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Metastatic prostate cancer (mPC) is a clinically and molecularly heterogeneous disease. While there is increasing recognition 
of diverse tumor phenotypes across patients, less is known about the molecular and phenotypic heterogeneity present 
within an individual. In this study, we aimed to define the patterns, extent, and consequences of inter- and intratumoral 
heterogeneity in lethal prostate cancer. By combining and integrating in situ tissue-based and sequencing approaches, 
we analyzed over 630 tumor samples from 52 patients with mPC. Our efforts revealed phenotypic heterogeneity at the 
patient, metastasis, and cellular levels. We observed that intrapatient intertumoral molecular subtype heterogeneity was 
common in mPC and showed associations with genomic and clinical features. Additionally, cellular proliferation rates varied 
within a given patient across molecular subtypes and anatomic sites. Single-cell sequencing studies revealed features of 
morphologically and molecularly divergent tumor cell populations within a single metastatic site. These data provide a deeper 
insight into the complex patterns of tumoral heterogeneity in mPC with implications for clinical management and the future 
development of diagnostic and therapeutic approaches.
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the treatment of  patients with mPC. Despite the clinical impor-
tance of  this phenotypic diversity, few studies have detailed the 
extent and patterns of  inter- and intratumoral heterogeneity in 
patients with mPC (10, 13, 30, 31).

To address this knowledge gap, we applied multimodal pro-
filing approaches to metastatic tumor tissues that were procured 
as part of  the University of  Washington Prostate Cancer Rapid 
Autopsy Program (16, 20, 21, 32, 33). We integrated in situ analy-
ses and molecular studies across 630 tumor samples from 52 men 
with lethal mPC to determine the composition and diversity of  cel-
lular phenotypes in lethal PC.

Results
Patterns of  metastatic sites and molecular phenotype distribution. To 
systematically evaluate the diversity of  molecular phenotype com-
position in mPC, we studied 637 PC samples from 52 patients 
(Figure 1, Supplemental Figure 1, and Supplemental Table 1; sup-
plemental material available online with this article; https://doi.
org/10.1172/JCI186599DS1) participating in the University of  
Washington Prostate Cancer Rapid Autopsy Program from 2003 
to 2019 (16, 20). Of  these, 51/52 (98%) patients had progressed on 
prior androgen deprivation or AR pathway inhibitor therapy (Sup-
plemental Table 1). For each patient, a median of  11 tumor sam-
ples were included (range 2–37), which represented all metastatic 
sites, with bone, liver, and lymph nodes being the most frequently 
involved (Figure 1A). To determine molecular phenotypes across 
all tissue samples, we constructed tissue microarrays (TMAs) that 
were stained with a panel of  validated antibodies assessing AR 
signaling (AR, NKX3.1), NE differentiation (insulinoma-associ-
ated protein [INSM1], synaptophysin [SYP]), NE-related tran-
scription factors (achaete-scute family BHLH transcription factor 
1 [ASCL1], SRY-box transcription factor 2 [SOX2], and forkhead 
box A2 [FOXA2]), and cell proliferation (Ki-67) (Figure 1 and Sup-
plemental Figure 1). We classified PCs based on AR, NK3 homeo-
box 1 (NKX3.1), INSM1, and SYP expression into 4 molecular 
subtypes (33–36). A total of  34 of  52 (65%) patients harbored pre-
dominantly AR+/NE– PCs, 12 of  52 (23%) were AR–/NE+, 4 of  
52 (8%) were AR+/NE+, and 2 of  52 (4%) classified as AR–/NE–, 
similar to the distribution of  these molecular subtypes observed in 
other contemporary cohorts (Figure 1 and Supplemental Figure 1) 
(22, 28, 37, 38). Notably, these molecular subclasses are associat-
ed with distinct clinical phenotypes and exhibit differences in the 
expression of  relevant drug targets (Supplemental Figures 2 and 3) 
(22, 24, 28, 33, 35, 37, 39–44).

Next, we assessed the distribution of  different molecular sub-
types across anatomic sites (Figure 1, B and C, and Supplemental 
Figures 1, 4, and 5). We found similar proportions of  bone involve-
ment in AR+/NE– (38%) and AR–/NE+ (40%) PCs (Figure 1, B 
and C). We identified 6 patients with divergent molecular pheno-
types, in which at least 1 bone metastasis retained AR expression, 
while other soft tissue metastases showed loss of  AR expression 
with or without concomitant NE positivity (Supplemental Figure 
4). Liver metastases were more common in AR–/NE+ (29%) com-
pared with AR+/NE– (19%) PCs, while the highest rates of  liver 
(38%) and lung (12%) involvement were observed in AR–/NE– PCs 
(Figure 1, B and C, and Supplemental Table 3). Lymph node metas-
tases were more common in AR+/NE+ (29%) than other subtypes 

Introduction
An increasing number of  studies spanning diverse cancer types 
demonstrate that individual cancer cells can show substantial 
phenotypic and molecular differences across different metastases 
or even within a given tumor mass (1–6). Such inter- and intra-
tumoral heterogeneity has been discussed as a potential driver of  
therapy resistance and disease progression (1, 7–9). Broadly, there 
is a need to formally determine the extent and clinical relevance 
of  tumoral heterogeneity. These characterizations are important 
since they will guide the development of  novel diagnostic tools 
and help improve therapeutic strategies. However, comprehensive-
ly assessing the tumor burden in patients with advanced metastatic 
disease is challenging due to the difficulties in accessing biospeci-
men cohorts in which multiple metastatic sites have been sampled 
from a given patient.

Prostate cancer (PC) is a clinically and molecularly diverse dis-
ease and therefore represents a relevant malignancy to study tumor-
al heterogeneity (10–12). Earlier studies demonstrated that, despite 
the presence of  multifocal genomically distinct tumors in the pri-
mary site, the vast majority of  distant metastases in a given patient 
share common genomic alterations, indicating that a single clone in 
the primary tumor gives rise to all distant metastatic lesions (10, 13–
16). Genomic studies have further shown that while key driver gene 
alterations are shared across different metastases within a patient, 
there is also evidence of  subclonal diversity (10, 13, 15, 17). Clin-
ically, heterogeneous responses to systemic therapies are observed 
across different metastatic sites, suggesting at least in some patients 
a higher level of  phenotypic diversity and plasticity (18, 19).

