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Mycobacterium tuberculosis causes human tuberculosis (TB). As mycobacteria are protected by a thick lipid cell wall, humans
have developed immune responses against diverse mycobacterial lipids. Most of these immunostimulatory lipids are

known as adjuvants acting through innate immune receptors, such as C-type lectin receptors. Although a few mycobacterial
lipid antigens activate unconventional T cells, the antigenicity of most adjuvantic lipids is unknown. Here, we identified

that trehalose monomycolate (TMM), an abundant mycobacterial adjuvant, activated human T cells bearing a unique of§ T
cell receptor (aBTCR). This recognition was restricted by CD1b, a monomorphic antigen-presenting molecule conserved in
primates but not mice. Single-cell TCR-RNA-Seq using newly established CD1b-TMM tetramers revealed that TMM-specific

T cells were present as CD4-* effector memory T cells in the periphery of uninfected donors but expressed IFN-y, TNF, and
anti-mycobacterial effectors upon TMM stimulation. TMM-specific T cells were detected in cord blood and PBMCs of donors
without bacillus Calmette-Guérin vaccination but were expanded in patients with active TB. A cryo-electron microscopy study
of CD1b-TMM-TCR complexes revealed unique antigen recognition by conserved features of TCRs, positively charged CDR3a,
and long CDR3p regions. These results indicate that humans have a commonly shared and preformed CD4" T cell subset
recognizing a typical mycobacterial adjuvant as an antigen. Furthermore, the dual role of TMM justifies reconsideration of the
mechanism of action of adjuvants.

Introduction

Diseases caused by mycobacteria, including tuberculosis (TB),
leprosy, Buruli ulcer, and nontuberculous mycobacterial (NTM)
lung disease, rank among the top causes of death and disability
worldwide. Mycobacteria are distinguished from other bacteria
by a thick cell envelope composed of a unique outer membrane
of neutral lipids and glycolipids, which forms the primary barrier
against the host and activates host immunity (1). The mycobacte-
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rial cell envelope, provided as a mixture of compounds, has been
broadly administered in vivo in animals as CFA that can promote
a strong vaccine response (2). Yet, a limited understanding of the
defined immunogenic components of CFA has to date prevented its
therapeutic use as a vaccine adjuvant in humans (3). Recently, stud-
ies have identified receptors for some mycobacterial immunogens,
which involve N-acetyl muramyl dipeptide/nucleotide-binding
oligomerization domain-containing protein 2 (MDP/NOD?2) and
trehalose monomycolate/dimycolate/Mincle (TMM/TDM/Min-
cle) axes (4-6). However, there remain many mycobacterial lipids
for which the receptors and mechanisms of action are not known.
In this study, we sought to identify mycobacterial cell wall com-
ponents leading to immune activation ex vivo. After demonstrating
strong T cell activation, we purified the stimulatory component
and established its structure as TMM. T cell activation by TMM
was not mediated by Mincle but rather by unique T cell receptor
(TCRs) restricted by CD1b. Using TMM-loaded CD1b tetramers
and single-cell TCR-RNA-Seq (scTCR-RNA-Seq), we identified a
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naturally occurring memory T cell population that exists in cord
blood and uninfected individuals but is expanded in humans during
Mycobacterium tuberculosis infection. Structural analysis identified
unique TCR motifs that are shared across unrelated humans and
mediate TMM recognition. Finally, clonotype tracking revealed
that TMM-specific T cells produce typical mycobactericidal effec-
tors including granulysin (7), granzyme B (8), IFN-y (9), and TNF
(10, 11) when stimulated with TMM.

Results

Identification of mycobacterial lipid—reactive T cells in human PBMCs. As
a relatively unbiased and comprehensive way to search for defined
immunostimulatory components in the mycobacterial cell enve-
lope, PBMCs from healthy donors were stimulated with total M.
tuberculosis compounds extracted into chloroform/methanol (2:1,
vol/vol) and coated onto tissue culture plates (12). On the basis of
CellTrace Violet (CTV) dilution, we subjected mycobacterial lipid—
responsive T cells to scTCR-RNA-Seq to identify potentially diverse
clonotypes along with their effector function and TCR profiles (Fig-
ure 1A) (Gene Expression Omnibus [GEO] GSE260931). Among
26,502 detected clonotypes, we selected 52 that are expanded by
M. tuberculosis lipids and reconstituted their TCRaf pairs in nuclear
factor of activated T-cells-GFP (NFAT-GFP) reporter cells (Fig-
ure 1A and Supplemental Table 1; supplemental material available
online with this article; https://doi.org/10.1172/JCI185443DS]1).

After surface expression of the TCR complex was confirmed
for 44 clonotypes (Figure 1B), we tested these cells for responses to
plate-coated M. tuberculosis lipids in the presence of cytokine-differ-
entiated human monocytes as antigen-presenting cells (APCs). One
clonotype derived from CD4" T cells, Y-50, responded strongly to
mycobacterial lipids, based on GFP and CD69 upregulation (Figure
1C). Analysis of scTCR-RNA-Seq data revealed that the Y-50 clo-
notype was expressed by 14 individual cells within the CD4" T cell
clusters (Figure 1D). These cells were characterized by the expres-
sion of granzyme B (GZMB), perforin-1 (PRF1I), granulysin (GNLY),
TNF (TNF) and IFN-y (IFNG), regardless of the expression level of
CD4 (Figure 1E and Supplemental Figure 1). Y-50 also expressed
innate-like T cell markers, like CD161/Xkiller cell lectin like receptor
B1 (KLRBI) and CCAAT enhancer binding protein delta (CEBPD)
(Figure 1E). Some Y-50 cells were also detected in a Ki67" prolifer-
ating CD4* cluster (Figure 1D), in agreement with their CTV' status
used for sorting (Figure 1A). These results suggest that mycobacte-
rial lipid—reactive Y-50—expressing CD4" T cells have an innate and
cytolytic signature after ex vivo lipid stimulation.

TMM activates Y-50 clonotype T cells. To identify the lipid stim-
ulus, we separated crude lipids by thin-layer chromatography
(TLC) and measured responses to each fraction. We collected 16
fractions and found potent antigen activity (Figure 2A). The active
peak shifted to lower retention factor (Rf) values (fraction 2) under
more hydrophobic solvent conditions (Figure 2B), suggesting that
the antigenic component was probably a moderately polar lipid.
‘We thus analyzed the fraction by matrix-assisted laser desorption/
ionization—-time-of-flight mass spectrometry (MALDI-TOF MS)
(Figure 2C), finding ions that matched and largely overlapped in
chain length and saturation patterns with purified TMM from M.
tuberculosis H37 Rv (13) (Figure 2D and Supplemental Figure 2).
In addition to purified TMM, Y-50 TCR-expressing reporter cells
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were also activated by APCs cocultured with M. tuberculosis H37 Rv
and Mpycobacterium bovis bacillus Calmette-Guérin (BCG) (Figure
2E), demonstrating the origin of the stimulus from intact bacteria.

CD1b restricts TMM recognition by the Y-50 TCR. TMM is most
well known as a major cell wall glycolipid with adjuvanticity that is
also a biosynthetic intermediate to TDM, known as cord factor. As
TDM and TMM are both known to potently activate myeloid cells
through the innate receptor Mincle (12, 14), TMM might activate T
cells via Mincle on APCs. However, we found that the Y-50 T cells
selectively recognized TMM but not TDM (Figure 2F), suggesting
that the response was specific to some aspects of the TMM struc-
ture and was not mediated by Mincle.

