: Associations of variants predicted to cause kidney stones with kidney stone disease and mineral metabolism traits
Supplementary Table S14: Associations of variants predicted to cause kidney stones with kidney stones with kidney stone disease and mineral metabolism traits in DiscovEHR
Supplementary Table S15: Kidney stone population attributable risk and population attributable fraction in the UK Biobank48
Supplementary Table S16: Kidney stone population attributable risk and population attributable fraction in DiscovEHR49
Supplementary Table S17. Drug target Mendelian randomization; effects of modulating mineral metabolism traits on odds of kidney stone disease
Supplementary Table S18: Rare predicted deleterious DGKD missense variants in 100kGP participants with kidney stone disease52
Supplementary Table S19: Rare DGKD missense variants associated with kidney stone disease in the DiscovEHR cohort53
Bibliography

Supplementary Figure S1: Quantile-quantile plot of observed vs. expected p-values for genome-wide association study (GWAS) of 11,186 kidney stone disease cases and 390,488 controls in the UK Biobank.

The λ GC demonstrated some inflation (1.15), but the LD score regression (LDSC) intercept of 1.01, with an attenuation ratio of 0.09 indicated that the inflation was largely due to polygenicity and the large sample size.

Supplementary Figure S2: Manhattan plot for genome-wide association study (GWAS) of 11,186 kidney stone disease cases and 390,488 controls in the UK Biobank.

Genome-wide p-values (-log10) are plotted against their respective positions on each chromosome. The horizontal red line indicates the genome-wide significance threshold (5.0 x 10-8). Loci are labelled with the primary candidate gene at each locus. These loci are in proximity to biomineralization associated alkaline phosphatase, ALPL; diacylglycerol kinase delta, *DGKD*; solute carrier family 34 member 1, *SLC34A1*; flotillin 1, *FLOT1*; potassium two pore domain channel subfamily K member 5, *KCNK5*; solute carrier family 22 member 2, *SLC22A2*; 3-hydroxyisobutyrate dehydrogenase, *HIBADH*; transient receptor potential cation channel subfamily V member 5, *TRPV5*; adenosine monophosphate deaminase 3, AMPD3; diacylglycerol kinase eta, *DGKH*; semaphoring 6D, *SEMA6D*; ATP binding cassette subfamily C member 6, *ABCC6*; uromodulin, *UMOD*; SRY-box transcription factor, *SOX9*; cytochrome P450 family 24 subfamily A member 1, *CYP24A1*; claudin 14, *CLDN14*; and G protein subunit alpha z, *GNAZ*. Two loci (*FLOT1* and *ABCC6*) have not been previously associated with kidney stone disease.

Supplementary Figure S3: Quantile-quantile plot of observed vs. expected p-values for a kidney stone disease genome-wide association study meta-analysis in the UK Biobank and FinnGen R12 Study.

The meta-analysis of genome-wide association studies of kidney stone disease comprises 24,167 cases and 876,673 controls from the UK Biobank and FinnGen R12 study. λ GC demonstrated some inflation (1.26). The LD score regression (LDSC) intercept of 1.05, with an attenuation ratio of 0.13 indicated that inflation was largely due to polygenicity and large sample size.

Supplementary Figure S4: Locus zoom plots showing genetic coordinates from which regional and drug-target Mendelian randomization instrumental variables were selected

Green boxes denote genomic regions from which genetic variants were selected for regional Mendelian randomization (MR); these variants were within a 500kbp window either side of

lead independent variants from serum albumin-adjusted calcium or phosphate genome-wide association studies. Brown boxes denote genomic regions from which genetic variants were selected for drug-target MR; these variants were within a 300kbp window either side of the gene coordinates for genes associated with candidate causal variants identified from MR and colocalization analyses. Candidate causal variants are highlighted in each locus zoom plot in the **A**: *DGKD*, **B**: *SLC34A1*, and **C**: *CYP24A1* regions using data from genome-wide association studies of albumin-adjusted serum calcium, phosphate, and kidney stone disease (KSD) in the UK Biobank.

Effect on risk of kidney stone disease

Higher albumin-adjusted serum calcium concentration

Supplementary Figure S5: Forest plot demonstrating regional Mendelian randomization estimates for independent serum calcium and phosphate index-associated variants (±500kb) on liability to kidney stone disease in a meta-analysis of the UK Biobank and FinnGenR12 study and each constituent study.

GRS=overall Mendelian randomization estimate for trait on risk of kidney stone disease.

A Human WT Human Ile91Val Chimp Mouse Chicken Xenopus	90 YYAKTAKSIIFDEVDLT YYAKTAKSVIFDEVDLT YYAKTAKSIIFDEVDLT YYAKTAKSIIFDEVDLT YYAKTAKSIIFDEVDLT YYAKTAKSIIFEEVDIT	B Human WT Human His190Val Chimp Mouse Chicken Xenopus	190 EALSGVTSHGLSCEVCK EALSGVTSVGLSCEVCK EALSGVTSHGLSCEVCK EALSGVTSHGLSCEVCK EALSGVTSHGLSCEVCK
C	220	D	320
Human WT	CKWTTLASIGKDIIEDA	Human WT	KASCPPSCTSPLLVFVN
Human Ile221Asn	CKWTTLASIGKDIIEDA	Human Thr319Ala	KASCPPSCASPLLVFVN
Chimp	CKWTTLASIGKDIIEDA	Chimp	KASCPPSCTSPLLVFVN
Mouse	CKWTTLASIGKDIIEDE	Mouse	KATCPPSCTSPLLVFVN
Chicken	CKWTTLASIGKDIIEDE	Chicken	KATCPPSCTSPLLVFVN
Xenopus	CKWTTLASIGKDIIEDE	Xenopus	KASCPPSCTSPLLVFVN
E	460	F	900
Human WT	PRQASSSTVTEDFSEDS	Human WT	QHHRIAQCRTVKISILGD
Human Val464Ile	PRQASSSTITEDFSEDS	Human Arg900His	QHHRIAQCHTVKISILGD
Chimp	PRQASSSTVTEDFSEDS	Chimp	QHHRIAQCRTVKISILGD
Mouse	PRQASSSTVTEDFSEDS	Mouse	QHHRIAQCRTVKISILGD
Chicken	PRQASSSTVTEDFSEDS	Chicken	QHHRIAQCRTVKIAILGE
Xenopus	PAQSPDSCTAPENNEDC	Xenopus	QHHRIAQCRTVKITVLGD
G Human WT Human Arg1181Trp Chimp Mouse Chicken Xenopus	1180 GSELLHLERRDLKDLGVT GSELLHLE W RDLKDLGVT GSELLHLERRDLKDLGVT GSELLHLERRDLKDLGVT GCELLHLERRDLKELGVT		

Supplementary Figure S6: Multiple protein sequence alignment of DGK δ

Evolutionary conservation of residues implicated in kidney stone disease in orthologs.

Conserved residues are shaded grey.

Supplementary Figure S7: Proposed role of diacylglycerol kinase delta (DGKD) in the calcium sensing receptor signaling pathway.

Binding of calcium (yellow) to the extracellular bilobed venus fly-trap domain of the CaSR (light grey) results in G α 11 dependent stimulation of phospholipase C- β , which catalyzes the formation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P₃) and diacylglycerol (DAG) from phosphatidylinositol 4,5-bisphosphate (PIP2). An accumulation of Ins(1,4,5)P₃ mediates calcium mobilization into the cytosol from intracellular stores, whereas DAG activates the phospho-extracellular signal regulated kinase (pERK) arm of the mitogen activated protein kinase (MAPK) cascade via the production of phosphatidic acid (PA). Gene transcription mediated by intracellular calcium and MAPK signaling can be measured using nuclear factor of activated T-cells response element (NFAT-RE) and serum response element (SRE) containing luciferase reporter constructs, respectively(1).

Supplementary Figure S8: Expression of DGKδ variants in HEK293 cells.

A: Representative western blot of lysates from HEK-CaSR stably transfected with Myc-tagged DGKD; α–Tubulin was used as a loading control. Anti-CaSR, anti-tubulin, and anti-Myc antibodies were used. UT-untransfected cells, WT- wildtype. **B**: Representative western blot of lysates from HEK-CaSR cells treated with scrambled or DGKD shRNA; α–Tubulin was used as a loading control. Anti-CaSR, anti-tubulin, and anti-DGKD antibodies were used.

Supplementary Figure S9: Functional characterization of kidney stone-associated DGK δ variants. CaSR-mediated phospho-ERK (pERK), SRE, and NFAT responses to changes in extracellular calcium concentration and effect of 100nM cinacalcet treatment (missense variants) and 5nM cinacalcet (DGK δ knockdown) in HEK-CaSR-DGK δ cells transfected with wild-type or kidney stone-associated variants 191V, H190Q, I221N, T319A, V464I, R900H, and R 1181W, and in HEK-CaSR cells following DGK δ knockdown. The responses ± standard error of the mean (SEM) are shown for n>4 biologically independent experiments. Transfection with kidney stone-associated DGKD variants and DGK δ knockdown led to a reduction in responses (red line) compared to cells transfected with wild-type DGKD (black line). Treatment with cinacalcet increased SRE-mediated responses but had no effect on NFAT responses (blue line). Two-way ANOVA with Dunnet's correction for multiple comparisons was used to compare points on dose response curve with reference to wild-type. Data are shown as mean ±SEM with *p<0.05, **p<0.01, ****p<0.001.

Supplementary Figure S10: Predicted effects of kidney stone-associated DGK δ variants based on the predicted structure of DGK δ isoform 2, (AF-Q16760-F1-mod(2, 3) AlphaFold)

A and B: Residue 191 (wild-type, dark blue) is within the β 3- β 4 linker of the DGK δ predicted pleckstrin homology (PH) domain; the mutation V91 (red); is predicted to result in an altered confirmation of residues K89 and S90. Residues in an equivalent position have been shown to be important for binding of the PH domain of phospholipase C beta to inositol trisphosphate (4). **C and D:** H190 wild-type, (dark blue) and Q190 (red); the mutation Q190 is predicted to result in the loss of a polar contact (dashed black line, S170) between two β sheets. Studies of the C1 domain of Protein Kinase C δ suggest that these two β sheets are pulled apart to

enable ligand binding. **E and F:** 1221 (wild-type, dark blue) and N221 (red); the mutation N221 is predicted to result in an additional polar contact (dashed black line) with K223 and alteration in residue orientation on comparison to the 1221 protein. These residues are within the C1 domain. **G and H:** T319 (wild-type, dark blue) and A319 (red); the mutation A319 is predicted to result in the loss of a polar contact (dashed black line) with T370. A319 is in close proximity to the ATP-binding pocket (light blue), this change in polar contacts may alter the conformation of this cleft. **I and J:** R900 (wild-type, dark blue) and H900 (red); the mutation H900 is predicted to result in the loss of a polar contact (dashed black line) with D826. D826 forms is linked to the accessory domain ATP-binding motif (light blue).

Supplementary Table S1: Inclusion criteria for kidney stone disease association analyses in the UK Biobank.