Contemporary therapies for metastatic prostate cancer (mPC) 
exert treatment pressures that result in a diverse spectrum of  dis-
ease phenotypes characterized by distinct molecular changes and 
different clinical presentations (20–23). Prior work has shown that 
loss of  prostatic luminal epithelial differentiation and gain of  stem-
like and neuronal features can be observed in up to 30% of  patients 
with metastatic castration-resistant prostate cancer (mCRPC) (20, 
21). Based on these observations, mCRPC can be classified into 
clinically relevant subtypes by assessing the activity of  the androgen 
receptor (AR) signaling axis and the expression of  neuroendocrine 
(NE) markers (20, 21). This classification enables a contextualiza-
tion of  cell and lineage states: AR+/NE– tumors are characterized 
by AR expression in the absence of  NE differentiation, consistent 
with a prostatic luminal cell lineage, and comprise the most com-
mon molecular phenotype (20, 21). Diverging from this are tumors 
that gain NE marker expression and/or lose AR or AR activity. 
AR–/NE– tumors (also termed double-negative PC) show loss of  
AR expression in the absence of  NE marker expression (20, 21). 
AR+/NE+ tumors, previously termed amphicrine carcinomas, 
express both AR and NE markers (20, 21, 24–27). Lastly, AR–/
NE+ tumors (also termed neuroendocrine prostate cancer [NEPC]) 
lack AR but show robust NE marker expression and exhibit over-
lapping features with high-grade NE (small-cell) carcinomas arising 
in other organ sites (20–22, 28, 29).

Such phenotypic diversity and divergent molecular evolution in 
response to therapy results in a high level of  heterogeneity between 
cell populations, affecting critical changes in proliferation, meta-
static potential, and biological behavior. The resulting inter- and 
intratumoral heterogeneity potentially poses major challenges for 
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Figure 1. Study cohort and associations between molecular subtype and organ sites. (A) Summary of the study cohort. A total of 52 patients and 637 
samples were analyzed. Ideogram depicts the distribution of samples across anatomic sites. Bar graph shows the percentage and number of patients with 
tumor involvement of the listed sites. (B) Distribution of organ site involvement across molecular subtypes. (C) Proportion of molecular subtypes across 
organ sites. (D) Micrographs of H&E and IHC stains representative of the 4 molecular subgroups. Note that a subset of AR–/NE+ tumors demonstrated 
robust INSM1 but no SYP expression (as shown here). Scale bars: 100 μm.
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E). We next determined the association between subtype HI and 
genomic features (Figure 2G) and Supplemental Figure 6). We 
observed that AR alterations (P = 0.02) were associated with lower 
HIs, and PTEN-altered patients showed marginally and not statisti-
cally significantly higher HIs (P = 0.17) (Figure 2, F and G). Other 
genomic alterations did not show robust associations with subtype 
HI (Figure 2G and Supplemental Figure 6). Collectively, these data 
suggest that certain genomic contexts are associated with molecular 
subtypes and intrapatient phenotypic heterogeneity.

Cell proliferation rates differ across metastases. Given the molecular 
subtype heterogeneity described above, we further sought to inves-
tigate differences in proliferative activity among individual meta-
static sites. To this end, we assessed Ki-67 proliferation indices, a 
well-established and clinically used proliferation marker (Figure 3). 
Across all molecular subtypes, AR–/NE+ PCs exhibited the highest 
Ki-67 indices (median 60%), followed by AR–/NE– (median 30%), 
AR+/NE+ (median 30%), and AR+/NE– (median 20%) (Figure 
3A and Supplemental Figure 7). Within molecular subtypes, we 
observed a wide range of  Ki-67 positivity (Figure 3 and Supplemen-
tal Figure 7). We found that proliferation indices varied substantial-
ly across different metastases of  the same patient (maximum range 
of  2%–100%) (Figure 3, B and C, and Supplemental Figure 7). This 
intertumoral heterogeneity was partly attributable to differences in 
molecular subtypes, but we also noted marked intertumoral Ki-67 
rate differences in metastases of  the same molecular subtype (Fig-
ure 3, B and C). To quantify Ki-67 diversity both across and within 
metastases, we applied a separate HI specific to Ki-67 (see Meth-
ods) and observed a mean HI of  30 (95% CI 14–43) (Figure 3B). 
Moreover, there was variability across different anatomic sites, with 
varying Ki-67 rates observed in lung (median 50%), abdominal soft 
tissue (median 50%), liver (median 40%), bone (median 30%), tho-
racic soft tissue (median 20%), lymph nodes (median 20%), and 
prostate (median 15%) (Figure 3D).

We further explored associations between median Ki-67 levels 
and genomic alterations and observed lower proliferation indices 
in PCs with AR alterations (median difference = 15%, 95% CI 
0%–30%, P = 0.04) and higher rates in patients with biallelic RB1 
inactivation (median difference = 30%, 95% CI 5–45, P = 0.02) 
(Figure 3E). While these associations show a trend, they were not 
considered statistically significant after correction for multiple com-
parisons. These findings highlight a previously underappreciated 
intrapatient heterogeneity in proliferation rates across metastatic 
sites and demonstrate potential trends for associations between cell 
proliferation, genomic makeup, and molecular heterogeneity.

Associations between molecular phenotypes, subtype heterogeneity, and 
clinical features. The clinical significance of  phenotypic heterogeneity 
in mPC is not well understood. To contextualize our findings, we 
visualized the diverse clinical histories of  men in this cohort (Figure 
4A). The intervals between initial PC diagnosis to death (median 
5.3 years, IQR 2.2–10.5), first bone metastasis to death (median 2.2 
years, IQR 1.2–4.0), and initiation of  androgen deprivation therapy 
to death (median 3.5 years, IQR 2.2–5.5) showed substantial vari-
ability (Figure 4A), reflecting the diverse patterns of  progression 
and treatment histories in men with lethal mPC (Figure 4B). Last 
recorded serum prostate-specific antigen (PSA) values varied signifi-
cantly but were lowest in AR–/NE+ and AR–/NE– patients (Figure 
4C). Further, PSA values were associated with AR expression and 

(9%–11%). To formally test the association between molecular sub-
type and organ site, we applied a mixed-effect regression model. 
The odds of  NE+ disease were significantly higher in liver (OR = 
4.8, 95% CI 2.0–11.2, P < 0.001), lymph nodes (OR = 3.6, 95% 
CI 1.5–8.8, P = 0.005), and abdominal/retroperitoneal soft tissue  
(OR = 7.8, 95% CI 2.0–31.3, P = 0.004) sites compared with bone.