The major alternative hypothesis was CD1 presentation of
TMM to TCRs, as prior studies reported that another mycobacte-
rial glycolipid, glucose monomycolate (GMM), is a CD1-restricted
T cell antigen (15). Yet, we observed that GMM was not a Y-50
antigen (Figure 2F), suggesting that TMM might be a new T cell
antigen presented by CD1.

Given that all 4 types of human CD1 antigen—presenting mole-
cules can present lipids (16), we examined the effect of blocking anti-
bodies against human CD1a, CD1b, CDIc, and CD1d and found that
only anti-CD1b selectively suppressed TMM-induced activation of
Y-50 reporter cells in the presence of APCs (Figure 3A). Conversely,
ectopic expression of CD1b on HEK293T cells conferred Y-50 TCR
reactivity to TMM (Figure 3B). Thus, only CD1b is necessary and
sufficient for the presentation of TMM to the Y-50 TCR.

Clone Y-50 broadly recognizes TMM from various mycobacterial spe-
cies. TMM is produced broadly among mycobacterial species (17).
To further characterize the selectivity of antigenic lipids recognized
by the Y-50 TCR, we purified TMM possessing different lipid
lengths from Mycobacterium intracellulare and Mycobacterium smegma-
tis (C60-C88) as well as Rhodococcus species with shorter mycolate
moieties (C28-C36), and found that all showed antigenic activity
(Figure 3C). However, other related mycolyl lipids that varied in the
head group moiety — GMM, mannose monomycolate (MMM),
glycerol monomycolate (GroMM), and free mycolic acid (MA) (18,
19) — lacked antigenicity (Figure 3C). Thus, the T cell reactivity
identified here was new, and the head group composed of the treha-
lose disaccharide was required for Y-50 TCR recognition.

To exclude the possibility of contaminants or mitogens in
natural TMM preparations, we carried out complete synthesis of
TMM, starting with hexa-O-TMS trehalose 6,6’-diol (Figure 3D).
Synthetic TMM also induced T cell activation, formally ruling in
this structure as an antigen (Figure 3E). However, other synthetic
TMM analogs lacking an a-branched alkyl chain or a B-hydroxy
group did not activate (Figure 3E). Thus, while Y-50 broadly recog-
nizes TMM mycolate chains of varying length present across myco-
bacterial species, it discriminates the chemical features that define
mycobacterial TMM.

Cationic residues in Y-50 TCR are critical for TMM recognition. A
striking characteristic of Y-50 TCRao is the presence of 4 positively
charged arginine residues (R107, R108, R113, and R114) within the
CDR3a region (Figure 4A). To investigate the contribution of these
residues to TMM recognition, we introduced alanine mutations and
evaluated their effects using TCR-reconstituted reporter cells. TCRa
containing alanine substitutions at R107, R113, showed impaired
reporter activity, whereas R108A had no effect (Figure 4A).
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Figure 1. Identification of mycobacterial lipid-reactive T cells. (A) Schematic representation of the experimental procedure. Human PBMCs were cultured
with plate-coated crude lipids extracted from M. tuberculosis. The expanded T cells were sorted and analyzed by single-cell TCR-RNA-Seq. Highly expand-
ed CTV"° TCR clonotypes were reconstituted into NFAT-GFP reporter cells to examine the reactivity to M. tuberculosis lipids. (B) Forty-four TCR clonotypes
were reconstituted into reporter cells and analyzed for their surface expression using anti-CD3 antibody. (C) NFAT-GFP reporter cells (44 clonotypes)
expressing each different TCR were stimulated with M. tuberculosis (Mtb) crude lipids in the presence of PBMCs or cytokine-differentiated monocytes

as APCs and, after a 20-hour incubation, analyzed for GFP and CD69 expression. Representative results from 2 independent experiments are shown. (D)
UMAP plots of T cells expanded in response to M. tuberculosis lipids (left panel). T cell clones expressing Y-50 clonotype are highlighted by red dots (right
panel). CTL, cytotoxic T lymphocytes. (E) Heatmap of the gene expression signature of Y-50 cells, with expression of characteristic genes in each cell

expressing Y-50 TCR clonotype shown.

Compared with the average CDR3p (14.4 residues) (20), the
Y-50 CDR3p was much longer and encoded by 20 residues (Fig-
ure 4B). To assess the contribution of amino acid insertion during
VDJ recombination to antigen recognition, we engineered 4 short-
er Y-50 TCRs lacking residues within the junctional region. None
of these TCRp mutants recognized TMM (Figure 4B), suggesting
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that certain aspects of this long CDR3 are required for the recog-
nition of TMM by the Y-50 TCR.

Structural characterization of the Y-50 TCR. The cationic and
long loop motifs suggested a TCR binding mechanism con-
trolled by electrostatic interactions and a flexible TCR surface.
To gain structural insight into the Y-50 TCR, a soluble TCRaf
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Figure 2. Identification of TMM as a T cell antigen. (A and B) M. tuberculosis H37Rv crude lipids were fractionated by HPTLC using chloroform/meth-
anol/water (C/M/W, 65:25:4; vol/vol/vol) (A) and 90:10:1; vol/vol/vol (B) and stained with copper(ll) acetate-phosphoric acid. Y-50 reporter cells were
stimulated with each fraction in the presence of APCs and analyzed for GFP and CD69 expression. White and black arrowheads denote the origin

and the solvent front, respectively. (C) MALDI-TOF MS spectrum of lipid fraction 2 (Fr2). (D) The chemical structure of TMM of a-mycolate is shown,
and methoxy-mycolate and keto-mycolate are the other major subclasses of mycolate found in M. tuberculosis TMM. (E) Y-50 reporter cells were
cocultured with cytokine-differentiated human monocytes preincubated with whole bacteria (heat-killed M. tuberculosis H37Rv or living BCG) and
analyzed for GFP and CD69 expression. (F) Y-50 reporter cells were stimulated with the indicated concentration of TMM, TDM, or GMM. Expression of
GFP and CD69 is shown in the bar graphs. Schematic ligand structures are shown below. Data are shown as the mean + SD of triplicate assays (E and
F) and representative results from 2 independent experiments are shown (A, B, E, and F).
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;

was constructed for crystallization. We obtained a crystal struc-
ture of the TCRaf complex (Protein Data Bank [PDB]: 8XUB)
that diffracted to a resolution of 2.5 A (Figure 4C and Sup-
plemental Table 2). Three CDR3a arginine residues that were
found to be critical for TMM recognition were facing toward
the TCRp, whereas R108, which was dispensable, was oriented
away from the TCRa-f interface (Supplemental Figure 3A). The
electron density of the TCRap was clear except for the CDR3
loop region, implying that the extra-long CDR3p loop may be
highly flexible, as hypothesized (Figure 4, D and E).