Coding	Code	Definition						
	ICD9- 7880	Renal colic						
	ICD9- 5920	Calculus of kidney						
	ICD9- 5920A	Calculus of kidney						
International	ICD9- 5921	Calculus of ureter						
Classification	ICD9- 5929	Urinary calculus, unspecified						
of Diseases	ICD10-N20.0	Calculus of kidney						
(ICD)	ICD10-N20.1	Calculus of ureter						
	ICD10-N20.2	Calculus of kidney with calculus of ureter						
	ICD10-N20.9	Urinary calculus, unspecified						
	ICD10-N23	Unspecified renal colic						
	OPCS3- 563.1	Removal of renal calculus : nephrolithotomy						
	OPCS3- 563.2	Removal of renal calculus : pyelolithotomy						
	OPCS3- 563.3	Removal of renal calculus : removal without incision						
	OPCS3- 580	Ureterolithotomy						
	OPCS3- 587.2	Cystoscopic operation on ureter : lithotomy						
	OPCS4-							
	M06.1	Open removal of calculus from kidney						
	OPCS4-	I hat a second a loss of the superstation of color live of kidney.						
	M07.1	Oreteroscopic laser tragmentation of calculus of kidney						
	OPCS4-	Literatore entropy of coloridate of kidney NEC						
	M07.2							
	OPCS4- M09	Therapeutic endoscopic operations on calculus of kidney						
	OPCS4- M09.1	Endoscopic ultrasound fragmentation of calculus of kidney						
	OPCS4-	Endoscopic electrohydraulic shockwave fragmentation of calculus of						
	M09.2	kidney						
	OPCS4-	Endeagonia logar fragmentation of calculus of kidnov						
Classification	M09.3							
of	OPCS4-	Endosconic extraction of calculus of kidney NEC						
Interventions	M09.4							
and	OPCS4-	Other specified						
Procedures	M09.8							
(OPCS)	OPCS4-	Unspecified						
· · · ·	M09.9							
	OPCS4-M14	Extracorporeal fragmentation of calculus of kidney						
	OPCS4-	Extracorporeal shock wave lithotripsy of calculus of kidney						
	M14.1							
	OPCS4-	Other specified						
	M14.8	· · ·						
	0PC54-	Unspecified						
		· · · · · · · · · · · · · · · · · · ·						
	M16.4	Percutaneous nephrolithotomy						
	M26 1	Nephroscopic laser fragmentation of calculus of ureter						
	M26.2	Nephroscopic fragmentation of calculus of ureter NEC						
	OPCS4-	Nephroscopic extraction of calculus of ureter						
	M26.3							
	UPCS4-	Ureteroscopic laser fragmentation of calculus of ureter						
	M27.1							

	OPCS4- M27.2	Ureteroscopic fragmentation of calculus of ureter NEC			
	OPCS4-				
	M27.3				
	OPCS4- M28	Other endoscopic removal of calculus from ureter			
	OPCS4- M28·1	Endoscopic laser fragmentation of calculus of ureter			
	OPCS4- M28·2	Endoscopic fragmentation of calculus of ureter			
	OPCS4-	Endoscopic extraction of calculus of ureter			
	0PCS4-				
	M28.4	Endoscopic catheter drainage of calculus of ureter			
	OPCS4-	Endoscopic drainage of calculus of ureter by dilation of ureter			
	M28.5				
	OPCS4- M28.8	Other specified			
	OPCS4- M28.9	Unspecified			
	OPCS4- M31	Extracorporeal fragmentation of calculus of ureter			
	OPCS4- M31_1	Extracorporeal shockwave lithotripsy of calculus of ureter			
	OPCS4-				
	M31.8	Other specified			
	OPCS4- M31.9	Unspecified			
Self-reported	1197	Percutaneous/open kidney stone surgery/lithotripsy			
oporation	N20.0	Calculus of kidney			
	N20.1	Calculus of ureter			
Death codes	N20.2	Calculus of kidney with calculus of ureter			
	N20.9	Urinary calculus, unspecified			
	N23	Unspecified renal colic			
	Read V2- 14D3.	H/O: urinary stone			
	Read V2- 1A54	Ureteric colic			
	Read V2- 4G6	O/E - ureteric calculus			
	Read V2- 7B07.	Percutaneous renal stone surgery			
	Read V2- 7B070	Nephroscopy and ultrasound lithotripsy of renal calculus			
Drimony corre	Read V2- 7B071	Nephroscopy and electrohydraulic lithotripsy of renal calculus			
Read V2 and	Read V2- 7B072	Nephroscopy and laser lithotripsy of renal calculus			
vs codes	Read V2- 7B073	Percutaneous nephrolithotomy without disintegration			
	Read V2- 7B074	Endoscopic extraction of calculus of kidney nec			
	Read V2- 7B07v	Other specified percutaneous renal stone surgery			
	Read V2- 7B07z	Percutaneous renal stone surgery NOS			
	Read V2- 7B0B.	Extracorporeal shockwave lithotripsy for renal calculus			
	Read V2- 7B0B0	Extracorporeal shockwave lithotripsy for renal calculus of unspecified size			

Read V2-	Extracorporeal shockwave lithotripsy for renal calculus less than 2
/BUBI	Cm in diameter
	Extracorporeal shockwave treatment for renal calculus of 2 cm or more in diameter
Read V/2-	Other specified extracorporeal shockwaye lithotrinsy for renal
7B0Bv	calculus
Read V2-	
7B0Bz	Extracorporeal shockwave lithotripsy for renal calculus NOS
Read V2- 7B170	Nephroscopic laser lithotripsy of ureteric calculus
Read V2- 7B171	Other nephroscopic fragmentation of ureteric calculus
Read V2- 7B172	Nephroscopic extraction of ureteric calculus
Read V2- 7B18.	Ureteroscopic operations for ureteric calculus
Read V2- 7B180	Ureteroscopic laser lithotripsy of ureteric calculus
Read V2- 7B181	Other ureteroscopic fragmentation of ureteric calculus
Read V2- 7B182	Ureteroscopic extraction of ureteric calculus
Read V2- 7B19.	Cystoscopic removal of ureteric calculus
Read V2- 7B190	Cystoscopic laser lithotripsy of ureteric calculus
Read V2- 7B191	Other cystoscopic fragmentation of ureteric calculus
Read V2- 7B193	Cystoscopic catheter drainage for ureteric calculus
Read V2- 7B194	Cystoscopic dilation of ureter for drainage of calculus
Read V2- 7B19y	Other specified cystoscopic removal of ureteric calculus
Read V2- 7B19z	Cystoscopic removal of ureteric calculus NOS
Read V2- 7B1C.	Extracorporeal shockwave lithotripsy of ureteric calculus
Read V2- 7B1C0	Extracorporeal shockwave lithotripsy of unspecified ureteric calculus
Read V2- 7B1C1	Extracorporeal shockwave therapy for stone in upper ureter
Read V2- 7B1C2	Extracorporeal shockwave lithotripsy for stone in mid-ureter
Read V2- 7B1C3	Extracorporeal shockwave lithotripsy for stone in lower ureter
Read V2- 7B1Cv	Other specified extracorporeal shockwave lithotripsy of ureteric calculus
Read V2-	Extracorporeal shockwave lithotripsy of ureteric calculus NOS
Read V2- C3411	Uric acid nephrolithiasis
Read V2- K112	Hydronephrosis with renal and ureteral calculous obstruction
Read V2- K12	Calculus of kidney and ureter
Read V2- K120.	Calculus of kidney

Read V2-	Stackers coloulus
K1200	
Read V2- K120z	Renal calculus NOS
Read V2- K121.	Calculus of ureter
Read V2- K122.	Calculus of kidney with calculus of ureter
Read V2- K12z.	Urinary calculus NOS
Read V2- Kyu3.	[X]Urolithiasis
Read V2- R080.	[D]Renal colic
Read V2- R0800	[D]Renal colic, unspecified
Read V2- R0801	[D]Ureteric colic
Read V2- R080z	[D]Renal colic NOS
Read V3- 14D3.	H/O: urinary stone
Read V3- 4G6	O/E - ureteric calculus
Read V3- 7B07.	Percutaneous nephrolithotomy
Read V3- 7B070	Nephroscopy and ultrasound lithotripsy of renal calculus
Read V3- 7B071	Nephroscopy and electrohydraulic lithotripsy of renal calculus
Read V3- 7B072	Endoscopic laser fragmentation of renal calculus
Read V3- 7B073	Percutaneous nephrolithotomy without disintegration
Read V3- 7B07y	Other specified percutaneous renal stone surgery
Read V3- 7B07z	Percutaneous renal stone surgery NOS
Read V3- 7B0B.	Extracorporeal shockwave lithotripsy for renal calculus
Read V3- 7B0B0	Extracorporeal shockwave lithotripsy for renal calculus of unspecified size
Read V3- 7B0B1	Extracorporeal shockwave lithotripsy for renal calculus less than 2 cm in diameter
Read V3- 7B0B2	Extracorporeal shockwave treatment for renal calculus of 2 cm or more in diameter
Read V3- 7B0By	Other specified extracorporeal shockwave lithotripsy for renal calculus
Read V3- 7B0Bz	Extracorporeal shockwave lithotripsy for renal calculus NOS
Read V3- 7B170	Nephroscopic laser fragmentation of ureteric calculus
Read V3- 7B171	Other nephroscopic fragmentation of ureteric calculus
Read V3- 7B172	Nephroscopic removal of ureteric calculus
Read V3- 7B18.	Ureteroscopic operations for ureteric calculus

	Read V3-	
	7B180	Ureteroscopic laser lithotripsy of ureteric calculus
	Read V3- 7B181	Other ureteroscopic fragmentation of ureteric calculus
	Read V3- 7B182	Ureteroscopic extraction of ureteric calculus
	Read V3- 7B19.	Cystoscopic operation for ureteric calculus
	Read V3- 7B190	Cystoscopic laser lithotripsy of ureteric calculus
	Read V3- 7B191	Other cystoscopic fragmentation of ureteric calculus
	Read V3- 7B193	Cystoscopic catheter drainage for ureteric calculus
-	Read V3- 7B194	Cystoscopic dilation of ureter for drainage of calculus
	Read V3- 7B19y	Other specified cystoscopic removal of ureteric calculus
-	Read V3- 7B19z	Cystoscopic removal of ureteric calculus NOS
-	Read V3- 7B1C.	Extracorporeal shockwave lithotripsy of ureteric calculus
-	Read V3- 7B1C0	Extracorporeal shockwave lithotripsy of unspecified ureteric calculus
-	Read V3- 7B1C1	Extracorporeal shockwave therapy for stone in upper ureter
-	Read V3- 7B1C2	Extracorporeal shockwave lithotripsy for stone in mid-ureter
-	Read V3- 7B1C3	Extracorporeal shockwave lithotripsy for stone in lower ureter
	Read V3- 7B1Cy	Other specified extracorporeal shockwave lithotripsy of ureteric calculus
	Read V3- 7B1Cz	Extracorporeal shockwave lithotripsy of ureteric calculus NOS
	Read V3- C3411	Renal stone - uric acid
	Read V3- K112.	Hydronephrosis with renal and ureteral calculous obstruction
-	Read V3- K1200	Staghorn calculus
	Read V3- K120z	Renal calculus NOS
	Read V3- K121.	Calculus of ureter
	Read V3- K12z.	Urinary calculus NOS
	Read V3- R080.	[D]Renal colic
	Read V3- R0800	[D]Renal colic, unspecified
	Read V3- R0801	[D]Ureteric colic
	Read V3- R080z	[D]Renal colic NOS
	Read V3- X30PI	Urolithiasis
	Read V3- X30Pm	Urinary calculus

Re X	ead V3- (30Pn	Nephrolithiasis NOS
Re >	ead V3- (a07P	C/O - ureteric pain
Re X	ead V3- (a6m6	Ureteroscopic operation for ureteric calculus
Re >	ead V3- (a8P3	Cystoscopic extraction of ureteric calculus without disintegration
Re >	ead V3- XE0dj	Calculus of kidney and ureter
Re >	ead V3- (E0dk	Kidney calculus
Re X	ead V3- E0G7	Ureteroscopic removal of ureteric calculus
Re X	ead V3- Œ0G8	Cystoscopic extraction of ureteric calculus
Re X	ead V3- (E2Pu	Ureteric colic
Re X	ead V3- M0CQ	C/O - ureteric colic

Supplementary Table S2: Variants associated with kidney stone disease at genomewide association study in the UK Biobank.

Variant	CHR	POS	Candidate gene	EA	NEA	EAF	Conditional OR (95% CI)	Conditional P
rs77362499	1	21836204	ALPL	G	С	0.11	1.23 (1.17-1.28)	2.70x10-20
rs1256332	1	21893344	ALPL	А	С	0.16	1.17 (1.13-1.21)	3.81x10-17
rs838717	2	234296444	DGKD	G	А	0.43	1.1 (1.07-1.13)	2.60x10-11
rs10051765	5	176799992	SLC34A1	С	Т	0.33	1.16 (1.13-1.19)	1.30x10-24
rs7774646	6	30760454	FLOT1*	Т	G	0.17	1.11 (1.07-1.15)	2.30x10-9
rs1155347	6	39146230	KCNK5	С	Т	0.22	1.13 (1.09-1.16)	4.40x10-13
rs74348938	6	160614649	SLC22A2	А	G	0.03	1.28 (1.18-1.38)	5.30x10-10
rs5883088	7	27610433	HIBADH	G	GC	0.33	1.11 (1.08-1.14)	2.80x10-12
rs4252512	7	142605221	TRPV5	С	Т	0.02	1.34 (1.22-1.49)	7.70x10-9
rs7124537	11	10505718	AMPD3	С	А	0.09	1.15 (1.1-1.2)	5.40x10-9
rs1182959	13	42674601	DGKH	А	G	0.18	1.14 (1.1-1.18)	1.30x10-13
rs76594840	15	47900177	SEMA6D	Т	С	0.92	1.15 (1.09-1.21)	3.80x10-8
rs112414002	16	16284360	ABCC6*	С	Т	0.97	1.27 (1.16-1.38)	4.40x10-8
rs77924615	16	20392332	UMOD	А	G	0.20	1.15 (1.11-1.19)	7.50x10-16
rs9902482	17	70356993	SOX9	С	Т	0.50	1.08 (1.05-1.11)	1.10x10-8
rs17216707	20	52732362	CYP24A1	Т	С	0.81	1.16 (1.12-1.2)	9.70x10-18
rs219772	21	37835347	CLDN14	Α	Т	0.74	1.17 (1.13-1.21)	2.50x10-24
rs13054904	22	23410918	GNAZ	А	Т	0.26	1.14 (1.11-1.18)	7.00x10-18

CHR = chromosome; POS =	position based on NCBI	Genome Build 37 (hg19); EA= effect
-------------------------	------------------------	------------------------------------

allele; NEA= Non-effect allele; EAF= effect allele frequency; OR= odds ratio; P= P-value; 95% CI= 95% confidence interval, *denotes novel association.