Patterns of  tumoral heterogeneity and genomic correlates. Our multi-
tumor and multiregional sampling protocol allowed for an assess-
ment of  patterns of  intrapatient and intertumoral heterogeneity. To 
this end, we used the molecular subtype data from each sample to 
determine the aggregate dominant molecular subtype (i.e., the most 
common subtype across all samples from a given patient) and the 
heterogeneity index (HI), which describes the extent of  intrapatient 
subtype heterogeneity across all samples from a given patient (Fig-
ure 2A and Supplemental Figure 6). We noted that a minority of  
patients (15/52, 29%) exhibited a homogeneous phenotype profile 
(Figure 2B). Overall, 37 of  52 (71%) patients showed an admixture 
of  2 or more molecular subtypes across different metastatic sites 
with AR+/NE– and AR+/NE+ PCs co-occurring most frequently 
(24/37, 65%) followed by patients with AR+/NE–, AR+/NE+, 
and AR–/NE+ tumors (5/37, 14%) (Figure 2B). The HI showed a 
broad range between 0% and 80% across patients and was not asso-
ciated with the number of  tumors assessed (Supplemental Figure 
6). The median HI was highest in patients with dominant AR–/
NE+ PCs, but differences across subtypes did not reach statistical 
significance (P = 0.14) (Figure 2C).

To study the association between key driver genomic alter-
ations, PC subtype, and phenotypic heterogeneity, we determined 
alterations in AR, BRCA2, CHD1, PTEN, TP53, and RB1 in 46 
patients (45–50). For all subsequent genomic correlations, only 
shared alterations were included. This allowed for a global correla-
tion of  genomic states and molecular subtype diversity in a given 
patient. Similar to prior studies, we observed AR copy number gains 
or gain-of-function mutations in 25/46 patients (54%; Figure 2, D 
and E) (16, 46, 51–53). Co-amplification of  the AR gene body and a 
previously identified upstream AR enhancer was detected in 14/18 
(78%) evaluable patients (51, 52, 54). Importantly, we observed a 
high concordance of  AR genomic alterations across different meta-
static sites, with only 3 patients (16-052, 17-033, and 19-048) show-
ing divergent AR changes in single metastases, including low-level 
copy number gains of  ligand binding domain mutations. Biallelic 
loss of  RB1 was observed in 15/46 (33%) patients; monoallelic RB1 
alterations were present in 22/46 (48%) patients. Biallelic loss or 
loss-of-function mutations of  TP53 were observed in 22/46 (48%) 
patients. Across the cohort, 20/46 (43%) patients showed biallel-
ic PTEN inactivation (Figure 2, E and F). While TP53 and PTEN 
alterations were found in AR+/NE– and AR–/NE+ PCs, there 
was a strong enrichment of  AR amplifications in AR+/NE–; con-
versely, RB1 loss and combined RB1/TP53 alterations were more 
prevalent in AR–/NE+ tumors (Figure 2E, Supplemental Figure 
6, and Supplemental Table 4). Interestingly, we identified 1 patient 
(05-144) with uniform AR–/NE+ PC that showed low level AR 
copy number gain and RB1 and TP53 loss. Patients with dominant 
AR+/NE+ tumors had a high rate of  AR alterations and overall 
showed a genomic profile similar to patients with dominant AR+/
NE– tumors. Patients with dominant AR–/NE– tumors had high 
rates of  PTEN and combined PTEN/RB1 loss (Figure 2, D and 
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Figure 2. Patterns of subtype heterogeneity and association with genomic alterations. (A) Summary of individual sample-level and integrated 
patient-level assessments of molecular subtypes and subtype heterogeneity, using patient 15-010 as an example. (B) Pie chart shows number and 
percentages of patients with homogenous and heterogeneous molecular subtype distribution. UpSet plot shows the patterns of molecular subtype 
co-occurrence across all metastatic sites in 52 patients. (C) HI distributions across different dominant molecular subtypes. P values were derived using 
the Wilcox-Mann-Whitney test. (D) Comutation plot depicting molecular subtype and genomic features of patients included in the study. Each column 
represents a patient (case IDs are listed at the bottom). Rows show from top to bottom: IHC-derived dominant molecular subtype (defined as the most 
commonly observed subtype across all metastases); IHC-derived subtype contribution for each of the four subtypes (AR+/NE–, AR–/NE–, AR+/NE+, and 
AR–/NE–) (heatmap scaled 0–1) shown as the relative fraction of tumor samples from each subtype in a patient; HI (shown as a heatmap scaled 0–100); 
whole-exome sequencing–derived key genomic alterations (AR, PTEN, RB1, CHD1, TP53, and BRCA2) shared across all metastases (see legend to the left 
for alteration type). Asterisks indicate no genomic data are available. CN, copy number. (E) Mosaic plots illustrating the relative distributions of molecular 
subtypes (along the x axis) and the associated relative distributions of genomic alterations (along the y axis) (see Supplemental Table 4 for details). Dark 
colors indicate the presence of a given genomic alteration, and light colors show absence. Plots are scaled to the total number of samples in each molec-
ular subtype. (F) HIs for AR and PTEN altered and WT patients. P values were derived using the Wilcox-Mann-Whitney test. (G) Estimated median differ-
ences and 95% CIs of HIs between patients with (altered) and without (unaltered) indicated gene alterations (HIaltered – HIunaltered). Numbers in parentheses 
represent the number of patients, with the first number indicating altered cases.
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Ki-67 positivity but not with HI (Supplemental Figure 8). The pres-
ence of  an AR–/NE+ tumor showed a numerical but not statistical-
ly significant difference in time from bone first metastasis to death 
(median 2.5 vs. 1.9 years) (Figure 4D and Supplemental Figure 8). 
In addition, this time interval was numerically shorter in men with 
AR–/NE+ dominant subtype (median 1.9 years, IQR 0.9–2.5) and 
AR–/NE– dominant subtype (median 0.9 years, IQR 0.5–1.2) com-
pared with AR+/NE– (median 2.7 years, IQR 1.4–4.0) and AR+/
NE+ (median 7.9 years, IQR 4.3–8.3) (Figure 4E). To determine if  
the level of  molecular subtype heterogeneity was associated with 

outcome differences, we compared patients with high (HI > 50) ver-
sus low (HI < 50) molecular heterogeneity at the time of  autopsy. 
Interestingly, we observed a trend toward a shorter duration from 
first bone metastasis to death in patients with lower heterogeneity 
(median difference 1.78, 95% CI –0.05–3.88, P = 0.06) (Figure 4F).