Determination of the ternary complex structure of Y-50 TCR-
TMM-CDIb. However, solving the definitive recognition mecha-
nism required a ternary structure, so we conducted cryo—electron
microscopy (cryo-EM) analysis. Recombinant CD1b was refold-
ed with synthetic TMM (Supplemental Figure 3B) and incubat-
ed with soluble Y-50 TCRof. The cryo-EM map of the ternary
complex was successfully reconstructed to a resolution of 3.18 A
(PDB: 8ZOX) (Figure 5A, Supplemental Figure 3, C-E, Supple-
mental Table 3, and Supplemental Video 1). In the area between
TCRap and CD1b, we observed a clear density map that exactly
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Figure 5. Ternary complex structure of Y-50 TCR-TMM-CD1b. (A) Overall structure of the Y-50 TCR-TMM-CD1b complex. The main chains of TCRa,
TCRB, and CD1b are shown. TMM is presented as yellow spheres. (B) Upper panel: Superimposition of the structure of Y-50 TCR alone (PDB: 8XUB)
(pink) and Y-50 TCR bound to TMM-CD1b (PDB: 8Z0X) (blue) . Lower panels: CDR3p regions (boxed area in the upper panel) magnified. (C) Close-up
view of TMM (R,R) and the side chain of R114 within CDR3a. The B-hydroxy group of TMM is shown in red. (D) Y-50 reporter cells were stimulated
with the natural configuration of synthetic TMM (R,R) or non-natural sterecisomers (S,5) or (S,R+R,S) in the presence of CD1b-DC2.4 and analyzed
for GFP and CD69 expression. The stereoisomer structures are shown below (R, red; S, black). Data are shown as the mean + SD of triplicate exper-
iments, and a representative result from 2 independent experiments is shown. (E) Close-up view of TMM (R,R) and the side chain of R107 (CDR3a)
and D114 (CDR3B). Hydroxy groups of TMM that formed hydrogen bonds to the TCR side chains are shown in red. (F) Close-up view of the side chains
of R79, E80, and D83 in CD1b that interact with the side chains of R37 (CDR1B), Y58 and E63 (CDR2p), and G110 (CDR3B). (G) Multi-bonded interac-
tion of the CD1b RExxD motif and TRBV4-1 residues. Individual interaction is shown by dotted lines. (H) Conservation of the RExxD motif in human
CD1b and CD1c. The amino acid sequences of CD1a (NP_001307581), CD1b (NP_001755.1), CD1c (NP_001756.2), and CD1d (NP_001306074) are aligned.
Numbers indicate the amino acid position of the mature peptide (excluding signal peptide).

overlapped with the chemical structure of TMM (Supplemental  its protruding bulky trehalose moiety through CDR3 regions
Figure 3F). TMM lipid chains were buried inside CD1b pockets,  (Supplemental Figure 3G).

like GMM (21), with its sugar head group exposed toward the This observation was supported in detail by the superimpo-
TCR (Supplemental Figure 3G). TCRap tightly contacted with  sition of the structure of the Y-50 TCR alone (Figure 4C, PDB:
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expressed genes in Y-50 T cells upon TMM stimulation. Violin plots show the expression of representative genes encoding cytotoxic effector mole-
cules (C), proinflammatory cytokines and chemokines (D), and stemness-related molecules (E). Unstim., unstimulated.

8XUB) with its structure within the ternary complex (Figure 5A,
PDB: 8ZOX). The positions of backbone Ca atoms in both struc-
tures largely overlapped; however, the location of the long CDR3f
region was noticeably shifted upon TMM-CDI1b contact (Figure
5B). Whereas the CDR3p loop hung “downward” in the structure
without antigen, it was “drawn up” like a curtain to allow the recog-
nition of TMM presented by CD1b (Figure 5B), providing detailed
insight into how the long CDR3 creates the flexible TCR interface
with the CD1b-TMM complex by avoiding steric hindrance.

We next determined the mode of specific TMM recognition by
Y-50 TCR. The experimentally observed functional importance of
cationic CDR3a residues (Figure 4A) was explained by the ternary
structure. R114 of the TCRa chain formed a hydrogen bond with
the B-hydroxy group of TMM (Figure 5C), likely explaining both
the strong effects of alanine mutation (Figure 4A) and the altered
recognition of TMM lacking the p-hydroxy group (Figure 3E). To
further test the significance of this interaction, we synthesized TMM

stereoisomers that differed in the stereochemistry of the acyl group
(Supplemental Figure 4). Y-50 TCR recognized natural TMM (R, R)
but not non-natural isomers (Figure 5D). Overall, the Y-50 TCR is
highly specific for the natural stereoconfiguration of the TMM lipid
moiety through interaction with the cationic residue R114.

Trehalose is a diglucose. Another critical cationic residue,
TCRo R107, formed a hydrogen bond with the hydroxy group at the
C-2' atom of the distal glucose in trehalose, whereas the proximal
glucose interacted with TCRf D114 through the hydroxy group at
the C-4 atom (Figure 5E). Furthermore, a7 or P4 formed a salt
bridge (Figure SE). Thus, Y-50 TCRa and TCRf may cooperate for
TMM recognition by interacting with distinct epitopes. In line with
this interpretation, Y-50 TCR recognition of TMM was impaired in
aR107A or BPI4A single mutation and more severely in double muta-
tion (aR!07A-gP114A) (Supplemental Figure 5A).

These structural analyses further revealed the molecular basis
by which the characteristic features of Y-50 TCR recognize the
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TMM-CDI1b complex. Alanine scanning functionally confirmed
this mode of antigen recognition and found additional critical res-
idues that are involved in the interaction with CD1b (Supplemen-
tal Figure5, B-D). For example, TCRf G110 was also important
(Supplemental Figure 5D) due to an interaction with E80 of CD1b
(Figure 5F). In addition to CDR3p, other regions derived from the
TRBV4-1-encoded TCR VP chain also bound the surface of CD1b
itself. A positively charged R37 in CDR1p formed a salt bridge with
a negatively charged D83 of CD1b. CDR2p also interacted with the
CD1b al helix through a salt bridge (E63-R79) and a hydrogen bond
(Y58-E80) (Figure 5, F and G, and Supplemental Video 2). Thus,
the TRBV4-1-encoded TCR Vf loops interact with a triply charged
patch on CD1b defined as a "RExxD?% sequence in an antigen-in-
dependent manner (Figure 5G). This charged patch can explain the
preferential usage of TRBV4-1 in CD1b- and also CD1c-restricted
TCRs (22-24), as an identical "RExxD?% motif is also found in
CDlc, but not other human CD1 isoforms (Figure 5H).

Characterization of TMM-specific T cells in the periphery using
tetramers. Key questions relating to whether preprimed memory
cells recognizing CD1b exist in humans, as well as their potential
effector function in the periphery without in vitro expansion, were
largely unknown. We therefore sought to generate TMM-load-
ed CDI1b tetramers and combine them with single-cell analysis.
These TMM-CD1b and unloaded control tetramers were validat-
ed by binding to cell lines expressing TCRs and TMM-stimulated
human PBMCs (25) (Supplemental Figure 6). First, we investi-
gated gene expression profiles of freshly isolated and TMM-stim-
ulated T cells bearing Y-50 TCR using scTCR-RNA-Seq. Y-50 T
cells were separated into different clusters before and after stim-
ulation in a uniform manifold approximation and projection
(UMAP) plot (Figure 6A), implying that gene expression signa-
tures were altered by antigen stimulation. Before ex vivo stimu-
lation, Y-50 T cells expressed typical effector memory markers,
such as CD44 (CD44), IL-7 receptor o chain (IL7R), and integ-
rin B, ({TGBI) (Figure 6B and Supplemental Figure 7, A and B),
suggesting that resting TMM-specific T cells exist as naturally
occurring memory T cells, which is the characteristic feature of
NKT and other innate T cells (26). Upon TMM stimulation, Y-50
T cells moved to the cluster characterized by the expression of
cytotoxic and bactericidal effector genes (GZMB, PRF1, GNLY)
(7, 8) and anti-mycobacterial protective cytokines and chemok-
ines (IFNG, TNF, CCL5) (27, 28), whereas the expression levels
of stemness-related molecules, such as IL7R, TCF7, and CXCRA4,
were downregulated (Figure 6, C-E). These results suggest that
Y-50 T cells are innate-like T cells exhibiting anti-mycobacterial
potential in the periphery, whose effector signature is markedly
enhanced upon antigen stimulation.