Supplementary Table S3: Heritability estimates for GWAS in UK Biobank and in UK Biobank-FinngenR12 GWAS meta-analysis.

	UK Biobank GWAS	UK Biobank-FinngenR12 GWAS meta-analysis
N SNPs	1,154,335	1,094,306
N cases	11,186	24,167
N controls	390,488	876,673
h2 _{SNP} - liability scale	0.19	0.18
(SE)	(0.02)	(0.01)
LDSC intercept	1.01	1.05
(SE)	(0.01)	(0.01)
LDSC ratio	0.09	0.13
(SE)	(0.5)	(0.03)
Mean x ²	1.16	1.38

Estimates are calculated using LD-score regression (LDSC) at a population prevalence of

10%. $h_{2 \text{ SNP}}$ = mean SNP-based heritability; N SNPs= number of SNPs analyzed; N cases= number of cases; N controls= number of controls; SE= standard error

Supplementary Table S4: Variants associated with kidney stone disease from meta-analysis of genome-wide association studies in the

UK Biobank and FinnGenR12 study.

	Variant							nalysis	UK Bi	obank	FinnG	enR12	Hete	erogeneity
SNP	CHR	POS	Candidate gene	EA	NEA	EAF	OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	2	Р
rs880315	1	10796866	CASZ1*	С	Т	0.38	1.06 (1.04-1.08)	8.66x10-9	1.07 (1.04-1.1)	2.30x10-6	1.05 (1.02-1.07)	4.82x10-4	29.4	0.23
rs115239632	1	21826530	ALPL	т	С	0.05	1.33 (1.27-1.38)	4.06x10-44	1.33 (1.24-1.43)	7.10x10-16	1.32 (1.26-1.39)	6.72x10-30	0.0	0.90
rs1256332	1	21893344	ALPL	А	С	0.14	1.15 (1.12-1.18)	1.00x10-24	1.16 (1.12-1.21)	1.80x10-16	1.10 (1.06-1.15)	6.67x10-7	73.6	0.05
rs116804195	1	43201576	CLDN19*	т	С	0.02	1.23 (1.15-1.31)	4.07x10-9	1.22 (1.09-1.35)	3.60x10-4	1.24 (1.13-1.35)	2.88x10-6	0.0	0.82
rs77663766	1	150686011	HORMAD1*	А	С	0.07	1.11 (1.07-1.14)	1.53x10-8	1.08 (1.02-1.15)	0.01	1.12 (1.07-1.17)	4.33x10-7	0.0	0.40
rs112851199	1	186621231	PTGS2	С	Т	0.02	1.25 (1.18-1.33)	3.02x10-13	1.23 (1.12-1.34)	6.60x10-6	1.27 (1.17-1.38)	8.23x10-9	0.0	0.57
rs2383517	1	186654633	PTGS2	А	Т	0.89	1.10 (1.07-1.13)	2.78x10-10	1.06 (1.02-1.1)	4.20x10-3	1.27 (1.17-1.38)	8.42x10-9	0.0	0.53
rs823101	1	205667006	SLC41A1	С	т	0.46	1.06 (1.04-1.08)	7.28x10-11	1.06 (1.03-1.09)	3.40x10-5	1.07 (1.04-1.09)	4.58x10-7	0.0	0.69
rs884127	1	220082150	SLC30A10	G	А	0.59	1.08 (1.06-1.1)	2.80x10-15	1.08 (1.05-1.11)	7.70x10-8	1.08 (1.05-1.1)	6.99x10-9	0.0	0.89
rs780093	2	27742603	GCKR	т	С	0.37	1.07 (1.05-1.09)	2.19x10-11	1.07 (1.05-1.1)	2.40x10-7	1.06 (1.03-1.09)	1.54x10-5	0.0	0.44
rs10171517	2	28090059	RBKS*	С	т	0.76	1.07 (1.05-1.09)	1.03x10-9	1.08 (1.04-1.11)	4.00x10-6	1.06 (1.03-1.09)	4.77x10-5	0.0	0.46
rs232573	2	38388481	CYP1B1*	А	G	0.48	1.05 (1.04-1.07)	7.63x10-9	1.05 (1.02-1.08)	4.80x10-4	1.06 (1.03-1.09)	3.46x10-6	0.0	0.53
rs1430083	2	43448479	THADA	А	т	0.76	1.08 (1.06-1.11)	2.79x10-11	1.10 (1.06-1.15)	8.30x10-7	1.07 (1.04-1.1)	2.96x10-6	44.7	0.18
rs838717	2	234296444	DGKD	G	А	0.42	1.10 (1.08-1.12)	3.08x10-24	1.10 (1.07-1.13)	2.60x10-11	1.10 (1.08-1.13)	1.71x10-14	0.0	0.70
rs74780677	3	48601774	COL7A1*	А	G	0.94	1.23 (1.18-1.29)	5.58x10-19	1.14 (1.02-1.27)	0.02	1.26 (1.19-1.32)	2.04x10-18	62.7	0.10
rs34594364	3	55461778	WNT5AA*	AT	А	0.79	1.10 (1.07-1.14)	2.07x10-9			1.10 (1.07-1.14)	2.06x10-9	0.0	1.00
rs13059018	3	55473083	WNT5AA*	G	С	0.91	1.11 (1.07-1.15)	3.38x10-9	1.08 (1.02-1.14)	0.01	1.13 (1.08-1.17)	5.03x10-8	27.1	0.24

rs34172859	3	121942713	CASR	G	GA	0.28	1.08 (1.06-1.10)	2.03x10-14	1.09 (1.06-1.12)	6.20x10-8	1.08 (1.05-1.11)	5.72x10-8	0.0	0.62
rs61171818	3	124734646	HEG1*	А	С	0.54	1.06 (1.04-1.08)	3.68x10-10	1.06 (1.03-1.09)	2.00x10-5	1.06 (1.03-1.09)	6.38x10-6	0.0	0.98
rs369200	4	3743004	ADRA2C*	Т	С	0.45	1.06 (1.04-1.08)	6.14x10-9	1.04 (1.01-1.07)	4.70x10-3	1.07 (1.04-1.1)	1.04x10-7	59.7	0.12
rs2231142	4	89052323	ABCG2	Т	G	0.10	1.12 (1.09-1.15)	7.79x10-13	1.12 (1.08-1.17)	6.20x10-8	1.12 (1.07-1.17)	2.62x10-6	0.0	0.86
rs10011293	4	115577381	UGT8	т	С	0.23	1.11 (1.08-1.13)	4.73x10-20	1.10 (1.06-1.14)	1.30x10-7	1.11 (1.08-1.14)	5.16x10-14	0.0	0.54
rs66512073	5	51163093	ISL1*	Т	С	0.37	1.06 (1.04-1.08)	1.44x10-9	1.04 (1.02-1.07)	2.00x10-3	1.07 (1.05-1.1)	6.49x10-8	52.5	0.15
rs11959132	5	58605916	PDE4D*	G	С	0.75	1.06 (1.04-1.08)	2.98x10-8	1.06 (1.02-1.09)	5.80x10-4	1.07 (1.04-1.1)	1.27x10-5	0.0	0.68
rs638333	5	72419267	TMEM171	С	Т	0.27	1.08 (1.05-1.1)	2.92x10-12	1.06 (1.03-1.09)	1.50x10-4	1.09 (1.06-1.12)	1.77x10-9	47.0	0.17
rs10051765	5	176799992	SLC34A1	С	Т	0.37	1.14 (1.12-1.16)	6.45x10-43	1.16 (1.13-1.19)	1.30x10-24	1.13 (1.1-1.15)	1.94x10-20	53.6	0.14
rs9461633	6	30761168	HCG20*	G	А	0.18	1.11 (1.07-1.15)	2.89x10-9	1.11 (1.07-1.15)	2.90x10-9			0.0	1.00
rs9271375	6	32587067	HLA-DQA1*	G	А	0.56	1.07 (1.05-1.09)	1.82x10-13	1.08 (1.05-1.11)	6.40x10-8	1.07 (1.04-1.09)	5.26x10-7	0.0	0.64
rs12190363	6	39180487	KCNK5	А	G	0.27	1.07 (1.05-1.09)	1.20x10-10	1.09 (1.05-1.12)	1.40x10-7	1.06 (1.03-1.08)	7.48x10-5	48.9	0.16
rs68137036	6	43820215	VEGFA	G	А	0.30	1.07 (1.05-1.09)	1.24x10-10	1.06 (1.03-1.09)	4.60x10-5	1.07 (1.04-1.1)	6.04x10-7	0.0	0.73
rs2206271	6	50786008	TFAP2B*	А	Т	0.32	1.06 (1.04-1.08)	3.95x10-10	1.05 (1.02-1.08)	9.50x10-4	1.07 (1.05-1.1)	5.61x10-8	21.9	0.26
rs2465043	6	51180765	PHKD1	G	А	0.63	1.06 (1.04-1.08)	2.13x10-8	1.04 (1.02-1.07)	2.20x10-3	1.07 (1.04-1.09)	1.62x10-6	0.2	0.32
rs148684631	6	90121976	RRAGD	G	GGAGA	0.68	1.06 (1.04-1.08)	1.90x10-9	1.08 (1.05-1.11)	4.40x10-7	1.05 (1.02-1.08)	3.75x10-4	51.9	0.15
rs6928418	6	101175347	ASCC3	т	С	0.55	1.06 (1.04-1.08)	3.92x10-10	1.06 (1.04-1.09)	4.40x10-6	1.06 (1.03-1.08)	1.94x10-5	0.0	0.67
rs7740107	6	130374461	L3MBTL3	А	Т	0.74	1.08 (1.06-1.1)	1.65x10-12	1.07 (1.04-1.1)	1.20x10-5	1.08 (1.05-1.12)	2.36x10-8	0.0	0.51
rs12190287	6	134214525	TCF21*	С	G	0.59	1.05 (1.03-1.07)	2.12x10-8	1.07 (1.04-1.1)	3.40x10-6	1.04 (1.02-1.07)	8.07x10-4	27.0	0.24
rs74495751	6	160624947	SLC22A2	С	G	0.03	1.24 (1.15-1.33)	2.11x10-8	1.24 (1.15-1.33)	2.10x10-8			0.0	1.00
rs1404278	7	27634726	HIBADH	Т	С	0.31	1.09 (1.07-1.12)	3.12x10-19	1.11 (1.07-1.14)	1.00x10-11	1.08 (1.06-1.11)	3.19x10-9	0.0	0.32
rs1004317	7	30956858	AQP1	G	А	0.39	1.07 (1.05-1.09)	1.16x10-11	1.06 (1.04-1.09)	8.00x10-6	1.07 (1.04-1.1)	3.15x10-7	0.0	0.81
rs4252512	7	142605221	TRPV5	С	Т	0.02	1.34 (1.22-1.49)	7.68x10-9	1.34 (1.22-1.49)	7.70x10-9			0.0	1.00