Dissecting the molecular heterogeneity of  mCRPC at the single-cell 
level. To further investigate molecular subtype heterogeneity at the 
single-cell level, we analyzed previously published single-cell RNA 
sequencing data and assessed AR and NE positivity using estab-
lished multigene signatures (40, 49). In predominantly AR+/NE– 

Figure 3. Diversity of cell prolifer-
ation patterns across metastatic 
sites. (A) Bar graphs showing the 
distribution of Ki-67 proliferation 
indices across different molecular 
subtypes. P values are derived from 
2-sample Mann-Whitney rank-sum 
tests for Ki-67 levels from individual 
cores. (B) Comparison of Ki-67 het-
erogeneity indices (see Methods) for 
all patients and AR+/NE– tumors 
only. (C) Scatter plot showing the 
association between mean Ki-67 
indices across all metastases in 
a given patient. (D) Ki-67 indices 
across different anatomic sites. 
Each metastasis is shown as a 
single dot and color coded according 
to the IHC-determined molecular 
subtype. (E) In box plots, hori-
zontal bars indicate the medians 
and boxes indicate 25th to 75th 
percentiles and show Ki-67 indices 
as a function of genomic status of 
AR and tumor suppressor genes. 
P values were derived using the 
Wilcox-Mann-Whitney test.
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PCs (n = 7), we observed varying degrees of  subtype admixture, 
with AR–/NE– cells being the most commonly detected pheno-
type (mean 10%, range 0.4%–34.2%) (see Figure 5, A and B, for 2 
exemplar cases; Uniform Manifold Approximation and Projections 
[UMAPs] of  all other cases can be found in Supplemental Figure 
9). Immunohistochemical analyses further corroborated this find-
ing: Of  347 AR+/NE– PC samples, AR– tumor cells were present 
in more than 33% (Supplemental Figure 9). Additionally, in pre-
dominantly AR–/NE+ (n = 3) and AR–/NE– (n = 3) tumors, we 

detected a variable but generally low frequency of  subtype hetero-
geneity at the single-cell level (Supplemental Figure 9).

Across all patients, we observed a significant number of  tumors 
that were positive for both AR and NE markers (AR+/NE+) (Fig-
ures 1 and 2). However, we found that AR+/NE+ tumors were a 
heterogeneous group (Figure 5, C–E). A subset of  tumors charac-
terized by the coexpression of  AR and NE markers (particularly 
SYP) was previously termed amphicrine carcinoma to reflect their 
luminal secretory and NE phenotype (20, 24–27, 55). We identified 

Figure 4. Clinical features associated with molecular subtypes and intrapatient heterogeneity. (A) Clinical trajectories for 52 patients included in this 
study. Bars showing the time from initial diagnosis to death for each patient and are color coded in light blue to indicate the interval from diagnosis to 
start of androgen deprivation therapy (ADT) and gray for the period after ADT initiation. M indicates the time of first bone metastasis; R indicates first 
clinical evidence of resistance to ADT. The asterisk indicates that this patient did not receive ADT. Patients are sorted based on dominant molecular 
subtype (green, AR+/NE–; yellow, AR–/NE+; red, AR+/NE+; and blue, AR–/NE–) and the HI (gray scale heatmap). (B) Summary of prior therapies. Stacked 
bar graphs showing the number of patients that have (dark color) or have not (light color) received the indicated systemic therapies (abiraterone acetate, 
enzalutamide, and taxane- and platinum-based chemotherapies) as a function of the dominant molecular subtype. (C) Last recorded PSA serum levels for 
each patient broken down by dominant molecular subtype. (D) Box plots showing time intervals from first bone metastasis to death for patients with no 
NE marker positivity compared with patients with any NE marker positivity (INSM1 or SYP H-score ≥ 20). P value was derived using the Wilcox-Mann- 
Whitney test. (E) Box plot showing time from bone metastasis to death across all 52 patients stratified by dominant molecular subtype. P value was 
derived using the Kruskal-Wallis test. (F) Time interval from time from bone metastasis to death in patients with a HI of greater than 50% or below. Note 
that corresponding analyses for other time intervals, diagnosis to death, and ADT to death are shown in Supplemental Figure 5D. In box plots, horizontal 
bars indicate the medians and boxes indicate 25th to 75th percentiles.
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of  AR response genes in cluster 3 and an increase in genes involved 
in inflammatory response and interferon signaling, consistent with 
recent studies implicating JAK/STAT signaling in early lineage 
transition toward NEPC (49, 61) (Supplemental Figure 11). These 
transcriptional changes were associated with chromatin alterations 
assessed by snATAC-seq (Supplemental Figure 11). We further 
determined the genomic relationship across the 3 clusters by analyz-
ing snATAC-seq data to infer copy number variations (CNVs) (Sup-
plemental Figure 11) and observed shared CNVs across all clusters 
but also additional CNVs that were only present in clusters 2 and 3. 
These integrative analyses document the dynamic phenotypic, epi-
genetic, and genomic changes operative in mPC.

Tracing molecular and morphologic heterogeneity between and with-
in metastases. To further illustrate the pronounced phenotypic and 
molecular heterogeneity observed at the individual patient level, we 
performed additional integrative molecular studies of  phenotypical-
ly illustrative cases. For instance, in patient 13-084, histomorpholog-
ical assessment revealed cribriform adenocarcinoma in the prostate 
and bone, high-grade NE carcinoma in the liver and prostate, and 
sarcomatoid carcinoma in a periprostatic soft tissue mass and in the 
lung (Figure 6, A and B). These morphologically distinct metastases 
displayed varying patterns of  molecular phenotypes: The cribriform 
adenocarcinoma in the prostate was AR+/NE–, whereas the bone 
lesion was AR–/NE–. The high-grade NE tumors in the liver and 
prostate were AR–/NE+. The sarcomatoid carcinoma was AR–/
NE–. Bulk whole-genome sequencing (WGS) analyses revealed 
that, despite these morphologic and molecular differences, driver 
alterations, including RB1 and PTEN loss, were present in all met-
astatic sites (Figure 6, B and C). Similarly, in another patient with 
phenotypically diverse metastases (18-039; Supplemental Figure 
12), genomic alterations were concordant across all tumors.

To delve deeper into the molecular tumor features at the sin-
gle-cell level, we performed snRNA-seq and snATAC-seq on a 
prostate tissue specimen from patient 13-084 containing adjacent 
and intermixed AR+/NE– prostatic adenocarcinoma (ARPC), 
AR–/NE+ high-grade NEPC, and AR–/NE– sarcomatoid car-
cinoma (SARC) cell populations (Figure 6D and Supplemental 
Figure 13). UMAP analysis of  the snATAC-seq data revealed 4 
tumor cell clusters with distinct open chromatin patterns in AR 
(ARPC) and COL1A2 (SARC). Notably, the 2 additional clusters 
exhibited differential activity at gene loci encoding the NE tran-
scription factors ASCL1 (NEPC-A) and NEUROD1 (NEPC-N), 
suggesting the presence of  2 NEPC cell populations with distinct 
chromatin accessibility patterns identified in prior studies (Figure 
6E and Supplemental Figure 13) (31). Importantly, copy number 
analyses on snATAC-seq data revealed shared CNVs across all 
clusters that overlap with the CNV profile of  the patient’s pros-
tate tumor assessed by bulk WGS (Figure 6C and Supplemental 
Figure 14). Further, principal component analyses of  snATAC-seq 
data showed that the distinct cell populations in this patient tightly 
clustered with patient-derived xenograft and cell line models repre-
senting the respective molecular subtype (Supplemental Figure 13) 
(31). Matched snRNA-seq analyses showed expression differences 
affecting core transcription factors and lineage marker genes across 
the distinct tumor cell clusters and highlighted cell cluster–specific 
expression patterns (Figure 6F and Supplemental Figure 14). These 
studies demonstrate the complexity of  coevolving lineage divergent 