TMM:-specific T cells with similar TCR motifs are shared across
humans. To examine whether TMM-specific T cells are shared
across genetically unrelated individuals, we sorted TMM-CD1b-
tet* cells from fresh PBMCs obtained from additional donors and
examined their characteristics by scTCR-RNA-Seq. We found that
TMM-CD1b-tet* clonotypes from unrelated donors were mainly
localized within the CD4* effector memory clusters (Figure 7, A
and B), which expressed CD44, the IL-7 receptor, or integrin B, but
not the homing receptor CCR7 (Supplemental Figure 7C), simi-
lar to unstimulated Y-50 T cells (Supplemental Figure 7B). TCRs

J Clin Invest. 2025;135(6):e185443 https://doi.org/10.1172/)CI185443

RESEARCH ARTICLE

expressed by these clonotypes were reconstituted in reporter cells,
and their specific reactivities to TMM was confirmed (Figure 7, C
and D). Importantly, the sequences of these TCRs revealed them
not be identical to Y-50, but they possessed similar characteristics,
including positively charged CDR3a sequences, biased TCR Vf
that is encoded by TRBV4-1, and long CDR3p sequences (Figure
7C). Furthermore, these trends could be seen in a comprehensive
TCR analysis of TMM-CD1b tetramer—sorted T cells (Figure 7, E
and F). Thus, TMM and CD1b-reactive T cells showed clear evi-
dence for conserved features across numerous clonotypes from dif-
ferent donors, constituting a new public TCR-antigen linkage that
establishes a donor-unrestricted T cell subset in humans (29).

Quantification of TMM:-specific T cells during M. tuberculosis
infection. Finally, we used tetramers to examine the frequency
of TMM-specific T cells in PBMCs from uninfected and donors
with active TB, who were recruited consecutively on the basis
of smear-positive and M. tuberculosis culture—positive sputum
samples (Supplemental Table 4). We detected TMM-CD1b-tet*
T cells in most uninfected donors, consistent with prior experi-
ments of single-cell or tetramer-based outcomes (Figures 6 and
7), further suggesting that these cells are preformed, innate-type
T cells, as these frequencies are similar to those of other uncon-
ventional T cells (30). The frequency was significantly increased
in patients with active TB (Figure 7G), suggesting that these T
cells may react to TMM during mycobacterial infection in the
host. Since these samples were from healthy Japanese donors
who had received BCG vaccination, we also examined PBMCs
and cord blood cells from healthy donors from North America,
where the BCG vaccine is no longer widely given. The frequen-
cy of tetramer® T cells was comparable among all 3 uninfected
groups (Figure 7G), indicating that TMM-specific T cells were
present in naive donors and developed without exposure to BCG
or other environmental antigens.

Discussion

A basic paradigm for adaptive MHC-restricted T cells is that
naive cells are primed by antigen to differentiate into memory
T cells that persist in elevated numbers with memory markers in
the periphery. In contrast, CD1d-restricted invariant NKT cells
express memory markers in the absence of defined antigenic stim-
ulation and functionally circulate in larger numbers and respond
rapidly as a cohort to antigen challenge (26, 31). The extent to
which human group 1 CDl-restricted (CDla-, CD1b-, and
CD1c-restricted) T cells behave as naive or memory T cells in the
periphery, remains poorly understood, owing mainly to technical
challenges in directly addressing these questions in humans and
limited tractable infection models that express CD1a, CD1b, and
CD1c (which are lacking in mice) (32). For example, prior studies
have emphasized long-term in vitro—cultured T cell clones (7, 15,
18, 33) or indirect detection of T cells by activation assays (34, 35)
rather than tetramer-based scTCR-RNA-Seq analysis. Through
the discovery of TMM as a T cell antigen, the generation of
CD1b-TMM tetramers applied across unrelated donors, the iden-
tification of new binding motifs, and the structural dissection of
lipid and nonlipid interaction by a cryo-EM ternary complex, this
study advanced our understanding of human pathogen—specific T
cell responses in the CD1b system.
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Figure 7. TMM-specific T cells with similar characteristics are shared
among individuals. (A and B) Frequent TMM-specific clonotypes identi-
fied by TMM-CD1b-tetramer sorting and scTCR-RNA-Seq are overlaid (A)
on a UMAP plot of all TMM-tetramer-sorted T cells and unsorted CD3*
T cells from 13 healthy donors (B). Three clones were detected from dif-
ferent individual donors; 2 clones (clones 17 and 439) were from another
donor. CD4* Tem, CD4* effector memory T cells; CD4 Tcm, CD4* central
memory T cells. Naive T cells were rare within TMM-tetramer* cells and
were not clustered on the UMAP. (C) TCR usages, CDR3 sequences, and
length of the CDR3p region of the clonotypes detected in A. (D) Each
clonotype was reconstituted into reporter cells and analyzed for TMM,
TDM, and GMM reactivity using CD1b-DC2.4 as APCs. Data are shown as
the mean + SD of triplicate assays, and representative results from 2
independent experiments are shown. Reporter cells were stained with
PE-conjugated endo-CD1b (Cont.) or TMM-CD1b (TMM) tetramers and
anti-CD3 antibodies. Y-50 TCR is shown as a control. (E and F) Frequen-
cy of TCRVB usage (D) and length of the CDR3p region (E) of unsorted

or the top 27 TMM-CD1b tetramer* T cell clonotypes. (G) PBMCs from
Japanese donors (uninfected donors, n = 7; patients with TB, n = 13) or
PBMCs (n = 10) and cord blood cells (n = 10) from uninfected US donors
were stained with PE-conjugated TMM-loaded CD1b tetramer, APC-con-
jugated CD1b-endo tetramer and anti-CD3 antibody. The percentages

of TMM-CD1b tetramer* and endo-CD1b tetramer populations in CD3* T
cells are shown (TMM-CD1b-tet*). Medians are indicated with horizontal
bars. *P < 0.05, by unpaired, 2-tailed Welch’s t test.

Our key findings were the identification of mycobacteria-specif-
ic TCRs in peripheral T cells without infection and the rapid induc-
tion of protective effectors by stimulation ex vivo. IFN-y and TNF
are canonical antimycobacterial cytokines produced from CD4*
Thl cells (9-11). Recently, granulysin, granzyme B, and perforin
secreted from CD8* T cells were also recognized to be important for
protection against mycobacterial infection (27, 36). TMM-specific
T cells are a unique cell subset that rapidly upregulated all of these
effectors simultaneously upon antigen stimulations. While host pro-
tection was difficult to demonstrate directly in human experimen-
tal systems, this evidence supports the notion that TMM-reactive T
cells express a host protective effector function.