rs6464165	7	151413124	PRKAG2*	Т	С	0.74	1.07 (1.05-1.09)	9.80x10-11	1.08 (1.05-1.11)	5.10x10-7	1.06 (1.03-1.1)	3.77x10-5	0.0	0.55
rs4745107	9	71177110	TMEM252*	А	G	0.73	1.06 (1.04-1.09)	2.57x10-9	1.05 (1.02-1.08)	8.30x10-4	1.08 (1.05-1.11)	2.89x10-7	27.3	0.24
rs148349564	9	77466700	TRPM6	С	Т	0.07	1.12 (1.08-1.16)	1.74x10-10	1.14 (1.08-1.2)	2.80x10-7	1.11 (1.05-1.16)	1.07x10-4	0.0	0.42
rs143845824	9	97474225	AOPEP	С	CA	0.91	1.11 (1.08-1.15)	4.37x10-10	1.10 (1.04-1.16)	1.00x10-3	1.12 (1.08-1.17)	9.08x10-8	0.0	0.52
rs2477001	10	34962926	PARD3*	С	А	0.28	1.06 (1.04-1.08)	5.43x10-9	1.06 (1.03-1.09)	2.30x10-4	1.07 (1.04-1.1)	5.16x10-6	0.0	0.56
rs61264398	11	10474497	AMPD3	G	т	0.56	1.06 (1.04-1.08)	3.30x10-11	1.07 (1.04-1.1)	5.60x10-7	1.06 (1.03-1.09)	1.10x10-5	0.0	0.53
rs10789841	11	111469582	SIK2*	т	С	0.75	1.07 (1.04-1.09)	1.48x10-9	1.08 (1.05-1.11)	4.80x10-7	1.05 (1.02-1.09)	4.17x10-4	19.2	0.27
rs7133836	12	42861098	PRICKLE1*	С	Т	0.43	1.06 (1.04-1.08)	2.66x10-10	1.05 (1.02-1.08)	4.10x10-4	1.07 (1.04-1.1)	9.40x10-8	8.2	0.30
rs73187207	13	42619919	DGKH	т	G	0.21	1.07 (1.05-1.1)	8.72x10-10	1.08 (1.04-1.11)	6.50x10-6	1.07 (1.04-1.11)	4.11x10-6	0.0	0.92
rs12585865	13	42751707	DGKH	С	Т	0.40	1.08 (1.06-1.1)	1.51x10-14	1.10 (1.07-1.13)	2.70x10-11	1.06 (1.03-1.08)	1.65x10-5	74.3	0.05
rs57719175	13	96175396	CLDN10	G	А	0.60	1.06 (1.04-1.08)	7.05x10-10	1.05 (1.02-1.08)	7.70x10-4	1.07 (1.04-1.1)	1.13x10-7	31.1	0.23
rs11851035	14	30678761	PRKD1*	G	А	0.85	1.09 (1.06-1.12)	4.11x10-10	1.12 (1.07-1.17)	1.50x10-7	1.07 (1.03-1.1)	1.60x10-4	64.2	0.09
rs7181593	15	51146114	AP4E1*	С	Т	0.29	1.06 (1.04-1.08)	1.14x10-8	1.07 (1.04-1.1)	1.30x10-5	1.05 (1.02-1.08)	1.82x10-4	0.0	0.49
rs11629962	15	85530028	PDE8A*	Т	С	0.26	1.06 (1.04-1.08)	3.47x10-8	1.07 (1.04-1.11)	7.60x10-6	1.05 (1.02-1.08)	6.84x10-4	13.0	0.28
rs12921916	16	20407196	UMOD	С	Т	0.28	1.09 (1.07-1.11)	2.88x10-16	1.10 (1.07-1.13)	2.60x10-10	1.08 (1.05-1.11)	1.30x10-7	0.0	0.34
rs889299	16	23381914	SCNN1B	G	А	0.78	1.07 (1.04-1.09)	2.84x10-8	1.06 (1.02-1.09)	6.00x10-4	1.07 (1.04-1.11)	9.67x10-6	0.0	0.46
rs11642015	16	53802494	FTO	т	С	0.41	1.06 (1.04-1.08)	1.13x10-9	1.05 (1.02-1.08)	8.70x10-4	1.07 (1.04-1.1)	1.84x10-7	17.2	0.27
rs4782364	16	88516135	ZFPM1	G	С	0.41	1.06 (1.04-1.08)	1.70x10-9	1.04 (1.02-1.07)	1.50x10-3	1.07 (1.04-1.1)	1.19x10-7	43.6	0.18
rs2240554	17	12264477	MAP2K4*	Т	G	0.54	1.05 (1.03-1.07)	4.66x10-8	1.05 (1.02-1.08)	4.60x10-4	1.05 (1.03-1.08)	2.65x10-5	0.0	0.77
rs11868029	17	37650304	CDK12*	А	G	0.22	1.07 (1.05-1.1)	1.54x10-10	1.08 (1.05-1.12)	3.40x10-7	1.07 (1.03-1.1)	8.54x10-5	0.0	0.49
rs12150247	17	43480759	ARHGAP27*	С	G	0.91	1.10 (1.06-1.13)	2.88x10-8	1.04 (0.99-1.09)	0.14	1.04 (1-1.09)	0.08	0.0	0.93
rs111443054	17	43489161	ARHGAP27*	TCACACA	т	0.15	1.09 (1.06-1.12)	1.46x10-8	1.06 (1.03-1.1)	5.40x10-4	1.11 (1.05-1.17)	2.00x10-4	37.4	0.21
rs2532340	17	44345653	ARL17B*	G	А	0.18	1.08 (1.05-1.1)	4.92x10-8	1.07 (1.04-1.11)	3.40x10-5	1.08 (1.04-1.13)	3.74x10-4	0.0	0.67

rs117518238	17	59462062	BCAS3	С	Т	0.92	1.19 (1.14-1.25)	1.12x10-12			1.19 (1.14-1.25)	1.12x10-12	0.0	1.00
rs1058004	17	59486732	BCAS3	т	С	0.73	1.07 (1.05-1.09)	5.32x10-11	1.06 (1.02-1.09)	4.50x10-4	1.09 (1.06-1.12)	9.57x10-9	44.6	0.18
rs9902482	17	70356993	SOX9	С	Т	0.48	1.08 (1.06-1.1)	4.76x10-17	1.08 (1.05-1.11)	1.10x10-8	1.08 (1.05-1.11)	8.16x10-10	0.0	0.99
rs11669940	19	4336379	STAP2	С	G	0.68	1.06 (1.04-1.08)	9.56x10-10	1.07 (1.04-1.1)	2.60x10-6	1.06 (1.03-1.08)	6.41x10-5	0.0	0.43
rs3760702	19	14588237	PTGER1*	А	G	0.29	1.07 (1.05-1.09)	1.57x10-10	1.08 (1.05-1.11)	4.10x10-7	1.06 (1.03-1.09)	6.78x10-5	0.0	0.45
rs11672660	19	46180184	GIPR	С	Т	0.77	1.07 (1.05-1.09)	5.51x10-10	1.07 (1.03-1.1)	1.40x10-4	1.07 (1.04-1.11)	9.42x10-7	0.0	0.77
rs7259073	19	53357172	ZNF28*	Т	С	0.91	1.11 (1.07-1.15)	4.58x10-9	1.10 (1.04-1.16)	7.40x10-4	1.11 (1.07-1.16)	1.48x10-6	0.0	0.66
rs1932940	20	14604464	MACROD2*	т	G	0.63	1.06 (1.04-1.08)	2.40x10-8	1.07 (1.04-1.1)	1.40x10-6	1.04 (1.02-1.07)	1.67x10-3	49.7	0.16
rs6127099	20	52731402	CYP24A1	А	Т	0.73	1.16 (1.13-1.18)	2.06x10-42	1.14 (1.1-1.17)	1.60x10-16	1.17 (1.14-1.21)	4.22x10-28	60.3	0.11
rs2585442	20	52737123	CYP24A1	G	С	0.29	1.08 (1.06-1.1)	1.54x10-13	1.11 (1.08-1.14)	7.70x10-11	1.12 (1.09-1.15)	8.81x10-18	0.0	0.56
rs2823254	21	16783083	NRIP1*	А	Т	0.73	1.06 (1.04-1.08)	1.65x10-8	1.05 (1.02-1.09)	3.00x10-4	1.07 (1.04-1.1)	1.20x10-5	0.0	0.56
rs128494	21	37834258	CLDN14	С	Т	0.69	1.07 (1.05-1.1)	5.66x10-12	1.02 (0.99-1.06)	0.16	1.02 (0.99-1.05)	0.17	0.0	0.84
rs219772	21	37835347	CLDN14	А	Т	0.76	1.18 (1.15-1.21)	1.79x10-50	1.17 (1.13-1.21)	2.50x10-24	1.19 (1.15-1.23)	5.55x10-28	0.0	0.42
rs5996460	22	23393090	GNAZ	А	G	0.25	1.10 (1.08-1.12)	2.42x10-18	1.12 (1.09-1.15)	1.10x10-13	1.08 (1.05-1.11)	9.85x10-7	64.2	0.09
rs6000889	22	38184851	H1-0*	С	Т	0.37	1.06 (1.04-1.08)	2.99x10-9	1.04 (1.01-1.07)	0.01	1.08 (1.05-1.1)	1.92x10-8	70.7	0.06
rs139495	22	41635425	CHADL*	С	Т	0.71	1.06 (1.04-1.08)	2.85x10-8	1.07 (1.04-1.11)	2.30x10-6	1.05 (1.02-1.07)	1.44x10-3	41.2	0.19

95% CI= 95% confidence interval; CHR= chromosome; EA= effect allele; EAF= effect allele frequency; NEA= non-effect allele; OR= odds ratio;

P= p-value; POS= position based on NCBI Genome Build 37 (hg19).*denotes novel association.

Supplementary Table S5: MAGMA gene association test for meta-analysis of genome-wide association studies in the UK Biobank and

FinnGenR12 study.

Gene	CHR	N SNP	P-value	Ī	Gene	CHR	N SNP	P-value	ſ	Gene	CHR	N SNP	P-value
DGKD	2	267	3 08x10-15		TNFAIP8L3	15	116	2 12x10-9		FOXI 2NB	3	24	3 15x10-7
MXD3	5	15	3.33x10-15		CLDN14	21	404	2.40x10-9		QPCTL	19	26	3.34x10-7
DGKH	13	551	1.71x10-14		ZCRB1	12	22	3.29x10-9		DDX41	5	7	3.46x10-7
SLC30A10	1	30	1.89x10-14	ľ	GIPR	19	35	4.45x10-9	ľ	C2	6	121	3.64x10-7
SAG	2	144	2.05x10-14		JAZF1	7	1038	5.39x10-9	Ì	EPHB6	7	42	3.92x10-7
UGT8	4	156	2.50x10-14	ľ	TRPV5	7	55	5.94x10-9	Ì	KEL	7	53	4.14x10-7
HIBADH	7	497	3.75x10-14	ľ	FTO	16	1411	6.42x10-9	ĺ	DDR1	6	63	4.35x10-7
TBX2	17	27	1.94x10-13	Ī	VWA7	6	29	8.71x10-9	Ì	PKN1	19	104	4.93x10-7
PTGS2	1	21	2.40x10-13	Ī	AMPD3	11	213	1.55x10-8	Ì	ITPK1	14	569	5.03x10-7
RAP1GAP	1	252	3.03x10-13	Ī	PPP2R1B	11	48	1.61x10-8	Ì	TRPV6	7	18	5.39x10-7
AQP1	7	35	7.16x10-13	Ī	TRIOBP	22	229	1.67x10-8	Ì	STH	17	1	5.65x10-7
ALPL	1	235	1.64x10-12	Ī	TMEM171	5	43	1.68x10-8	ĺ	AQP4	18	38	5.71x10-7
ZNF512	2	81	2.92x10-12	Ì	SIK2	11	194	1.69x10-8	Ì	VPS13B	8	1781	6.23x10-7
PDILT	16	118	5.09x10-12	Ī	KLK15	19	18	1.82x10-8	ĺ	CRYAB	11	5	7.93x10-7
PRELID1	5	7	6.82x10-12	Ì	LY6G6F	6	9	1.84x10-8	Ì	CRHR1	17	1074	8.01x10-7
PTGER1	19	10	7.91x10-12		CCBL2	1	124	1.90x10-8		TFEB	6	156	8.38x10-7
CASR	3	437	1.16x10-11		MICA	6	253	1.91x10-8		PSORS1C1	6	212	9.71x10-7
RNLS	10	851	1.58x10-11		L3MBTL3	6	254	2.00x10-8		MAPT	17	785	9.85x10-7
LSM2	6	27	1.74x10-11		GCAT	22	26	2.23x10-8		ATP6V1G2	6	8	1.02x10-6
MRPL33	2	13	2.97x10-11		STAP2	19	79	2.78x10-8		PDE3A	12	1100	1.05x10-6
ASCC3	6	1111	4.00x10-11		CSNK2B	6	15	3.12x10-8		KANSL1	17	947	1.07x10-6
TMEM89	3	3	4.76x10-11		NUCKS1	1	79	3.98x10-8		RSPH14	22	211	1.10x10-6
KCNK5	6	144	5.64x10-11		AP4E1	15	239	4.23x10-8		ARHGAP27	17	108	1.20x10-6
RBKS	2	234	9.77x10-11		PLCL1	2	593	5.72x10-8		SPPL2C	17	17	1.20x10-6
ATG16L1	2	123	1.04x10-10		PPHLN1	12	335	7.07x10-8		PDE4D	5	3807	1.21x10-6
POU2AF1	11	103	1.06x10-10		FGFR4	5	25	7.47x10-8		PLEKHM1	17	156	1.29x10-6
CDK12	17	232	1.42x10-10		MICB	6	146	7.92x10-8		FAM209A	20	2	1.34x10-6
CLDN10	13	469	2.17x10-10		RAB36	22	69	7.95x10-8		ITIH1	3	29	1.43x10-6
TFAP2B	6	76	2.61x10-10		EPRS	1	285	8.44x10-8		BRE	2	1126	1.44x10-6
FBXL20	17	352	4.85x10-10		CHAF1B	21	118	8.48x10-8		BAG6	6	38	1.59x10-6
RAB29	1	21	4.98x10-10		AP1S3	2	250	9.10x10-8		SLC14A2	18	1629	1.65x10-6
LMAN2	5	31	5.00x10-10		ABHD16A	6	25	1.00x10-7		NEU1	6	2	1.75x10-6
RGS14	5	22	5.00x10-10		DXO	6	10	1.09x10-7		SLC45A3	1	62	1.78x10-6
SLC34A1	5	20	5.00x10-10		PARD3	10	1674	1.09x10-7		HSPG2	1	379	1.82x10-6
MSH5	6	52	5.15x10-10		TNXB	6	192	1.20x10-7		ITIH3	3	23	1.83x10-6
YAF2	12	139	5.83x10-10		SLC12A3	16	246	1.23x10-7		FDXACB1	11	9	2.00x10-6
MED1	17	90	6.74x10-10		SF3B1	2	63	1.43x10-7		TRPM7	15	444	2.08x10-6
NSD1	5	280	7.24x10-10		DZIP1	13	105	1.53x10-7		DNAH6	2	798	2.10x10-6
CYP24A1	20	92	8.04x10-10		SLC15A2	3	69	1.53x10-7		CMIP	16	1139	2.15x10-6
GCKR	2	44	1.04x10-9		USP50	15	163	1.86x10-7		USP40	2	184	2.29x10-6
VARS	6	30	1.21x10-9		BCR	22	460	2.25x10-7		FKBPL	6	5	2.43x10-6
TAX1BP1	7	215	1.69x10-9		PRKAG2	7	1266	2.27x10-7	l	CUL2	10	204	2.50x10-6
ZFPM1	16	355	1.83x10-9		LST1	6	11	2.90x10-7					