3 patients (e.g., 10-056, Figure 5C) that exhibited robust and uni-
form coexpression of  both AR and SYP in over 70% of  the same 
cells, consistent with amphicrine carcinoma (20, 24, 25). Notably, 
such amphicrine tumors mostly lacked expression of  transcription 
factors associated with NE lineage (e.g., INSM1, ASCL1, and 
SOX2) but were positive for downstream NE markers such as SYP 
(Figure 5C). An additional 31 patients showed a different pattern 
of  NE marker expression; instead of  homogeneous labeling and 
coexpression of  AR and SYP, we observed reactivity for AR and 
NE markers in distinct cell populations (e.g., 13-042, Figure 5D). 
In these AR+/NE+ mixed or biphenotypic tumors, the SYP-posi-
tive cells were commonly also positive for INSM1 and often coex-
pressed NE transcription factors such as ASCL1 and SOX2. These 
findings suggest that AR+/NE+ tumors can be subdivided into 
2 groups: tumors with cells that coexpress AR and NE markers 
(>70% of  cells) and mixed or biphenotypic tumors composed of  
distinct AR+/NE– and AR–/NE+ cell populations (Figure 5E). In 
the latter group, the frequency of  NE marker–positive cells ranged 
from 1% to 30%. To formally investigate the coexpression of  NE 
markers and AR in these tumors, we conducted dual-label immu-
nofluorescence microscopy. We observed focal coexpression of  AR 
and INSM1 in 10 out of  31 patients, with varying frequencies of  
colabeling (mean 3.9%, range 0.5%–50%; Supplemental Figure 10).

Among the AR+/NE+ patients, 07-042 was of  particular inter-
est; we identified a distinct AR– but INSM1+ cell population inter-
mixed with predominantly AR and SYP coexpressing cells (Figure 
5, F–K, and Supplemental Figure 11). Notably, these AR–/NE+ 
tumor cells demonstrated morphological features reminiscent of  
small-cell carcinoma, including high nuclear-to-cytoplasmic ratios, 
hyperchromatic nuclei, and nuclear molding, whereas the AR+ cells 
were cytologically consistent with a prostatic adenocarcinoma with 
open chromatin and prominent nucleoli (Figure 5F and Supplemen-
tal Figure 11). To better define the underlying molecular changes 
and the cellular composition of  this biphenotypic tumor, we per-
formed single-nucleus RNA sequencing (snRNA-seq) and single- 
nucleus assay for transposase-accessible chromatin sequencing 
(snATAC-seq). Using UMAPs, we identified 3 tumor cell clusters 
that differed in their expression of  AR signaling and NE transcrip-
tion factors (Figure 5, G and H, and Supplemental Figure 11). Clus-
ters 1 and 2 showed coexpression of  AR and SYP consistent with an 
amphicrine carcinoma and were negative for ASCL1 and INSM1. 
Conversely, cluster 3, which was composed of  a smaller number 
of  cells corresponding to the INSM1+ cells detected by multiplex 
immunofluorescence studies (Figure 5F), showed greatly reduced/
loss of  AR but gained in ASCL1, INSM1, and PROX1 expression 
(Figure 5, G–K, and Supplemental Figure 11). Pseudo–time mod-
eling using Palantir demonstrated a cell differentiation trajectory 
from clusters 1 to 3 (Figure 5I) with the highest uniform cell state 
densities observed in cluster 3 (Figure 5J) (56). While clusters 1 and 
2 showed a high level of  concordant gene expression, an abrupt shift 
in the expression of  NE-associated genes (such as REST, FOXA2, 
and SRRM4) was noted compared with cluster 3 (Figure 5, G–K). 
Interestingly, we observed a more gradually increased expression 
from cluster 1 to cluster 3 of  ONECUT2, a transcriptional regula-
tor previously implicated in NEPC, and a concomitant decrease in 
the pioneer factor FOXA1 (57–60) (Figure 5K). Gene set enrichment 
analyses comparing cells in clusters 2 and 3 showed downregulation 
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tinct patterns: Tumors with diffuse coexpression of  AR and NE 
differentiation markers, also known as amphicrine carcinomas, 
are, despite their NE marker expression, molecularly and clinical-
ly similar to AR+/NE– tumors (20, 24–26, 55). Most amphicrine 
carcinomas show expression of  downstream NE markers (such as 
SYP and chromogranin A) with relatively uniform high expres-
sion. NE transcription factors are often negative. This contrasts to 
mixed/biphenotypic tumors that are composed of  intermixed cell 
populations of  AR+/NE– and AR–/NE+ cells. In such patients, 
the NE cell population often expresses NE transcription factors 
(e.g., INSM1, ASCL1, and SOX2). Additional studies are need-
ed to investigate the outcome and therapeutic response patterns of  
amphicrine and mixed/biphenotypic tumors to better define their 
clinical significance (24, 39).

From a therapeutic perspective, the presence of  molecularly 
diverse tumor cell populations poses a significant challenge. Nota-
bly, several drug targets — particularly cell surface proteins used for 
cancer-specific targeting — are differentially expressed across PC 
molecular subtypes (Supplemental Figures 2 and 3) (33, 35, 37, 40, 
41, 71). Therefore, future treatment strategies must account for the 
inter- and intratumoral heterogeneity described here. Developing 
combination therapies that address the unique vulnerabilities and 
expression patterns of  admixed, subtype-divergent cells is essential.

In one patient analyzed in this study, we were able to dissect 
the molecular features of  a mixed/biphenotypic tumor that demon-
strated evidence of  molecular evolution toward NEPC. While 
this patient showed molecularly and morphologically distinct cell 
populations, snRNA-seq and snATAC-seq studies suggested the 
presence of  an evolving NEPC-like cell population characterized 
by shifts in transcription factor and differentiation marker expres-
sion, which was associated with a decrease in AR and an increase 
in ASCL1, PROX1, and ONECUT2 expression. Interestingly, during 
this transition, we observed an increase in cancer cell autonomous 
expression of  gene sets involved in inflammation and interferon sig-
naling. Notably, in cell line and genetically modified mouse models, 
increased interferon signaling has been linked to lineage plasticity 
disease states, and preclinical studies indicate that targeting inter-
feron signaling might potentially reverse lineage plasticity (49, 61). 
This observation suggests that mixed/biphenotypic tumors could 
represent an intermediate cellular state where therapies aimed at 
preventing, delaying, or reversing plasticity could be relevant.