Although TMM-reactive T cells expressed CD4, this core-
ceptor seems dispensable for the recognition of the CD1b-TMM
complex, as the reporter cells used in our assay did not express
human CD4. However, we cannot fully exclude the possibili-
ty that, like conventional T cells, CD4 is required for those T
cells to be selected by MHC class II. Clinically, the well-known
susceptibility of HIV-infected patients to TB resulting from the
reduction of CD4" T cells (37) might also be partly due to the
loss of CD4* TMM-specific T cells.

Known patterns of TMM biosynthesis and expression sup-
port plausible scenarios for TMM antigen function during infec-
tion. TMM is expressed by most mycobacterial species and
is used for further biosynthesis of other cell wall components,
including arabinogalactan and TDM (38). Unlike TDM, which
is downregulated in mycobacteria upon infection of the host, the
level of TMM is relatively constant (39). Compared with GMM,
TMM may be resistant to stresses such as oxidation because the
reducing ends of both glucoses are occupied. Thus, given the
importance of TMM for multiple stages of the mycobacterial life
cycle, the presence of T cells that recognize TMM with various
lipid chain lengths plausibly could allow effective induction of
responses to a broad spectrum of mycobacteria.
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Taking advantage of the direct detection by tetramers and
single-cell analysis, we provide several lines of evidence that
TMDM-specific T cells exist before the host is exposed to mycobacte-
ria, as they were detected in random blood donors, as well as non-
TB or non-BCG vaccinated donors and even in cord blood cells.
However, as contrasted with NKT and MAIT cells, PLZF was not
highly expressed in TMM-specific T cells, so it is unclear whether
they were selected by DP thymocytes like other innate-like T cells
(40, 41). Even assuming the involvement of CD1b for selection,
the selecting ligand(s) is unclear. It is also possible that the intrinsic
affinity of TRBV4-1 to CD1b patch might allow less ligand-depen-
dent positive selection.

Determination of the ternary structure of TMM-specific TCR
provides similarities and differences in the mode of glycolipid rec-
ognition with previously reported glycolipid-specific T cells (21).
CDR3a loop regions of both TCRs interact with B-hydroxy group
of GMM and TMM, which is a defining chemical feature of for-
eign mycolic acids as contrasted with self fatty acids, which allows
T cells to discriminate the natural configuration of mycolyl lipids.
Compared with the monosaccharide in GMM, 2 sugar moieties of
TMM interacted more extensively with TCR residues, likely deter-
mining T cell antigen specificity (Supplemental Video 3). Further-
more, long CDR3p region uniquely found in TMM-specific TCR
and its demonstrated compression in the ternary structure show
how the TCRp chain moves upward to accommodate the bulky
TMM head group presented by CD1b.

Biased usage of TRBV4-1 has been reported for CD1b-restrict-
ed T cells from blood (22, 23) and TB pleural effusions (42), sug-
gesting that such TCRs are clinically relevant to host response in
TB disease and could be biomarkers of M. tuberculosis infection.
However, a detailed mechanism underlying this preference was
unclear, as the ternary complex structure of TRBV4-1* TCR with
CD1-bound antigens had never been solved. Our cryo-EM struc-
ture provides direct evidence for the presence of an antigen-inde-
pendent “patch” by which TRBV4-1-encoded residues interact
with CD1b. Conservation of this motif among CD1b and even
CDlc, but not in other human CD1 molecules, may support the
high frequency of TRBV4-1 in CD1b- and CD1c-restricted T cells
(24). The first identification of CD1b/c “patch” implies the pres-
ence of any other motifs for known biased TCR Vf genes, such as
TRBV7-9* T cells restricted by human CD1c (43) or CD1d, which
are associated with Crohn’s disease (44—46).

TMM is recognized by the pattern recognition receptor Min-
cle (12). Thus, this mycobacterial lipid represents a “dual ligand”
that can activate both pattern recognition receptors (PRRs) and
TCRs, so our data suggest that TMM can act simultaneous-
ly as a pathogen-associated molecular pattern (PAMP) and a T
cell antigen, respectively. Freund’s adjuvant cannot be used as a
human therapeutic due to its bacterial origin and undefined mech-
anism. However, chemically defined, dual-acting molecules like
the synthetic TMM studied here could be promising therapeutic
options, as both adjuvant and antigen, to prevent various diseases
caused by mycobacterial species. In addition to TB, NTM lung
disease is one of the most urgent targets, as cases are dramatically
increasing and current drug treatments are ineffective (47). TMM
from NTM species are also — and more strongly — recognized by
TMM-specific T cells. Furthermore, the potent activity and high-
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er hydrophilicity of short-chain TMMs could be advantageous in
terms of efficacy, formulation, and administration. Detailed anal-
ysis on the structure-activity relationships and the protective role
of TMM-specific T cells against mycobacterial infection using pri-
mate models will contribute to the establishment of treatment and
prevention options.

Methods

Sex as a biological variable
Our study examined human PBMCs from both male and female
donors. Sex was not considered as a biological variable.

Study participants

PBMCs from healthy donors were collected after obtaining informed
consent. Peripheral and cord blood cells from healthy donors were also
obtained from Veritas Corporation (Tokyo, Japan; batch 210570303C,
220771201C, 220771404C, 220772503C, 220781001C, 2208409001,
2208411000, 220873101C, 220880801C, 220881703C [PBMCs]; batch
2211410002, 2211416002, 2211422002, 2211422002, 2211422003,
2211423000, 2211423001, 2212406005, 2212414001, 2212414003,
2212420000 [cord blood mononuclear cells, CBMCs]). Active TB cases
(13 cases) are those of patients who were admitted to the hospital as
sputum smear— and culture-positive pulmonary TB cases consecutively
included in the study from April 2023 to July 2023. All participants
were enrolled after giving written informed consent. Blood was taken
for active TB before starting treatment.

Bacteria

M. tuberculosis strain H37Rv was provided by Ikuya Yano (Japan BCG
Laboratory, Kiyose, Japan). For inactivation, the bacterium was heated
at 65°C for 1 hour, followed by incubation at 60°C overnight. M. bovis
BCG was purchased from the Japan BCG Laboratory.

Lipid extraction and purification for stimulation

M. tuberculosis strain H37Rv lipids were extracted as previously described
(48). Briefly, 10 mL chloroform/methanol (2:1, vol/vol) or acetone
was added to 100 mg bacteria and sonicated at 40°C for 10 minutes.
The organic phase was collected, dried, and dissolved in chloroform/
methanol (2:1, vol/vol) for storage and aliquoting into various assays
as a crude lipid. For lipid fractionation, crude lipids were separated
by high-performance, thin-layer chromatography (Merck) followed by
charring with copper (II) acetate-phosphoric acid. TMM was purified
from M. tuberculosis H3TRv, M. tuberculosis CDC1551, M. bovis BCG, M.
intracellulare, M. smegmatis, Rhodococcus equi, and R. sp 4306, TDM was
purified from M. tuberculosis CDC1551, and GMM, MMM was purified
from Rhodococcus ruber, and GroMM was purified from M. bovis BCG
as previously described (13, 49-53). Briefly, the heat-killed bacteria were
sonicated in chloroform/methanol (2:1, vol/vol) for 15 minutes on ice,
and water was added (1:20 total volume). The organic layer was collected
and evaporated completely. The crude lipids were separated by thin-layer
chromatography (Merck), and fractions were extracted. MA was puri-
fied from M. tuberculosis H37Rv as described previously (48). Synthetic
GMM was provided by Adriaan Minnaard (University of Groningen,
Groningen, Netherlands) (54). For stimulation of cells, lipids dissolved in
chloroform/methanol (2:1, vol/vol) were diluted in isopropanol, applied
to 96-well plates at 20 pL./well, and air-dried prior to adding media.
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MALDI-TOF MS analysis

TMM was detected by MALDI-TOF MS with an UltrafleXtreme
(Bruker Daltonics). In brief, purified lipid fractions and TMM stan-
dards were dissolved in chloroform/methanol (3:1, vol/vol) at a con-
centration of 1 mg/mL, and 1 pL sample was applied directly to the
sample plate, followed by addition of 1 pL 2,5-dihydroxybenzoic acid
(10 mg/mL in chloroform/methanol, 1:1, vol/vol) as a matrix. The
samples were analyzed in the reflection mode with an accelerating volt-
age operating in a positive mode of 20 kV (13, 55).