CHR= chromosome; N SNP= number of single nucleotide polymorphisms associated with gene included in analysis; P-value= p-value for association of gene.

Supplementary Table S6: MAGMA Gene-set analysis in meta-analysis of genome-wide

association studies in the UK Biobank and FinnGenR12 study.

Analysis	Gene-set	N Genes	P-value	Significant genes
	Anion homeostasis	49	2.70x10-6	ABCC6, ALPL, ATP6V1B1, FGFR4, SLC12A3, SLC17A6, SLC34A1, TFAP2B, UMOD
	Urate metabolic process	13	4.66x10-6	ABCG2, GCKR, LRRC16A, SLC17A1, SLC17A3
	Hypermagnesemia	7	1.40x10-7	CASR, CLDN10, SLC12A3
	Hypocalciuria	10	1.42x10-7	CASR, CLDN10, SLC12A3
Human Phenotype Ontology Gene Ontology	Apical junction assembly	73	2.71x10-7	CLDN10, CLDN14, F11R, MYO1C, PARD3, ROCK2, VCL, WDR1
	Fibroblast growth factor production	6	3.12x10-7	AIF1, HEG1, PTGS2, ROCK2, WNT11
	Metanephric loop of Henle development	6	6.20x10-7	AQP1, PKD2, UMOD
	Alkaline phosphatase activity	6	6.58x10-7	ALPI, ALPL, ALPP, ALPPL2
	Abnormal blood inorganic cation concentration	153	4.43x10-8	ALG12, ALPL, CASR, CLDN10, CYP24A1, GATA3, KCNJ1, NSD1, PDE4D, RREB1, SEC24C, SLC12A3, SLC30A10, SLC34A1
Cell-type	Lake adult kidney C3 proximal tubule epithelial cells S1 S2	207	9.26x10-6	ANKRD11, BCAS3, CALD1, CLDN10, PARD3, PDE4D, PDE8A, PKHD1, SIK2, SLC17A1, SLC17A3, TFDP2, TLN2, WDR72

Gene-set= gene-set name, ranked by descending P-value; N Genes= number of genes in gene-set; P-value= p-value for association of gene-set with kidney stone disease; Genes= genes in gene-set significantly associated with kidney stone disease, listed in alphabetical order.

Supplementary Table S7: Estimate of bias for Mendelian randomization with sample overlap in the UK Biobank.

Mineral metabolism trait	GWAS sample size	Maximum number of instruments in MR analyses	Estimate of bias
Adjusted calcium	308,679	24	0.011
Phosphate	308,110	20	0.001

The maximum number of instruments was used to derive the most pessimistic estimate of bias. Results are shown for a Type 1 error rate of

0.05.

Supplementary Table S8: Causal effects of lead variants from mineral metabolism GWAS (±500kb) with evidence of colocalization on kidney stone risk.

						Expos	sure: Albumin-adju	sted serum calo	cium concentratio	n							
	Ex	posure data					Ν	Mendelian rando	omization analysis	3					Coloca	lization analysis	
SNP	Gene	Outcome study	CHR	POS	N SNPs	Mean R ² (SE)	OR (95%CI)	FDR-P	Intercept beta (SE)	Intercept FDR-P	Q	Q_df	Ρ	N SNPs	PP H4	Candidate causal SNP	SNP PP
		Meta-analysis			3	2 20×10 4	7.06 (4.12-12.11)	1.75x10-11	-0.09 (0.19)	0.99	0.22	2	0.9	1870	0.91	rs267738	0.36
rs607518	ANXA9	UK Biobank	1	150954671	4	(9.56x10-4	10.45 (5.28-20.7)	3.24x10-10	-0.11 (0.11)	0.98	1.37	3	0.71	2231	0.98	rs267738	0.44
		FinnGen			3	- 5)	2.37 (0.4-13.99)	0.46	-0.40 (0.11)	0.97	11.97	2	0	1562	0.03	-	-
rc3011	SI C20A10	Meta-analysis	1	220085453	4	1.57x10-4	18.38 (9.57-35.3)	4.25x10-17	0.05 (0.03)	0.98	3.06	3	0.38	3392	0.99	rs3011	0.19
185011	SECSOATO	UK Biobank	1	220003433	4	(2.90×10-	22.99 (10.65-49.6)	3.00x10-14	0.03 (0.04)	0.98	1.46	3	0.69	3344	0.98	rs10863512	0.21
		Meta-analysis			4		3.87 (2.71-5.51)	1.27x10-12	-0.01 (0.02)	0.99	2.43	3	0.49	3580	1.00	rs11891546	1.00
rs2675966	SNORC	UK Biobank	2	233735543	3	3.74x10-4 (3.17x10-	3.04 (1.77-5.23)	2.72x10-4	-0.01 (0.03)	0.98	2.06	2	0.36	3617	0.96	rs11891546	1.00
rs2675966 5		FinnGen			4	4)	4.66 (2.9-7.49)	3.05x10-9	-3.69x10-3 (0.02)	0.97	1.57	3	0.67	3087	0.99	rs11891546	1.00
		Meta-analysis			10	3.27x10-4	4.51 (3.38-6.03)	3.31x10-23	-0.03 (0.01)	0.48	14	9	0.12	3303	1.00	rs838717	1.00
rs838705	DGKD	UK Biobank	2	234273242	9	(3.77x10- 4)	3.89 (2.61-5.79)	3.94x10-10	-0.04 (0.02)	0.98	10.76	8	0.22	3409	1.00	rs838717	1.00
		FinnGen			11		4.93 (3.39-7.19)	1.69x10-15	-0.02 (0.02)	0.97	15.29	10	0.12	2961	1.00	rs838717	1.00
		Meta-analysis			10	3.27x10-4	4.51 (3.38-6.03)	3.31x10-23	-0.03 (0.01)	0.48	14	9	0.12	3265	1.00	rs838717	1.00
rs838717	DGKD	UK Biobank	2	234296444	9	(3.77x10- 4)	3.89 (2.61-5.79)	3.94x10-10	-0.04 (0.02)	0.98	10.76	8	0.22	3372	1.00	rs838717	1.00
		FinnGen			11		4.93 (3.39-7.19)	1.69x10-15	-0.02 (0.02)	0.97	15.29	10	0.12	2922	1.00	rs838717	1.00
ro70060677	AODED	Meta-analysis	0	07520050	3	2.56x10-4	4.06 (1.68-9.79)	0.01	-0.04 (0.02)	0.98	6.87	2	0.03	2862	0.94	rs925813	0.06
1379009077	AOFLF	UK Biobank	9	97550059	3	4)	2.48 (0.8-7.7)	0.21	-0.04 (0.02)	0.98	4.96	2	0.08	2999	0.50	-	-
		Meta-analysis			4	2 53×10 4	3.51 (1.73-7.15)	1.63x10-3	8.34x10-4 (0.04)	0.99	8.29	3	0.04	2679	1.00	rs1858800	1.00
rs1858800	ZFHX3	UK Biobank	16	73024276	5	(2.40x10-4 4)	2.12 (0.74-6.06)	0.27	-0.01 (0.05)	0.98	14.7	4	0.01	2811	0.61	-	-
		FinnGen			5		4.63 (2.67-8.04)	6.97x10-7	-4.03x10-3 (0.02)	0.97	1.84	4	0.77	2325	0.97	rs1858800	1.00

		Meta-analysis			5	0.00.40.4	0.31 (0.21-0.46)	4.29x10-8	0.02 (0.02)	0.98	4.46	4	0.35	4679	0.95	rs12918968	0.57
rs4782358	ZFPM1	UK Biobank	16	88485506	5	2.66x10-4 (2.80x10-	0.4 (0.23-0.67)	2.53x10-3	-2.45x10-3 (0.02)	0.98	3.52	4	0.47	4809	0.29	-	-
		FinnGen			4	4)	0.22 (0.12-0.38)	6.97x10-7	0.04 (0.04)	0.97	1.79	3	0.62	4090	0.96	rs12918968	0.90
		Meta-analysis			5	2.66×10.4	0.31 (0.21-0.46)	4.29x10-8	0.02 (0.02)	0.98	4.46	4	0.35	4570	0.95	rs12918968	0.87
rs12447180	ZFPM1	UK Biobank	16	88517722	5	(2.80x10-4	0.4 (0.23-0.67)	2.53x10-3	-2.45x10-3 (0.02)	0.98	3.52	4	0.47	4697	0.29	-	-
		FinnGen			4	4)	0.22 (0.12-0.38)	6.97x10-7	0.04 (0.04)	0.97	1.79	3	0.62	3949	0.96	rs12918968	0.84
		Meta-analysis			4	4 60×10 4	1.89 (1.29-2.76)	2.88x10-3	-2.03x10-3 (0.02)	0.99	5.97	3	0.11	2761	0.94	rs3091842	1.00
rs3091842	MAFB	UK Biobank	20	39344272	4	4.60x10-4 (3.57x10-	1.79 (1.14-2.81)	0.03	4.64x10-4 (0.02)	0.98	1.65	3	0.65	2697	0.08	-	-
		FinnGen			4	4)	1.95 (1.27-3)	0.01	-2.71x10-3 (0.02)	0.97	4.94	3	0.18	2361	0.79	rs3091842	1.00
		Meta-analysis			4	4 60×10 4	1.89 (1.29-2.76)	2.88x10-3	-2.03x10-3 (0.02)	0.99	5.97	3	0.11	2754	0.94	rs3091842	1.00
rs2425431	MAFB	UK Biobank	20	39352714	4	(3.57x10-	1.79 (1.14-2.81)	0.03	4.64x10-4 (0.02)	0.98	1.65	3	0.65	2690	0.08	-	-
		FinnGen			4	4)	1.95 (1.27-3)	0.01	-2.71x10-3 (0.02)	0.97	4.94	3	0.18	2351	0.79	rs3091842	1.00
		Meta-analysis			18	2 20×10 4	10.36 (8.54-12.56)	1.45x10-123	-0.02 (0.01)	0.48	20.37	17	0.26	3561	1.00	rs6127099	1.00
rs209961	CYP24A1	UK Biobank	20	52715154	17	(3.08x10-4 4)	8.46 (6.58-10.88)	8.54x10-61	3.29x10-4 (0.01)	0.98	15.74	16	0.47	3647	0.98	rs6127099	0.98
		FinnGen			18	+)	12.69 (9.88-16.31)	1.74x10-86	-0.04 (0.01)	0.10	20.64	17	0.24	3236	1.00	rs6127099	1.00
		Meta-analysis			18	3 20×10 4	10.36 (8.54-12.56)	1.45x10-123	-0.02 (0.01)	0.48	20.37	17	0.26	3591	1.00	rs6127099	1.00
rs2585442	CYP24A1	UK Biobank	20	52737123	17	(3.08x10-4	8.46 (6.58-10.88)	8.54x10-61	3.29x10-4 (0.01)	0.98	15.74	16	0.47	3682	0.98	rs6127099	0.98
		FinnGen			18	4)	12.69 (9.88-16.31)	1.74x10-86	-0.04 (0.01)	0.10	20.64	17	0.24	3262	1.00	rs6127099	1.00
		Meta-analysis			18	3 20v10 4	10.36 (8.54-12.56)	1.45x10-123	-0.02 (0.01)	0.48	20.37	17	0.26	3594	1.00	rs6127099	1.00
rs117268564	CYP24A1	UK Biobank	20	52738434	17	(3.08x10-4	8.46 (6.58-10.88)	8.54x10-61	3.29x10-4 (0.01)	0.98	15.74	16	0.47	3685	0.98	rs6127099	0.98
		FinnGen			18	+)	12.69 (9.88-16.31)	1.74x10-86	-0.04 (0.01)	0.10	20.64	17	0.24	3264	1.00	rs6127099	1.00
		Meta-analysis			18	3 20v10-4	10.36 (8.54-12.56)	1.45x10-123	-0.02 (0.01)	0.48	20.37	17	0.26	3593	1.00	rs6127099	1.00
rs35194449	CYP24A1	UK Biobank	20	52742047	17	(3.08x10- 4)	8.46 (6.58-10.88)	8.54x10-61	3.29x10-4 (0.01)	0.98	15.74	16	0.47	3684	0.98	rs6127099	0.98
		FinnGen			18	.,	12.69 (9.88-16.31)	1.74x10-86	-0.04 (0.01)	0.10	20.64	17	0.24	3266	1.00	rs6127099	1.00
		Meta-analysis			18	3 20x10 4	10.36 (8.54-12.56)	1.45x10-123	-0.02 (0.01)	0.48	20.37	17	0.26	3599	1.00	rs6127099	1.00
rs2762943	CYP24A1	UK Biobank	20	52790786	17	(3.08x10-4 4)	8.46 (6.58-10.88)	8.54x10-61	3.29x10-4 (0.01)	0.98	15.74	16	0.47	3760	0.98	rs6127099	0.98
		FinnGen			18	r <i>)</i>	12.69 (9.88-16.31)	1.74x10-86	-0.04 (0.01)	0.10	20.64	17	0.24	3340	1.00	rs6127099	1.00