Increased levels of  genomic tumoral heterogeneity have been 
linked to higher rates of  disease recurrence in localized PC and 
more broadly associated with aggressive disease behavior in some 
studies (2, 72–77). However, in other contexts, tumors with exten-
sive genomic subclonal diversity have demonstrated less aggressive 

(prostatic luminal epithelial, NE, and mesenchymal/sarcomatoid) 
cell populations that share a common clonal origin.

Discussion
There is increasing evidence that treatment pressures exerted by 
targeted therapies can result in the emergence of  cancers with aber-
rant differentiation and lineage plasticity (29, 62–64). In response 
to AR-directed therapies, advanced PCs undergo changes in cellu-
lar phenotypes, resulting in increased heterogeneity (20, 21, 28, 49, 
62). In this study, we aimed to define the patterns, extent, and con-
sequences of  tumoral heterogeneity in lethal PC. Combining and 
integrating in situ tissue-based assessments of  protein expression 
and single-cell sequencing methodologies enabled us to investigate 
cell populations at both the histomorphologic and molecular levels.

Prior studies have established the evolution and coexistence of  
tumor cells of  different molecular subtypes in mCRPC (20, 22, 28, 
31, 49, 65–67). Here, we applied an integrative molecular pathology 
approach to samples collected as part of  a rapid autopsy program. 
These efforts revealed phenotypic heterogeneity at the patient, metas-
tasis, and cellular levels, with important implications for clinical man-
agement and the future development of  diagnostics and therapeutics.

Given the molecular diversity observed in this study, our data 
suggest that in at least a subset of  mCRPC patients, a biopsy from 
a single metastatic site may not adequately represent the pheno-
typic heterogeneity of  a patient’s tumor burden. Previous reports 
have indicated that genomic driver alterations are largely conserved 
across different metastatic sites (10, 14–17). Our study supports this 
conclusion but demonstrates that tumors exhibit a higher level of  
inter- and intratumoral phenotype variability. This is reflected in 
the diversity of  molecular subtypes and variability of  cell prolifer-
ation indices. Taken together, these findings support the idea that 
clinically relevant cellular characteristics can exhibit intrapatient 
heterogeneity and suggest that evaluating the molecular states of  
multiple metastatic sites may be needed in certain clinical contexts.

Our assessment of  the metastatic tumor burden and molecular 
phenotyping provides insights into the patterns of  metastatic spread 
among patients with advanced lethal PC. While it was previously 
suggested that the liver was the predominant site in NEPC cases, 
we observed significant bone involvement in a substantial num-
ber of  NEPC patients (68–70). Conversely, in this autopsy cohort, 
AR+/NE– tumors also showed a high incidence of  liver and viscer-
al metastases. These findings indicate a potential shift in metastasis 
distribution and suggest that the burden of  liver metastases might 
be underestimated in men with advanced mCRPC (68, 69).

Of  particular interest are cancers expressing both AR and NE 
markers (AR+/NE+ subtype). Such tumors can manifest in 2 dis-

Figure 5. Dissecting molecular subtype pattern at the single-cell level. UMAP and bar graphs depicting molecular subtype composition based on reanaly-
sis of snRNA-seq data of patients with mPC (40). (A) Example of a homogeneous AR+/NE– tumor (MSK−HP13). (B) A more heterogenous AR+/NE– tumor 
with admixed AR–/NE– cell populations (MSK−HP03). (C and D) UMAPs from additional mPCs can be found in Supplemental Figure 8. IHC micrographs 
of AR (AR, NKX3.1) and NE markers (SYP, INSM1, ASCL1, and SOX2) representative of (C) an amphicrine carcinoma (10-056) and (D) a mixed/biphenotypic 
tumor. Note the absence of NE transcription factor expression in the amphicrine carcinoma. Scale bars: 50 mm. (E) Schematic showing different cell states 
in AR+/NE+ tumors. Note that despite widespread positivity for AR and NKX3.1, there are distinct cell populations that are negative for these AR markers 
but positive for SYP, INSM1, ASCL1, and SOX2 (arrows). (F) Coimmunolabeling of mixed/biphasic tumor (07-042) highlights distinct AR–/INSM1+ (arrows) 
and AR+/INSM1+ (arrowheads) cell populations that show adenocarcinoma and small-cell carcinoma morphology, respectively. Scale bars: 50 μm. (G and 
H) Integrated snRNA-seq and snATAC-seq UMAPs showing cell clusters with differential expression of AR and NE markers. Note low-level AR expression 
but high NE marker expression in cluster 3. (I) Pseudo–time analysis using Palantir and (J) cell state densities assessment using Mellon showing cell differ-
entiation trajectories across the 3 clusters. (K) Bubble plot highlighting differential single-gene expression across the 3 clusters.
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ease progression from the first metastasis. Unexpectedly, we found 
that lower HIs at autopsy were associated with a more rapid progres-
sion from first metastasis to death. While the relatively small sample 
size and retrospective nature of  the analysis must be considered, our 

disease (3, 4, 72, 78–80). Thus, the current literature indicates a 
nuanced relationship between tumoral heterogeneity levels and clin-
ical outcomes. In this study, we explored the connection between 
phenotypic heterogeneity in lethal mPC at the time of  death and dis-

Figure 6. Inter- and intratumoral heterogeneity at the single-patient level. (A) Schematic of analyzed metastatic sites and phenotype distribution in 
patient 13-084. (B) Representative micrographs of 5 lesions demonstrating the spectrum of histomorphological and molecular heterogeneity across 
different tumor sites. (C) Somatic copy number profiles derived from WGS demonstrating overlapping copy number changes and limited genomic diversity 
across phenotypically diverse metastases. Shared copy number changes in key genomic regions are highlighted in yellow. (D) Histomorphologic assess-
ment of a prostatic/periprostatic tumor mass shows adjacent AR+/NE– adenocarcinoma (ARPC), AR–/NE+ small-cell carcinoma (NEPC), and AR–/
NE– sarcomatoid carcinoma (SARC). (E) UMAP based on snATAC-seq data demonstrating 4 tumor cell clusters based on chromatin accessibility pattern 
and highlighting 2 distinct NEPC clusters that are characterized by ASCL1 (NEPC-A) and NEUROD1 (NEPC-N) expression (both AR–/NE+). (F) Bubble plots 
showing cluster-specific gene expression pattern based on snRNA-seq. Scale bars: 50 μm.
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NKX3.1, SYP, INSM1, ASCL1, SOX2, FOXA2, and Ki-67 using pre-