Chemical synthesis

Reactions were carried out under a nitrogen atmosphere unless other-
wise noted and monitored by thin-layer chromatography using Mer-
ck Silica Gel 60 F254 plates. Flash chromatography was performed
using flash silica gel 60N (spherical neutral, particle size 40-50 pm,
Kanto Chemical). Nuclear magnetic resonance (NMR) spectra were
recorded using a Bruker Avance III (500 MHz) device with a Prodigy
(nitrogen-based) cryoprobe or a JNM-ECZL600R (600 MHz) device
with a ROYAL HFX probe. Chemical shifts were reported in the scale
relative to CHCI, (3 7.26 ppm for "H NMR, 77.16 ppm for *C NMR)
or pyridine (8 7.58 ppm for 'H NMR, 135.91 ppm for *C NMR) as
an internal reference. Splitting patterns are designated as s, singlet;
d, doublet; t, triplet; q, quartet; br, broadening; and m, multiplet.
High-resolution mass spectrometry (HRMS) was done with a Bruker
MicrOTOF II detector or a Bruker MALDI-TOF MS Autoflex Speed
device. Gel permeation chromatography (GPC) was executed using
LaboACE LC-5060 equipped with JAIGEL-1HR and JAIGEL-2HR
(CHCL,). HPLC purification was performed on the HITACHI HPLC
system consisting of the following: pump, L6250; detector, L-3350 RI
monitor; column, Senshu-Pak PEGASIL silica SP100; mobile phase,
hexane/EtOAc.

TMM (C32, RR). [a],* +110.01 (c = 0.28, CHCI,/MeOH 4/1),
"H NMR (500 MHz, CDCL,/CD,0D 4/1) 6 4.97 (d, J = 3.7 Hz, 1H),
493 (d, J = 3.7 Hz, 1H), 4.48 (dd, J = 11.9, 1.8 Hz, 1H), 4.05 (ddd,
J=10.0,7.0, 1.8 Hz, 1H), 3.94 (dd, /= 11.9, 7.0 Hz, 1H), 3.75 (m, 1H),
3.72(dd, J=11.0, 1.8 Hz, 1H), 3.69 (dd, /= 9.8, 9.2 Hz, 1H), 3.67 (dd,
J=9.8,9.2 Hz, 1H), 3.56-3.50 (m, 2H), 3.42 (dd, /= 9.8, 3.7 Hz, 1H),
3.37(dd, J=9.8, 3.7 Hz, 1H), 3.18 (dd, /= 9.6, 9.2 Hz, 1H), 3.14 (dd,
J=10.0, 9.2 Hz, 1H), 2.29 (ddd, J = 10.1, 7.8, 4.6 Hz, 1H), 1.50-1.39
(m, 2H), 1.38-1.28 (m, 2H), 1.28-1.05 (m, 50H), 0.75 (t, /= 7.0 Hz,
6H); “C NMR (126 MHz, CDCL,/CD,0D 4/1) § 175.5, 94.43, 94.37,
72.7, 72.62, 72.58, 72.3, 71.6, 71.4, 71.0, 70.8, 70.0, 64.0, 61.9, 52.5,
34.7, 31.8 (2C), 29.64-29.48 (15C), 29.4, 29.34, 29.26 (2C), 29.2, 27.2,
25.2, 22.6 (2C), 13.9 (2C); HRMS-MALDI (m/z): [M+Na]* calcd for
C,H,NaO ,, 843.5810; found 843.58.

TMM (C32, SS). [a] ¥ +8.03 (c = 0.22, CHCL,/MeOH 4/1); 'H
NMR (500 MHz, CDCL,/CD,0OD 4/1) 5 4.98 (d, /= 3.7 Hz, 1H), 4.95
(d, J=3.7Hz, 1H), 4.29 (dd, /= 11.7, 2.0 Hz, 1H), 4.19 (dd, J = 12.1,
5.0 Hz, 1H), 3.92-3.87 (m, 1H), 3.72-3.66 (m, 4H), 3.57-3.50 (m, 2H),
3.41(dd, J=9.8, 3.7 Hz, 1H), 3.37 (dd, /= 9.8, 3.7 Hz, 1H), 3.24 (dd,
J=9.3,9.2Hz, 1H), 3.19 (dd, /= 9.3, 9.2 Hz, 1H), 2.29 (ddd, /= 10.2,
7.8, 4.6 Hz, 1H), 1.49-1.39 (m, 2H), 1.38-1.28 (m, 2H), 1.28-1.03 (m,
50H), 0.74 (t, /= 7.0 Hz, 6H); *C NMR (126 MHz, CDCl,/CD,0OD
4/1) 8 175.5, 94.0, 93.9, 72.8, 72.7, 72.5, 72.2, 71.6 (2C), 70.7, 70.3,
70.2, 63.1, 61.9, 52.9, 34.7, 31.8 (2C), 29.6-29.5 (15C), 29.4, 29.3,
29.2(20), 29.1, 27.2,25.1, 22.6 (2C), 13.9 (2C); HRMS-MALDI (m/z)
[M+Na]* caled for C,,H,,NaO,,, 843.5810; found 843.58.
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TMM (C32, RS +SR). [a] ;7 +9.02 (c = 0.23, CHCI,/MeOH 4/1);
'"H NMR (500 MHz, CDCL,/CD,0D 4/1) 6 4.97 (d, J = 3.7 Hz, 1H),
4.96 (d, J= 3.4 Hz, 1H), 4.94 (d, J= 3.7 Hz, 1H), 4.92 (d, J= 3.7 Hz,
1H), 4.51 (dd, /= 11.8, 1.8 Hz, 1H), 4.23-4.17 (m, 2H), 4.00-3.88 (m,
3H), 3.74-3.63 (m, 10H), 3.540 (dd, J = 12.7, 6.7 Hz, 1H), 3.538 (dd,
J=11.9, 6.1 Hz, 1H), 3.404 (dd, /= 9.8, 3.7 Hz, 1H), 3.399 (dd, J =
9.8, 3.7 Hz, 1H), 3.37 (dd, J = 9.6, 3.7 Hz, 1H), 3.35 (dd, /= 9.8, 3.7
Hz, 1H), 3.25-3.12 (m, 4H), 2.40-2.32 (m, 2H), 1.60-1.50 (m, 2H),
1.38-1.28 (m, 6H), 1.28-1.03 (m, 100H), 0.74 (t, J = 6.9 Hz, 12H);
“C NMR (126 MHz, CDCL,/CD,0D 4/1) 5 175.04, 174.98, 94.3, 94.1
(2C), 94.0, 73.0, 72.8 (2C), 72.7, 72.4, 72.3, 72.2 (2C), 71.6 (3C), 71.5,
70.9, 70.8, 70.7, 70.3, 70.0, 69.9, 63.8, 63.3, 61.9 (2C), 51.6, 51.3, 33.8,
33.5, 31.8 (40), 29.65-29.48 (30C), 29.46 (2C), 29.4 (2C), 29.2 (40),
27.9, 27.8, 26.6, 26.1 (2C), 25.8, 22.6 (4C), 13.9 (4C); HRMS-MALDI
(m/z) [M+Na]* calcd for C,,;H,,NaO,, 843.5810; found, 843.58.