	Exposure: Serum phosphate concentration																
	Ex	posure data					Γ	Mendelian rand	omization analysis	;					Coloca	lization analysis	
SNP	Gene	Outcome study	CHR	POS	N SNPs		OR* (95%CI)	FDR-P	Intercept beta (SE)	Intercept P	Q	Q_df	Р	N SNPs	PP H4	Candidate causal SNP	SNP PP
		Meta-analysis			3		2.22 (1.28-3.83)	0.02	-0.04 (0.03)	0.98	3.45	2	0.18	3268	0.87	rs71628146	0.35
rs28383573	APCS	UK Biobank	1	159558672	3	2.80x10-4 (1.05x10-	2.08 (0.71-6.11)	0.35	-0.07 (0.07)	0.99	5.04	2	0.08	3213	0.35	-	-
		FinnGen			3	4)	2.3 (1.36-3.91)	0.02	-0.02 (0.03)	0.98	0.49	2	0.78	2741	0.31	-	-
		Meta-analysis			3	0.00.40.4	2.22 (1.28-3.83)	0.02	-0.04 (0.03)	0.98	3.45	2	0.18	3286	0.87	rs71628146	0.35
rs71628146	APCS	UK Biobank	1	159582487	3	2.80x10-4 (1.05x10-	2.08 (0.71-6.11)	0.35	-0.07 (0.07)	0.99	5.04	2	0.08	3232	0.35	-	-
		FinnGen			3	4)	2.3 (1.36-3.91)	0.02	-0.02 (0.03)	0.98	0.49	2	0.78	2754	0.31	-	-
		Meta-analysis			4	0.40.40.4	0.05 (0.03-0.08)	2.06x10-34	0.01 (0.02)	0.98	2.9	3	0.41	3268	0.99	rs838717	0.96
rs838718	DGKD	UK Biobank	2	234296650	4	(1.83x10-4	0.05 (0.02-0.14)	4.88x10-7	-1.56x10-3 (0.05)	0.99	6.99	3	0.07	3378	0.99	rs838718	0.48
		FinnGen			4	4)	0.05 (0.03-0.1)	3.45x10-18	0.01 (0.02)	0.98	1.58	3	0.66	2926	1.00	rs838717	0.73
		Meta-analysis			9	0.00.40.4	0.09 (0.07-0.13)	2.70x10-38	0.01 (0.01)	0.98	14.56	8	0.07	2409	1.00	rs10051765	1.00
rs12152922	SLC34A1	UK Biobank	5	176645599	9	2.98x10-4 (3.78x10-	0.07 (0.05-0.11)	9.93x10-40	0.03 (0.01)	0.99	7.54	8	0.48	2582	1.00	rs10051765	0.82
		FinnGen			8	4)	0.12 (0.07-0.18)	1.91x10-19	4.88x10-3 (0.02)	0.98	11.13	7	0.13	2128	1.00	rs10051765	1.00
		Meta-analysis			9		0.09 (0.07-0.13)	2.70x10-38	0.01 (0.01)	0.98	14.56	8	0.07	2219	1.00	rs10051765	1.00
rs10051765	SLC34A1	UK Biobank	5	176799992	9	2.98x10-4 (3.78x10-	0.07 (0.05-0.11)	9.93x10-40	0.03 (0.01)	0.99	7.54	8	0.48	2359	1.00	rs10051765	0.82
		FinnGen			8	4)	0.12 (0.07-0.18)	1.91x10-19	4.88x10-3 (0.02)	0.98	11.13	7	0.13	2022	1.00	rs10051765	1.00
		Meta-analysis			6	0.57.40.4	1.68 (0.9-3.13)	0.22	-0.04 (0.01)	0.53	15.82	5	0.01	3189	0.97	rs11867466	0.27
rs883622	FAM20A	UK Biobank	17	66442603	6	(2.36x10-4	2.35 (1.43-3.88)	3.94x10-3	-0.02 (0.02)	0.99	2.74	5	0.74	3438	0.61	-	-
		FinnGen			6	4)	1.21 (0.49-2.98)	0.74	-0.06 (0.02)	0.94	16.82	5	0	2930	0.32	-	-
		Meta-analysis		12 7 66703728 12	12	0.50.40.4	8.40 (4.33-16.29)	0.01	-0.04 (0.01)	0.03	31.64	11	0	3165	0.97	rs11867466	0.27
rs11871728	FAM20A	UK Biobank	17		2.56X10-4 (2.32X10-	2.35 (1.66-3.35)	3.77x10-5	-0.02 (0.01)	0.99	5.49	11	0.91	3261	0.61	-	-	
		FinnGen	1		12	4)	11.36 (4.43-29.1)	0.03	-0.06 (0.01)	0.04	33.64	11	0	2771	0.33	-	-

CHR= chromosome; POS= position based on NCBI Genome Build 37 (hg19); N SNPs= number of SNPs; FDR-P= P-value adjusted for 5% false

discovery rate; OR= odds ratio for kidney stone disease per genetically-instrumented standard deviation increase in trait; P= P-value; PP H4=

posterior probability of H4 (full colocalization); Q= Q statistic; Q_df= Q degrees of freedom; SD= standard deviation; SE= standard error; SNP PP= posterior probability explained by SNP; 95% CI= 95% confidence interval

Supplementary Table S9: 95% credible sets for genomic regions with evidence for causal effects on kidney stone risk and colocalization in UK Biobank-FinnGenR12 genome-wide association study meta-analysis.

						rs12336437	0.01
						rs12343530	0.01
						rs12347744	0.01
						rs10993364	0.01
						rs9987493	0.01
rs1858800	ZFHX3	16	73024276	2679	1.00	rs1858800	1.00
						rs12918968	0.87
		10	00405500	4070	0.05	rs12447180	0.05
154782338	ZFPINI	10	88485506	4679	0.95	rs879627	0.02
						rs879628	0.02
						rs12918968	0.87
		10	00517700	4570	0.05	rs12447180	0.05
r\$12447180	ZFPINI	10	86517722	4570	0.95	rs879627	0.02
						rs879628	0.02
rs3091842	MAFB	20	39344272	2761	0.94	rs3091842	1.00
rs2425431	MAFB	20	39352714	2754	0.94	rs3091842	1.00
rs209961	CYP24A1	20	52715154	3561	1.00	rs6127099	1.00
rs2585442	CYP24A1	20	52737123	3591	1.00	rs6127099	1.00
rs117268564	CYP24A1	20	52738434	3594	1.00	rs6127099	1.00
rs35194449	CYP24A1	20	52742047	3593	1.00	rs6127099	1.00
rs2762943	CYP24A1	20	52790786	3599	1.00	rs6127099	1.00
				Phosphate	•		
SND	Gono	СПВ	POS			Candidate causal	
SINF	Gene	CHK	F03	IN SINES	FF 114	SNP	SINP PP
						rs71628146	0.35
						rs77672383	0.05
						rs12059422	0.03
						rs7354905	0.03
						rs12062765	0.03
						rs12061009	0.03
						rs12741812	0.03
						rs71628140	0.03
						rs12084273	0.03
						rs12076447	0.03
						rs12741992	0.02
						rs73030515	0.02
rs28383573	APCS	1	159558672	3268	0.87	rs34565293	0.02
1320000070	/// 00		100000012	0200	0.07	rs12091346	0.02
						rs71628141	0.02
						rs12065183	0.02
						rs12079353	0.02
						rs36126250	0.02
						rs35834732	0.01
						rs12731846	0.01
						rs35085476	0.01
						rs71628138	0.01
						rs35886354	0.01
						rs71628135	0.01
						rs71628136	0.01
						rs71628137	0.01
						rs71628146	0.35
						rs77672383	0.05
						rs12059422	0.03
rs716281/16	APCS	1	159582/187	3286	0.87	rs7354905	0.03
137 1020140	AI 00	'	100002407	5200	0.07	rs12062765	0.03
						rs12061009	0.03
						rs12741812	0.03
						rs71628140	0.03

						rs12084273	0.03
						rs12076447	0.03
						rs12741992	0.02
						rs73030515	0.02
						rs34565293	0.02
						rs12091346	0.02
						rs71628141	0.02
						rs12065183	0.02
						rs12079353	0.02
						rs36126250	0.02
						rs35834732	0.01
						rs12731846	0.01
						rs35085476	0.01
						rs71628138	0.01
						rs35886354	0.01
						rs71628135	0.01
						rs71628136	0.01
						rs71628137	0.01
rs838718	DGKD	2	234296650	3268	0.99	rs838717	0.96
rs12152922	SLC34A1	5	176645599	2409	1.00	rs10051765	1.00
rs10051765	SLC34A1	5	176799992	2219	1.00	rs10051765	1.00
						rs11867466	0.27
						rs11871728	0.24
						rs12325975	0.1
						rs12950543	0.1
rs883622	FAM20A	17	66442603	3189	0.97	rs11077726	0.1
						rs33998125	0.05
						rs11869735	0.03
						rs11650533	0.03
						rs12952992	0.03
						rs11867466	0.27
						rs11871728	0.24
						rs12325975	0.1
						rs12950543	0.1
rs11871728	FAM20A	17	66703728	3165	0.97	rs11077726	0.1
						rs33998125	0.05
						rs11869735	0.03
						rs11650533	0.03
						rs12952992	0.03

CHR= chromosome; POS= position based on NCBI Genome Build 37 (hg19); N SNPs= number of SNPs; PP H4= posterior probability of H4 (full colocalization); SNP PP= posterior probability explained by SNP Supplementary Table S10: 95% credible sets for genomic regions with evidence for causal effects on kidney stone risk and colocalization in the UK Biobank.