viously validated antibodies (antibody specifications are listed in Sup-

plemental Table 2). In brief, FFPE sections were dewaxed and rehydrat-

ed following standard protocols. Antigen retrieval consisted of  either 

steaming for 45 minutes in Target Retrieval Solution (S1700; Agilent) 

or steaming for 30 minutes in citrate buffer (H-3300-250; Vector Labora-

tories). Slides were then washed and equilibrated in TBS-Tween buffer 

(Sigma) for 10 minutes. Primary antibodies were applied, and immuno-

complexes were visualized using the secondary antibodies as specified 

in Supplemental Table 2. All tissue sections were counterstained with 

hematoxylin, and slides were digitized on a Ventana DP 200 Slide Scan-

ner (Roche). TMAs were reviewed, and immunoreactivities were scored 

in a blinded manner using a previously established H-score system, 

whereby the optical density level (“0” for no brown color, “1” for faint 

and fine brown chromogen deposition, and “2” for prominent chromo-

gen deposition) was multiplied by the percentage of  cells at each staining 

level, resulting in a total H-score (range 0–200) for each core (33, 36, 71). 

For Ki-67, any nuclear positivity was counted, and the percentages of  

positive nuclei are shown (range 0%–100%). For subtype classification, 

AR+ tumors were defined by expression of  AR and/or NKX3.1 with an 

H-score of  greater than or equal to 20; NE+ tumors were defined by a 

SYP and/or INSM1 H-score of  greater than or equal to 20 as described 

previously (36, 45, 71). Note that IHC data for 16 patients were present-

ed in a prior manuscript from our groups (40).

Immunofluorescence staining. Multiplexed immunofluorescence 

colabeling experiments with AR-specific (Cell Signaling Technologies; 

5153T) and INSM1-specific (Santa Cruz; sc-271408) antibodies were 

carried out on archival 5 μM FFPE tissues. The staining protocol con-

sisted of  2 sequential staining steps, each with tyramide-based signal 

amplification using the Tyramide SuperBoost kit (Thermo Fisher) as 

described previously (33). Dewaxed slides were first subjected to steam-

ing for 45 minutes in Target Retrieval Solution (S1700; Agilent) and 

incubated with AR-specific antibodies (1:100). Signal amplification 

was carried out by first incubating slides with PowerVision Poly-HRP 

Anti-Rabbit (Leica) secondary antibodies followed by Tyramide568 

(Tyramide SuperBoost kit; Thermo Fisher) according to the manufac-

turer’s protocols. Slides were then stripped by steaming in citrate buffer 

(Vector) for 15 minutes and subsequently incubated with INSM1-spe-

cific antibodies (1:50) followed by PowerVision Poly-HRP anti-mouse 

(Leica) secondary antibodies and Tyramide488 (Tyramide SuperBoost 

kit). Tissues were counterstained with DAPI, mounted with Prolong 

(Thermo Fisher), and imaged on a Nikon Eclipse E800 microscope 

equipped with a Zeiss AxioCam HRm, 14-bit monochrome camera. 

All image analyses were carried out using QuPath (v0.3.0) (81).

Genomic analyses. Areas of  interest were identified on H&E slides 

and macrodissected from adjacent slides as described previously (13). 

For multiregional sequencing studies, genomic DNA was extracted using 

the GeneRead FFPE kit (Qiagen) following the manufacturer’s instruc-

tions. DNAs were subjected to paired-end (2 × 150 bp) sequencing on 

an Illumina HiSeq instrument to an average coverage of  3.05×. For all 

other genomic analyses, previously published whole-exome sequencing 

data were used (16, 21, 35). Genomic alterations, which were shared 

by all metastases in a given patient, were analyzed. Single nucleotide 

variant (SNV) calling was performed using MuTect 2 (GATK version 

4.1.8.1), Strelka 2 (version 2.9.2), and VarScan 2 (version 2.4.4) (82–84). 

Insertions and deletions (Indel) were called using SvABA (85). All SNV 

and Indel calls were annotated using ANNOVAR (release 20200607) 

findings suggest that, at least in a subset of  patients, aggressive dis-
ease may exhibit greater phenotypic homogeneity and only limited 
inter- and intratumoral heterogeneity. This underscores the impor-
tance of  the timing of  tumor sampling, suggesting that as subclones 
expand and molecularly distinct cell populations appear, the fittest 
subclonal population can dominate the tumor burden. Parentheti-
cally, it is also worth noting that certain genomic alterations that are 
known to be associated with treatment resistance (e.g., AR amplifi-
cation) appear to restrict subtype heterogeneity.

There are several limitations to our study. We focused on ana-
lyzing advanced lethal mPC samples from a rapid autopsy cohort at 
a single institution. While this represents the most extensive assess-
ment of  phenotypic heterogeneity in mPC to date, the retrospective 
nature and the relatively small overall number of  patients limit the 
statistical power for assessing clinical associations. Hence, prospec-
tive studies in earlier disease settings are crucial to validate and 
refine the findings presented here and to understand the impact of  
tumoral heterogeneity on treatment response. Given the large num-
ber of  individual metastases included in this study, we were unable 
to perform detailed genomic analyses on each sample. Instead, 
we focused on shared genomic features for the correlative analy-
ses presented in Figure 2. Future studies are necessary to explore 
how individual genomic and epigenetic alterations associate with 
different molecular subtypes on the single metastasis level to fur-
ther dissect their contribution to subtype diversity. While our study 
offers insights into the intricate composition of  mPC tumors, our 
primary focus was on discerning patterns within established tumor 
cell intrinsic cell states. Future studies are necessary to delineate 
the pattern of  other molecular subtypes and to evaluate the diver-
sity of  therapeutic targets. Furthermore, this study focuses on the 
assessment of  tumor cell intrinsic features, and future studies need 
to address the diversity of  tumor microenvironments and their con-
tribution to cellular plasticity in mPC.

Methods
Sex as a biological variable. Since PC affects only males, our study cohort 

consisted exclusively of  male patients.

Tissue specimens. Tissue samples were collected from men who suc-

cumbed to mPC and who participated in the University of  Washing-

ton Prostate Cancer Rapid Autopsy Program (16, 21, 30). Procedures 

were carried out with a mean postmortem interval of  4.9 hours (range 

2–23 hours). Following a standard protocol, all grossly identifiable soft 

tissue and visceral metastases were sampled. Additionally, systematic 

biopsies were obtained to sample the vertebral and nonvertebral bones. 

These extensive sampling efforts resulted in a mean number of  120 

tissue samples per patient across up to 18 anatomically distinct sites. 