Other synthetic precursors and TMM analogs were synthesized as
described in the Supplemental Methods.

The stereoselective synthesis of TMM (C32, RR) was carried out
by a modified method of Nishizawa et al. (56): [a], +28.8 (c 0.49,
CHCI,/MeOH = 1:1); 'H NMR (500 MHz, CDCL,/CD,0OD = 1:1) §
5.10(d, J= 4.0 Hz, 2H), 4.49 (dd, /= 12.0, 2.3 Hz, 1H), 4.19 (dd, J =
12.0,5.7Hz, 1H), 4.11-4.04 (ddd, /= 9.7, 5.7, 2.3 Hz, 1H), 3.85-3.76
(m, 4H), 3.72-3.66 (m, 2H), 3.55-3.46 (m, 2H), 3.38-3.30 (m, 2H),
2.48-2.40 (m, 1H), 2.21-1.94 (m, 2H), 1.68-1.15 (m, 52H), 0.89 (t,
J=6.9 Hz, 6H); "C{'H} NMR (150 MHz, CDCL,/CD,OD = 1:1) §
174.7,93.4, 93.3, 72.6, 72.5, 71.8, 71.22, 71.17, 70.2, 70.1, 69.5, 62.8,
61.0,52.2,33.9, 31.2, 29.0, 28.94, 28.89, 28.86, 28.8, 28.7, 28.6, 28.2,
26.7,24.7, 21.9, 21.6, 13.0; HRMS (ESI-TOF) m/z: [M + Na]* calcd
for C,,H,,NaO,,, 843.5804; found, 843.5778.
Antibodies
Human Fc block (Fcl) was purchased from BD Pharmingen. Anti—
human CD3 (HIT3a), anti-human CD19 (SJ25C1), TotalSeq-C Hashtags
(LNH-9%4; 2M2), anti-mouse CD3 (2C11, 17A2), anti-mouse CD69
(H1.2F3), and anti-rat CD2 (OX-34), anti-human CD1a (HI149), anti—
human CDI1b (SN13), anti-human CDlc (L161), anti-human CD1d
(51.1), mouse IgG1 « isotype control (MG1-45),and mouse IgG2b « iso-
type control (MPC-11) antibodies were purchased from BioLegend.

In vitro stimulation of PBMCs

Cryopreserved human PBMCs were thawed and labeled by CTV (Ther-
mo Fisher Scientific) and then quenched and washed with RPMI 1640
medium (MilliporeSigma) supplemented with 5% human AB serum
(Gemini Bio), penicillin (MilliporeSigma), streptomycin (MP Biomedi-
cals), and 2-mercaptoethanol (Nacalai Tesque). CTV-labeled PBMCs (10°
cells) were stimulated in the same medium with plate-coated 3 pg M. tuber-
culosis—crude lipids, 3 pg synthetic GMM, or 3 pg heat-killed M. tuberculo-
sis H37Rv for 10 days. Recombinant human IL-2 (1 ng/mL, PeproTech),
human IL-7 (5 ng/mL, PeproTech), and human IL-15 (5 ng/mL, Pepro-
Tech) were added at days 2, 5, and 8. After staining with anti-human CD3
antibody, CTV*CD3" cells were sorted with an SH800 Cell Sorter (Sony
Biotechnology) and used for scTCR- and RNA-Seq analyses.

Single-cell-based transcriptome and TCR repertoire analysis

Single-cell transcriptome and TCR repertoire analyses were performed
using the Chromium Controller (10x Genomics) according to the man-
ufacturer’s instructions, as previously described (57). Libraries were
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sequenced on an Illumina NovaSeq 6000 in the paired-end mode.
The raw reads were processed by Cell Ranger version 6.0.0-7.1.0 (10x
Genomics). TCR repertoire analysis was conducted using Scirpy version
0.11.1, and gene expression—based clustering was determined using Scan-
py 1.9.1. UMAP plots, heatmaps, volcano plots, and differential expres-
sion analyses were performed using Seurat R package version 5.0.1.

Bulk TCR-Seq

PBMC:s (3 x 10°%) were lysed in QIAzol (QIAGEN). Full-length cDNA
was then synthesized using SMARTer technology (Takara Bio), and
the variable regions of the TCRa and TCRf genes were amplified using
TRAC-/TRBC-specific primers. After sequencing of the variable region
amplicons, each pair of reads was assigned a clonotype [defined as
TR(A/B)V and TR(A/B)J genes and CDR 3] using MiXCR software (58).

APCs

For the preparation of cytokine-differentiated human monocytes,
CD14* monocytes were sorted from freshly isolated human PBMCs
using a magnetic cell sorting (MACS) cell separation column (Miltenyi
Biotec), followed by cultured in RPMI 1640 supplemented with 10%
FBS, nonessential amino acids, 10 ng/mL human GM-CSF, and 10
ng/mL human IL-4 for 7 days. Human CD1b was cloned into the ret-
roviral vector pMX-IRES-human CD8 (59) using Phoenix packaging
cells and PEI MAX (Polysciences). Supernatant containing retroviruses
was used for infection into the mouse DC line DC2.4 (American Type
Culture Collection [ATCC])).

TCR reconstitution and stimulation

TCRa and -B chain cDNA sequences were synthesized with eBlock
(Integrated DNA Technologies [IDT]) and cloned into retroviral vectors
pMX-IRES-rat CD2. TCRa mutants were constructed by site-directed
mutagenesis. The vectors were transduced into mouse T cell hybridoma
with an NFAT-GFP reporter gene (57, 60) using retroviruses described
above to reconstitute TCRaf} pairs. For antigen stimulation, TCR-re-
constituted cells were cocultured with stimulants in the presence of
APCs unless indicated otherwise. After 20 hours, T cell activation was
assessed according to GFP and CD69 expression.

NGS-based mutagenesis scanning

For the mutant libraries, synthesized mutant TCRa or § cDNA sequenc-
es were pooled, and reconstituted into reporter cell lines with WT TCRf
or TCRa, respectively. Library cells were left unstimulated or stimulated
with TMM for 20 hours and then sorted by GFP-/GFP* populations.
Each sorted cell population was analyzed by bulk TCR-Seq (GEO
GSE261269). The proportion of the read counts of each mutant within
the GFP* or GFP- cell population are shown as a percentage.