			Adjusted	calcium			
SNP	Gene	CHR	POS	N SNPs	PP H4	Candidate causal SNP	SNP PP
						rs267738	0.44
						rs267734	0.22
rs607518	ANXA9	1	150954671	2231	0.98	1:150878099_TC_T	0.11
						rs198325	0.10
						rs607518	0.09
						rs3011	0.19
						rs6694079	0.15
						rs10863512	0.15
ro2011	SI C20110	1	220095452	2244	0.09	rs6694088	0.15
153011	SLCSUATU		220065455	3344	0.90	rs7533348	0.14
						rs884127	0.09
						rs1891562	0.07
						rs11282751	0.04
rs2675966	SNORC	2	233735543	3087	0.99	rs11891546	1.00
rs838705	DGKD	2	234273242	3409	1.00	rs838717	1.00
rs838717	DGKD	2	234296444	3372	1.00	rs838717	1.00
rs209961	CYP24A1	20	52715154	3647	0.98	rs6127099	0.98
rs2585442	CYP24A1	20	52737123	3682	0.98	rs6127099	0.98
rs117268564	CYP24A1	20	52738434	3685	0.98	rs6127099	0.98
rs35194449	CYP24A1	20	52742047	3684	0.98	rs6127099	0.98
rs2762943	CYP24A1	20	52790786	3760	0.98	rs6127099	0.98
			Phosp	phate			-
SNP	Gene	CHR	POS	N SNPs	PP H4	Candidate causal SNP	SNP PP
rc939719	ЛСКЛ	0	234206650	2279	0.00	rs838718	0.48
15030710	DGKD	2	234290030	3370	0.99	rs838717	0.47
rs12152922	SLC34A1	5	176645599	2582	1.00	rs10051765	0.82
						rs56235845	0.18
rs10051765	SLC34A1	5	176799992	2359	1.00	rs10051765	0.82
						rs56235845	0.18

CHR= chromosome; POS= position based on NCBI Genome Build 37 (hg19); N SNPs= number of SNPs; PP H4= posterior probability of H4 (full colocalization); SNP PP= posterior probability explained by SNP Supplementary Table S11: 95% credible sets for genomic regions with evidence for causal effects on kidney stone risk and colocalization in the FinnGenR12 study.

			Adjusted calci	um			
SNP	Gene	CHR	POS	N SNPs	PP H4	Candidate causal SNP	SNP PP
rs2675966	SNORC	2	233735543	3087	0.99	rs11891546	1.00
rs838705	DGKD	2	234273242	2961	1.00	rs838717	1.00
rs838717	DGKD	2	234296444	2922	1.00	rs838717	1.00
rs1858800	ZFHX3	16	73024276	2325	0.97	rs1858800	1.00
						rs12918968	0.90
rs4782358	ZFPM1	16	88485506	4090	0.96	rs879627	0.04
						rs879628	0.03
						rs12918968	0.90
rs12447180	ZFPM1	16	88517722	3949	0.96	rs879627	0.04
						rs879628	0.03
rs3091842	MAFB	20	39344272	2361	0.79	rs3091842	1.00
rs2425431	MAFB	20	39352714	2351	0.79	rs3091842	1.00
rs209961	CYP24A1	20	52715154	3236	1.00	rs6127099	1.00
rs209961	CYP24A1	20	52715154	3236	1.00	rs6127099	1.00
rs2585442	CYP24A1	20	52737123	3262	1.00	rs6127099	1.00
rs117268564	CYP24A1	20	52738434	3264	1.00	rs6127099	1.00
rs35194449	CYP24A1	20	52742047	3266	1.00	rs6127099	1.00
rs2762943	CYP24A1	20	52790786	3340	1.00	rs6127099	1.00
	1		Phosphate	1			
SNP	Gene	CHR	POS	N SNPs	PP H4	Candidate causal SNP	SNP PP
r =020740	рскр	2	224206650	2026	1.00	rs838717	0.73
15030710	DGKD	2	234290030	2920	1.00	rs838718	0.26
rs12152922	SLC34A1	5	176645599	2128	1.00	rs10051765	1.00
rs10051765	SLC34A1	5	176799992	2022	1.00	rs10051765	1.00
						rs2663546	0.02
						rs2663546	0.02
						rs1147135	0.02
						rs2663543	0.02
						rs2614782	0.02
						rs2663545	0.02
						rs1147136	0.02
						rs2663544	0.02
						rs12902894	0.02
						rs2619688	0.02
rs12592697	CYP19A1	15	51525173	2441	0.71	rs2663541	0.01
1312002007	011 1041	10	01020170	2771	0.71	rs1147131	0.01
						rs1147133	0.01
						rs2663538	0.01
						rs2663537	0.01
						rs2619693	0.01
						rs2614789	0.01
						rs2614784	0.01
						rs3214932	0.01
						rs1147130	0.01
						rs12908516	0.01
						rs2249535	0.01

rs12902899 0.01 rs7494977 0.01 rs7177267 0.01 rs7181997 0.01 rs7168385 0.01 rs2414080 0.01 rs2414080 0.01 rs2663553 0.01 rs212905611 0.01 rs7171085 0.01 rs2619694 0.01 rs214776 0.01 rs1147129 0.01 rs7168846 0.01
rs7494977 0.01 rs7177267 0.01 rs7181997 0.01 rs7168385 0.01 rs2414080 0.01 rs4534781 0.01 rs2663553 0.01 rs2414079 0.01 rs2414079 0.01 rs2619694 0.01 rs2619694 0.01 rs1147129 0.01 rs7168846 0.01
rs7177267 0.01 rs7181997 0.01 rs7168385 0.01 rs2414080 0.01 rs4534781 0.01 rs2663553 0.01 rs2414079 0.01 rs2619694 0.01 rs2619694 0.01 rs2614776 0.01 rs7168846 0.01
rs7181997 0.01 rs7168385 0.01 rs2414080 0.01 rs4534781 0.01 rs2663553 0.01 rs2414079 0.01 rs2414079 0.01 rs2619694 0.01 rs2614776 0.01 rs1147129 0.01 rs7168846 0.01
rs7168385 0.01 rs2414080 0.01 rs4534781 0.01 rs2663553 0.01 rs2414079 0.01 rs2414079 0.01 rs12905611 0.01 rs7171085 0.01 rs2619694 0.01 rs2614776 0.01 rs1147129 0.01 rs7168846 0.01
rs2414080 0.01 rs4534781 0.01 rs2663553 0.01 rs2414079 0.01 rs2414079 0.01 rs12905611 0.01 rs7171085 0.01 rs2619694 0.01 rs1147129 0.01 rs7168846 0.01
rs4534781 0.01 rs2663553 0.01 rs2414079 0.01 rs12905611 0.01 rs7171085 0.01 rs2619694 0.01 rs1147129 0.01 rs7168846 0.01
rs2663553 0.01 rs2414079 0.01 rs12905611 0.01 rs7171085 0.01 rs2619694 0.01 rs2614776 0.01 rs1147129 0.01 rs7168846 0.01
rs2414079 0.01 rs12905611 0.01 rs7171085 0.01 rs2619694 0.01 rs214776 0.01 rs1147129 0.01 rs7168846 0.01
rs12905611 0.01 rs7171085 0.01 rs2619694 0.01 rs2614776 0.01 rs1147129 0.01 rs7168846 0.01
rs7171085 0.01 rs2619694 0.01 rs2614776 0.01 rs1147129 0.01 rs7168846 0.01
rs2619694 0.01 rs2614776 0.01 rs1147129 0.01 rs7168846 0.01
rs2614776 0.01 rs1147129 0.01 rs7168846 0.01
rs1147129 0.01 rs7168846 0.01
rs7168846 0.01
rs2663554 0.01
rs2414081 0.01
rs8029155 0.01
rs12916407 0.01
rs2663534 0.01
rs8029369 0.01
rs2614780 0.01
rs12904125 0.01
rs12906866 0.01
rs2614794 0.01
rs3784303 0.01
rs2663533 0.01
rs7182957 0.01
rs2614779 0.01
rs7180258 0.01
rs7169888 0.01
rs8031702 0.01
rs2614790 0.01
rs1147139 0.01
rs4438254 0.01
rs8024428 0.01
rs2127366 0.01
rs2170011 0.01
rs2663535 0.01
rs2127367 0.01
rs2663555 0.01
rsz614781 U.U.

number of SNPs; PP H4= posterior probability of H4 (full colocalization); SNP PP= posterior probability explained by SNP

Supplementary Table S12: Variants predicted to increase risk of kidney stones via effects on serum mineral metabolism.

Lead variant from mineral metabolism GWAS	CHR	POS	Outcome dataset	PP	Regional probability	Candidate variant	SNP PP	Gene of candidate variant	
			Meta- analvsis	1.00	1.00	rs838717	1.00		
rs838705	2	234273242	UK Biobank	1.00	1.00	rs838717	1.00	DGKD	
			FinnGen	1.00	1.00	rs838717	1.00		
000747			Meta- analysis	1.00	1.00	rs838717	1.00		
rs838717	2	234296444	UK Biobank	1.00	1.00	rs838717	1.00	DGKD	
			FinnGen	1.00	1.00	rs838717	1.00		
rc838718	2	234206650	Meta- analysis	1.00	1.00	rs838717	1.00	ЛСКЛ	
13030710	2	234290030	UK Biobank	1.00	1.00	rs838717	1.00	DGRD	
			FinnGen	1.00	1.00	rs838717	1.00		
rc12152022	5	1766/5500	Meta- analysis	1.00	1.00	rs10051765	1.00	SI C34A1	
1512152922	5	170043399	UK Biobank	1.00	1.00	rs10051765	1.00	3LU34A1	
			FinnGen	1.00	1.00	rs10051765	1.00		
ro10051765	5	176700002	Meta- analysis	1.00	1.00	rs10051765	1.00	SI C24A1	
1510051705	5	170799992	UK Biobank	1.00	1.00	rs10051765	1.00	SLC34A1	
			FinnGen	1.00	1.00	rs10051765	1.00		
rs4782358	16	88485506	Meta- analysis	0.82	0.82	rs12918968	0.84	ZFPM1	
			FinnGen	0.82	0.82	rs12918968	0.77		
rs12447180	16	88517722	Meta- analysis	0.82	0.82	rs12918968	0.84	ZFPM1	
			FinnGen	0.82	0.82	rs12918968	0.77		
rs3091842	20	39344272	Meta- analysis	0.98	0.98	rs3091842	1.00	MAFB	
			FinnGen	0.96	0.96	rs3091842	1.00		
rs2425431	20	39352714	Meta- analysis	0.98	0.98	rs3091842	1.00	MAFB	
			FinnGen	0.96	0.96	rs3091842	1.00		
		50745454	Meta- analysis	1.00	1.00	rs6127099	1.00		
18209961	20	52715154	UK Biobank	1.00	1.00	rs6127099	1.00	CYP24A1	
			FinnGen	1.00	1.00	rs6127099	1.00		
		50707400	Meta- analysis	1.00	1.00	rs6127099	1.00		
rs2585442	20	52737123	UK Biobank	1.00	1.00	rs6127099	1.00	CYP24A1	
			FinnGen	1.00	1.00	rs6127099	1.00		
		50700404	Meta- analysis	1.00	1.00	rs6127099	1.00		
rs11/268564	20	52138434	UK Biobank	1.00	1.00	rs6127099	1.00	CYP24A1	
			FinnGen	1.00	1.00	rs6127099	1.00		
ro25104440	20	50740047	Meta- analysis	1.00	1.00	rs6127099	1.00		
1855194449	20	52142041	UK Biobank	1.00	1.00	rs6127099	1.00	CTP24A1	
			FinnGen	1.00	1.00	rs6127099	1.00		

rs2762943	20	52790786	Meta- analysis	1.00	1.00	rs6127099	1.00	
	20		UK Biobank	1.00	1.00	rs6127099	1.00	CIP24AI
			FinnGen	1.00	1.00	rs6127099	1.00	

CHR= chromosome; POS= position based on NCBI Genome Build 37 (hg19); PP= posterior probability of full colocalization; SNP PP= posterior probability explained by single nucleotide polymorphism (SNP); KSD= kidney stone disease; PTH=parathyroid hormone.

Supplementary Table S13: Associations of variants predicted to cause kidney stones with kidney stone disease and mineral metabolism traits.