All bone specimens underwent decalcification with 10% formic acid 

before paraffin embedding.

Histopathological review and TMA construction. H&E-stained FFPE 

tissue sections from 52 patients (see Supplemental Table 1 for demo-

graphic information) were evaluated. Based on the presence of  tumor 

and morphological features, TMAs with a core diameter of  1 mm were 

constructed as described previously (33, 36, 71). Each metastatic site 

was sampled with at least 2 cores. For blocks that showed more than 1 

distinct morphology, multiple regions of  the tumor were sampled.

Immunohistochemical staining and evaluation. For all immunostaining 

experiments, 5 μm thin adjacent sections of  TMAs were stained for AR, 
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and dominant subtype was evaluated using the Kruskal-Wallis test; 

pairwise differences were evaluated using the Wilcox-Mann-Whitney 

test adjusted for multiple comparisons using Holm’s method. Asso-

ciation between HI for subtype and genomics features was evaluated 

using the Wilcox-Mann-Whitney test. We quantified an intrapatient 

HI for Ki-67 positivity using hypergeometric probabilities to random-

ly sample pairs of  tumors and determine the likelihood of  discordant 

positivity (i.e., 1 with level ≤20% and 1 with level >20%). Associa-

tion between HI for Ki-67 positivity and subtype was evaluated using 

the Kruskal-Wallis test; pairwise differences were evaluated using the 

Wilcox-Mann-Whitney test adjusted for multiple comparisons using 

Holm’s method. Similarly, an intratumoral HI for Ki-67 positivity 

was quantified by randomly sampling pairs of  tumor samples from 

the same tumor block. Intrapatient and intratumoral HIs for Ki-67 

positivity were summarized across patients using 1,000 bootstrap 

samples and calculating accelerated 95% CIs using the “bcanon” 

function in the bootstrap R package (96). Association between max-

imum Ki-67 levels and shared genomic features was evaluated using 

the Wilcox-Mann-Whitney test accounting for multiple comparisons 

using Bonferroni’s method (P < 0.05/21 = 0.0024 was considered sta-

tistically significant). Association between the last serum PSA level or 

clinical durations (between selected events and autopsy) and dominant 

subtype, the presence of  any NE metastases, and HI for subtype great-

er than 50% was evaluated using the Kruskal-Wallis test; pairwise dif-

ferences were evaluated using the Wilcox-Mann-Whitney test adjusted 

for multiple comparisons using Holm’s method.

Study approvals. The study was approved by the University of  Wash-

ington (IRB#2341) and Fred Hutchinson Cancer Center (IRB#10706) 

Institutional Review Boards. All participating men provided written 

informed consent for a rapid research autopsy and tissue procurement.

Data availability. Sequencing data generated as part of  this proposal 

are available in public repositories (GSE292195). All immunohistochem-

ical data on the single-case level are provided in the Supporting Data Val-

ues file. Analytic code can be requested from the corresponding author.
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(86). TitanCNA version 1.23.1 was used for copy number calling (87). 

Gene-level copy number calls were derived from TitanCNA’s segments 

using GenomicRanges version 1.38.0. Gene-level copy number calls 

were converted to ploidy-adjusted copy number (PACN) using Titan-

CNA’s estimated sample ploidy. The following thresholds were used to 

define copy number events; amplification: PACN ≥ 2.5, gain: PACN ≥ 

1.5, deletion: PACN ≤ 0.5, and homozygous deletion: PACN = 0.

Bulk and single-nuclei RNA-seq and ATAC-seq. Bulk RNA-seq data 

from the Stand Up To Cancer/Prostate Cancer Foundation study was 

processed as described previously (21, 33, 88). Gene abundance was 

quantified using GenomicAlignments (89). Molecular subtype classi-

fication (AR/NE status) was performed as described previously (20). 

Differential gene expression between molecular subgroups was assessed 

using limma (90) and refined to cell surface (91) and tier 1 druggable 

targets (92). For single-nuclei sequencing, nuclei were extracted from 

frozen sections (2 × 50 m) of  archival autopsy tissues and processed 

as described previously (31). For snATAC-seq, nuclei were transposed 

according to the OMNI-ATAC protocol (93). Around 7,000 cells were 

targeted for each sample and processed according to the 10× Genomics 

single-cell ATAC-seq sample preparation protocol (Chromium Single 

Cell ATAC Library & Gel Bead Kit; 10x Genomics). For snRNA-seq, 

nuclei were prepared the same way and processed in parallel using 

the 10× Genomics snRNA-seq protocol (Chromium Single Cell 3′ v2 

Reagent Kit; 10x Genomics). snRNA-seq data were preprocessed using 

the Cell Ranger (10x Genomics) to obtain unique molecular identifier 

(UMI) counts for each gene. Cells with less than 200 genes expressed 

(UMI > 0) or cells with greater than 80% UMIs from mitochondrial 

genes were excluded. Filtered data were further normalized and scaled 

using Seurat (94). In addition to de novo–generated data, a previous-

ly published set of  single-cell RNA-seq data from CRPC patients was 

included (40). Principal component analysis was performed using the 

first 50 principal components, and the UMAP dimension reduction 

technique was used for visualization. The Seurat function AddModule-

Score() was used to generate composite scores for each individual cell 

with previously established gene sets indicative of  NE and AR pathway 

activity (21, 22, 95). Cells with composite scores greater than 0.1 for 

either the AR or NE signature were correspondingly classified as AR+/

NE+, AR–/NE+, AR+/NE–, and AR–/NE–. Unsupervised cluster-

ing was performed using the “FindClusters” function in the Seurat R 

package with a parameter of  resolution of  0.8. Differential expression 

analyses between clusters were performed with the FindMarkers() func-

tion using the Wilcoxon’s rank-sum test. False discovery rate was then 

calculated to account for multiple testing. Single-cell ATAC-seq data 

were processed using the Cell Ranger ATAC pipeline v1.1.0. Any cell 

that had fraction of  reads in peaks (FriP) less than 0.2 or total frag-

ments less than 1,000 was removed from the analysis. Detection of  

CNVs from snATAC-seq data was performed as described previously 

(31). Cell fate and cell state density analyses were performed on snRNA- 

seq data using Palantir and Mellon (56, 96).

Statistics. Associations between median biomarker H-scores from a 

given patient and postmortem intervals were evaluated within subtypes 

using linear regressions. An intrapatient HI for subtype was quantified 

using hypergeometric probabilities of  randomly paired tumor samples 

that have discordant subtypes. This measure of  heterogeneity is high-

ly correlated with other measures (e.g., Shannon index and Simpson 

index) while accounting for finite sampling of  molecular subtypes 

from the same patient. Association between median HI for subtype 
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