Candidate	Candidate cursil variant CHR POS Gene		Gene EA NEA EAF		KSD (Meta-analysis)		KS (UK Bi	KSD (UK Biobank)		KSD (FinnGenR12)		d calcium iobank)	Phosphate (UK Biobank)		P ⁻ (Robinso meta-a	PTH (Robinson-Cohen meta-analysis)		
causai vanant							OR (95% CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р	Beta (SE)	Р	Beta (SE)	Р	Beta (SE)	Р
rs838717	2	234296444	DGKD	G	А	0.43	1.10 (1.08-1.12)	3.08x10 ⁻²⁴	1.10 (1.07-1.13)	2.60x10 ⁻¹¹	1.10 (1.07-1.13)	1.71x10 ⁻¹⁴	0.05 (0.002)	1.40x10 ⁻⁹⁴	-0.03 (0.002)	7.20x10 ⁻³⁶	0.02 (0.004)	4.25x10 ⁻⁶
rs10051765	5	176799992	SLC34A1	С	Т	0.33	1.14 (1.12-1.16)	6.45x10 ⁻⁴³	1.16 (1.13-1.19)	1.30x10 ⁻²⁴	1.13 (1.10-1.15)	1.94x10 ⁻²⁰	0.03 (0.003)	5.30x10 ⁻²²	-0.05 (0.003)	9.80x10 ⁻⁹⁰	-0.04 (0.005)	2.34x10 ⁻¹⁴
rs12918968	16	88520452	ZFPM1	С	А	0.44	1.05 (1.04-1.07)	1.37x10 ⁻⁸	1.04 (1.01-1.07)	3.50x10 ⁻³	1.07 (1.04-1.09)	4.61x10 ⁻⁷	-0.04 (0.002)	5.20x10 ⁻⁵⁶	0.02 (0.002)	4.00x10 ⁻¹⁰	0.01 (0.004)	1.17x10 ⁻³
rs3091842	20	39344272	MAFB	А	G	0.08	1.07 (1.04-1.11)	9.24x10 ⁻⁵	1.06 (1.00-1.14)	0.06	1.08 (1.03-1.13)	5.53x10 ⁻⁴	0.11 (0.006)	2.90x10 ⁻⁷²	-0.05 (0.006)	2.60x10 ⁻¹⁷	0.04 (0.010)	1.59x10 ⁻⁴
rs6127099	20	52731402	CYP24A1	A	Т	0.72	1.16 (1.13-1.18)	2.06x10 ⁻⁴²	1.14 (1.10-1.17)	1.60x10 ⁻¹⁶	1.17 (1.14-1.21)	4.22x10 ⁻²⁸	0.06 (0.003)	7.60x10 ⁻⁹⁷	0.02 (0.003)	1.40x10 ⁻¹³	-0.07 (0.005)	1.01x10 ⁻⁴⁴

CHR= chromosome; POS= position based on NCBI Genome Build 37 (hg19); EA= effect allele; NEA=non effect allele; EAF= effect allele

frequency; KSD= kidney stone disease; P= p-value;

Supplementary Table S14: Associations of variants predicted to cause kidney stones with kidney stone disease and mineral metabolism traits in DiscovEHR.

Variant	Effect allele	Gene	Kidney stone prevaler	Serum	calcium	Serum phosphate		
			OR	р	Beta	р	Beta	р
rs838717	G	DGKD	1.06 (1.04-1.09)	< 0.0001	0.02	< 0.0001	-0.02	< 0.0001
rs10051765	С	SLC34A1	1.10 (1.08-1.12)	< 0.0001	0.01	< 0.0001	-0.04	< 0.0001
rs6127099	А	CYP24A1	1.05 (1.03-1.08)	< 0.0001	0.02	< 0.0001	0.01	0.02
All	G, A, C	DGKD, CYP24A1, SLC34A1	1.07 (1.06-1.09)	<0.0001	0.01	<0.0001	-	-

Mean serum calcium and phosphate are adjusted for kidney stone disease case status. Odds ratio (OR) and beta reflect increased odds of kidney stone disease or change in biochemical measurement, respectively, with addition of one allele. Associations of combinations of *DGKD*-, *CYP24A1*, and *SLC34A1* risk alleles (All) were not assessed (-) for serum phosphate due to a lack of directional concordance.

Supplementary Table S15: Kidney stone population attributable risk and population

	Risk allele carrier	No risk allele	Total kidney stone prevalence	Kidney stone prevalence non-carriers	Kidney stone prevalence carriers	PAR	PAF (%)
	DGKD						
rs838717	GG/GA	AA	0 0 2 2	0.021	0.024	2 20v10-3	0.42
Case	7994	3365	0.023	0.021	0.024	2.20810	9.43
No stones	319985	156051					
S	SLC34A1						
rs10051765	CC/CT	TT					
Case	6709	4650	0.023	0.022	0.025	1.63 x10 ⁻³	7.01
No stones	266130	209906					
C	YP24A1						
rs6127099	AA/AT	TT					
Case	10610	749	0.023	0.020	0.024	3.56 x10 ⁻³	15.29
No stones	438844	37192					
DGKD, CY	′P24A1, S	SLC34A1					
All	1+ risk allele	No risk alleles					
Case	11256	103	0.023	0.019	0.023	4.42x10⁻³	18.95
No stones	470686	5350					

attributable fraction in the UK Biobank.

PAR= Population attributable risk (calculated as prevalence in total population- prevalence in individuals without risk allele); PAF= Population attributable fraction (calculated as (prevalence in total population- prevalence in individuals without risk allele)/ prevalence in total population)

Supplementary Table S16: Kidney stone population attributable risk and population attributable fraction in DiscovEHR.

	Risk allele carrier	No risk allele	Total kidney stone prevalence	Kidney stone prevalence non-carriers	Kidney stone prevalence carriers	PAR	PAF (%)
	DGKD						
rs838717	GG/GA	AA	0 11 2	0.106	0.116	6 10,10-3	E 11
Case	13121	5839	0.113	0.106	0.116	0.12X10 ⁻²	5.44
No stones	100427	49000					
	SLC34A1			·			
rs10051765	CC/CT	TT					
Case	11357	7603	0.113	0.107	0.117	6.08x10 ⁻³	5.40
No stones	85653	63774					
	CYP24A1						
rs6127099,	AA/AT	TT					
Case	17454	1506	0.113	0.108	0.113	4.23x10 ⁻³	3.76
No stones	137036	12391					
DGKD, C	YP24A1, S	SLC34A1					
All	1+ risk allele	No risk alleles					
Case	18767	193	0.113	0.100	0.113	1.26x10 ⁻²	11.23
No stones	147689	1738					

PAR= Population attributable risk (calculated as prevalence in total population- prevalence in individuals without risk allele); PAF= Population attributable fraction (calculated as (prevalence in total population- prevalence in individuals without risk allele)/ prevalence in total population).

Supplementary Table S17. Drug target Mendelian randomization; effects of modulating mineral metabolism traits on odds of kidney stone disease.

		Analy	sis		MR	R IVW	Hetero	geneit	У	Intercept	
Gene	r	Mean R ² (SD)	Outcome	N SNPs	OR (95% CI)	FDR-P	Q	Q_df	Р	Intercept β	Р
			CaSR-signa	aling: effects	of decreasin	g albumin-adjus	sted serum calcium o	concen	tration		
			Meta-analysis	10	0.22 (0.17-0.30)	2.74x10-24	14.00	9	0.12	4.71x10-3 (0.01)	0.62
DGKD	0.1	3.27x10-4 (3.77x10-4)	UK Biobank	9	0.26 (0.17-0.38)	4.50x10-11	10.76	8	0.22	0.03 (0.02)	0.24
			FinnGen	11	0.20 (0.14-0.30)	1.62x10-16	15.29	10	0.12	-0.04 (0.03)	0.25
			Meta-analysis	14	0.72 (0.53-0.97)	0.03	78.52	13	2.09x10-11	8.17x10-4 (0.01)	0.94
	0.01	9.51x10-4 (1.35x10-3)	UK Biobank	13	0.67 (0.48-0.93)	0.02	41.42	12	4.17x10-5	0.03 (0.03)	0.45
CASP			FinnGen	11	0.76 (0.54-1.08)	0.13	42.58	10	5.91x10-6	-0.04 (0.04)	0.28
CASA			Meta-analysis	43	0.74 (0.64-0.85)	2.67x10-5	142.07	42	8.59x10-13	0.04 (0.02)	0.06
	0.1	7.89x10-4	UK Biobank	44	0.70 (0.59-0.82)	2.14x10-5	111.10	43	6.17x10-8	0.02 (0.01)	0.15
		(1.01x10-3)	FinnGen	37	0.78 (0.67-0.91)	2.41x10-3	88.96	36	2.24x10-6	-3.29x10-4 (0.01)	0.98
			Vitamin D meta	abolism: effe	ects of decrea	sing albumin-ad	djusted serum calciu	m cono	entration	•	
			Meta-analysis	4	0.09 (0.07-0.12)	3.58x10-5	2.86	3	0.41	-3.74x10-3 (0.01)	0.7
	0.01	5.37x10-4 (4.98x10-4)	UK Biobank	5	0.12 (0.08-0.19)	3.46x10-5	6.29	4	0.18	0.03 (0.03)	0.37
CYP24A1			FinnGen	5	0.07 (0.05-0.11)	8.75x10-3	6.15	4	0.19	-0.04 (0.04)	0.33
	0.1	3.29x10-4	Meta-analysis	18	0.10 (0.08-0.12)	3.43x10-124	20.37	17	0.26	0.02 (0.02)	0.31
	0.1	(3.08x10-4)	UK Biobank	17	0.12 (0.09-0.15)	1.95x10-61	15.74	16	0.47	-5.80x10-4 (0.01)	0.97

			FinnGen	18	0.08 (0.06-1.10)	4.16x10-87	20.64	17	0.24	0.04 (0.01)	4.62x10-3	
Phosphate metabolism: effects of increasing serum phosphate concentration												
			Meta-analysis	8	0.08 (0.06-0.11)	1.09x10-7	2.54	7	0.92	0.03 (0.01)	0.04	
SLC34A1	0.1	3.24x10-4 (3.95x10-4)	UK Biobank	8	0.07 (0.04-0.10)	6.57x10-2	4.38	7	0.74	0.01 (0.01)	0.34	
			FinnGen	7	0.10 (0.07-0.15)	5.71x10-3	1.44	6	0.96	0.02 (0.01)	0.04	

CHR= chromosome; End= end position; FDR-P= P-value adjusted for 5% false discovery rate; IVW = inverse-variance weighted, N SNPs= number of SNPs; P= p--value; Q= Q statistic; Q_df= Q degrees of freedom; r^2 = linkage disequilibrium threshold; R² = variance in exposure explained by instrumental variable; SD= standard deviation; SE=standard error

Supplementary Table S18: Rare predicted deleterious *DGKD* missense variants in 100kGP participants with kidney stone disease.

Variable	Normal Range	Proband 1	Proband 2	Proband 3	
				R1181\//	
	-	2:222424885:0:0	2211N 2.222425802.T.A	2.233468520.C.T	
		2.233434005.C.G	2.233433093.1.A	Z.233400339.0.1	
Stone analysis	-	UK	UK	Calcium oxalate 70%, calcium phosphate 30%	
Adjusted serum calcium (mmol/l)	2.10-2.50	UK UK		2.45	
Serum phosphate (mmol/l)	0.70-1.40	UK	K UK		
24-hour urinary calcium excretion (mmol)	>5	UK	UK	8.9	
24-hour urinary pH	-	UK	UK	6.86	
24-hour urinary phosphate excretion (mmol)	<35	UK	UK	29.6	
24-hour urinary oxalate excretion (umol)	<460	UK	UK	273	
24-hour urinary citrate excretion (mmol)	>2.5	UK	UK	2.39	
24-hour urinary magnesium excretion (mmol)	>3	UK	UK	5.2	
24-hour urinary uric acid excretion (umol)	200-430 males 140-360 females	UK	UK	400	
Family history of kidney stones	-	UK	Yes	Yes	
Additional phenotypes	-	Hyperparathyroidism	-	-	
Allele frequency 100KGP*	-	9.4x10 ⁻⁵	3.9x10⁻⁵	6.7x10 ⁻⁴	
Allele frequency DiscovEHR	-	1.4x10 ⁻⁴	-	1.9x10 ⁻³	
Allele frequency Gnomad	-	5.0x10 ⁻⁵	-	6.0x10 ⁻⁴	
CADD	-	11	24	32	
SIFT	-	0.02	0	0	
PolyPhen	-	0.768	0.987	1	

*Frequency in rare diseases HG38 cohort; UK unknown.

Supplementary Table S19: Rare *DGKD* missense variants associated with kidney stone

disease in the DiscovEHR cohort.

2.01/2	Variant ID	Controls	Stone	P value	CADD	SIFT	Polyphen	Allele	Allele	Allele frequency
DGKD		n (%)	cases					frequency	frequency	DiscovEHR
Variant			n (%)					Gnomad	100kGP*	
lle91Val	2:233390406:A:G	14	5	0.049	21	0.01	0.102	3.5x10-5	-	1.4x10 ⁻⁴
		(0.01)	(0.03)							
Thr319Ala	2:233438249:A:G	1 (<0.1)	2	0.033	20	0.26	0.00	-	-	2.2x10⁻⁵
			(0.01)							
Val464Ile	2:233446767:G:A	25	8	0.023	22	0.03	0.003	1.1x10-4	7.1x10-5	2.4x10 ⁻⁴
		(0.02)	(0.06)							
Arg900His	2:233459761:G:A	5	3	0.048	27	0	0.954	2.8x10-5	-	5.9x10 ⁻⁵
-		(<0.01)	(0.02)							

*Frequency in rare diseases HG38 cohort.

Bibliography

1. Howles SA, et al. Genetic variants of calcium and vitamin D metabolism in kidney stone disease. *Nat Commun*. 2019;10(1):5175.

Varadi M, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. *Nucleic Acids Res*.
2022;50(D1):D439–D444.

3. Jumper J, et al. Highly accurate protein structure prediction with AlphaFold. *Nature*. 2021;596(7873):583–589.

4. Ferguson KM, et al. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. *Cell*. 1995;83(6):1037–1046.