CD1b tetramers

Unloaded human CD1b monomers (biotinylated) were obtained from
the NIH tetramer facility. For TMM loading, 16 pg M. tuberculosis TMM
was sonicated at 45°C for 1 hour in 45 pL. 0.5% CHAPS 50 mM sodium
citrate buffer (pH 4.5), added to 5 pL. CD1b monomers (2 mg/mL)
and incubated overnight at 37°C. For the preparation of control CD1b
tetramers (endo-CD1b tet), CD1b monomers were treated as described
above without TMM loading. Monomers were then neutralized by 5 pL.
1 M Tris (pH 8) and tetramerized using streptavidin-PE (BioLegend) or
streptavidin-APC (eBioscience).
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Tetramer staining and isolation of CD1b tetramer* T cells

Human PBMCs (107) were incubated with 20 pg/mL PE-conjugated
TMM-CDI1b tetramers and 20 pg/mL APC-conjugated endo-CDI1b
tetramers in 40 uLL 1% BSA/PBS at room temperature in the dark for 15
minutes. Without washing, 2 pL. human Fc block (50 pg/mL), 60 uL anti—
human CD3-FITC (2 pg/mL), and 2 pL TotalSeq-C Hashtags were add-
ed and incubated on ice for 20 minutes. Before sorting, cells were washed
and filtered with a nylon mesh and incubated with propidium iodide. 2492
TMM-tetramer* endo-tetramer cells within the CD3* gated population
were sorted with a SH800 Cell Sorter (Sony Biotechnology) and subjected
to scTCR-RNA-Seq. Unsorted PBMCs from the same donors were also
subjected to scTCR-RNA-Seq. Among the 1,737 TMM-tetramer®* cells
(1,559 clonotypes) obtained, clonotypes that were detected more abun-
dantly in unsorted T cells than in TMM-tetramer* T cells were excluded.

Characterization of Y-50 before and after TMM stimulation

For unstimulated cells, PBMCs from 3 donors were stained with anti-
CD3Ab, and PE-conjugated TMM-CD1b tetramer and CD3*TMM-te-
tramer* cells were sorted. For TMM-simulated cells, CTV-labeled PBMCs
from 5 donors were stimulated with TMM for 8-10 days, and CD3*CTV®™
cells were sorted. These samples were subjected to scTCR-RNA-Seq anal-
ysis and projected on the same UMAP plot. On the basis of scTCR-Seq,
the cells expressing a clonotype identical to Y-50 TCRof3 were designated
as a Y-50 clonotype.

Crystal structural analysis

cDNA encoding the ectodomains of Y-50 TCRo. (from Ala-1 to Ser-205)
and B (from Asp-1 to Asp-249) with a nidogen signal sequence, a 6 X
His-tag, and a tobacco etch virus protease cleavage site at the N-terminal
were synthesized (Thermo GeneArt) and subcloned into a pcDNA3.1(+)
vector. To improve the efficiency of protein expression, artificial disul-
fide bond and stabilizing mutations were introduced as described pre-
viously (61, 62). The plasmids were transformed into Expi293 cells in
the presence of the mannosidase inhibitor kifunensine. The cells were
then cultured with shaking at 120 rpm 37°C 8% CO, for 4 days. After
being passed through a 0.22 um filter, the supernatant was applied to
5 mL nickel-nitrilotriacetic acid agarose (FUJIFILM Wako), and His-
tagged TCRof3 were eluted with elution buffer (50 mM Tris-HCI [pH 8.0],
300 mM NaCl, and 250 mM imidazole). After removal of the His-tag
by tobacco etch virus protease, the eluted protein was concentrated and
further applied to Superdex 75 (Cytiva) equilibrated with 20 mM Tris-
HCI (pH 8.0) buffer containing 100 mM NaCl. The crystals were formed
by the sitting-drop, vapor-diffusion method. A 0.4 pL protein solution
(5 mg/mL in 100 mM NaCl, 20 mM Tis-HCl [pHS8.0]) was mixed with
0.4 pL mother liquid containing 0.2 M potassium sulfate 0.1 M Bis-Tris
(pH 5.5) and 25% PEG3350 and incubated at 20°C. The diffraction
data were collected in a cold nitrogen gas stream on an EIGER X 9M
detector (DECTRIS) at a wavelength of 1.0 A. The resulting datasets
were processed, integrated by XDS (63), and scaled by AIMLESS (64).
Structures were clarified by molecular replacement with the TCR com-
plex (PDB: 8204 as a search model, by MOLREP) as implemented in
CCP4i software (64). The models were refined using REFMACS and
PHENIX1.20 software (65, 66). The structures were rebuilt using COOT
0.9.8.92 (67) and further modified based on c-weighted 2| F,, |—IF._ )
and (|F, |—IF__|) electron density maps. Crystallographic images
were created using PyYMOL software (Schrodinger). Data collection and
refinement statistics are summarized in Supplemental Table 2.
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Cryo-EM structural analysis

The TMM-loaded CD1b ectodomain was refolded as follows:
denatured proteins of CDI1b (24.8 mg) and B2m (9.6 mg) were
mixed with 3.28 mg TMM and refolded in the buffer containing
0.1 M Tris-HCI (pH 8.0), 1 M r-arginine (pH 8.0), 5 M urea, 5 mM
reduced glutathione, and 0.5 mM oxidized glutathione. The refold-
ed proteins were then dialyzed 4 times against 0.01 M Tris-HCI
(pH 8.0) and applied onto a HiTrap Q HP 5 mL column (Cytiva).
Purified TMM-loaded CD1b was mixed with Y-50 TCR at a 1:1
ratio. A 2.2 pL sample (1.0 mg/mL) was applied onto the glow-dis-
charged Quantifoil Au 0.6/1.0 200 mesh grid (Quantifoil Micro
Tools) and frozen in liquid ethane using a Vitrobot IV (FEI, 4°C
and 95% humidity). Cryo-EM data collection was performed on a
Titan Krios cryo-TEM equipped with a Cs corrector (Thermo Fish-
er Scientific, USA) operating at 300 keV in EFTEM nanoprobe
mode. Images were acquired as movies using a Gatan BioQuantum
energy filter (slit width of 20 eV) and a K3 direct electron detector
camera (Gatan) in electron counting mode. A total of 8,533 mov-
ies were collected at a dose rate of 8.532 e /pixel/s, a pixel size
of 0.675 A2, and a total dose of 60 e /A2 SerialEM software (68)
was used for automated data collection using a 3 ' 3-hole pattern
beam-image shift scheme with a nominal defocus range of —0.6 to
—1.8 um. All image processing was carried out using cryoSPARC
version 4.4.1 software (69). After motion correction of movies and
contrast transfer function (CTF) parameter estimation, an initial
round of particle picking was performed using the blob picker tool
(diameter 100-140 A). After 4 iterations of 2D class and manu-
al selection, 12,424 particles were selected. Classification into 3
classes using Ab Initio reconstruction and manual selection was
repeated twice, and the resulting 6,961 particles were used as train-
ing data for Topaz picks. The 2,266,363 particles were automatical-
ly picked using the Topaz picking algorithm. After 2 rounds of 2D
classification and 3D classification using Ab Initio Reconstruction
and Heterogeneous refinement, 599,402 particles were selected. A
subsequent round of 2D classification further narrowed the selec-
tion to 232,909 particles. Three maps were reconstructed using
Ab-initio reconstruction with Cl1 symmetry. Several maps were
duplicated and used as the initial model for the heterogeneous
refinement. In this process 2,266,363 particles picked by TOPAZ
were used, but the resolution was not high enough, so 3,158,103
particles were picked by the blob picker. As a result, one of these
classified particles (599,402 particles) were applied to 2D classi-
fication, Ab-initio reconstruction, and nonuniform refinement.
Finally, 11,404 particles were selected, and the density map from
the refinement was obtained at 3.31 A resolution. Each particle
was subjected to reference-based motion correction. The results of
nonuniform refinement were produced in a map of the complex
at 3.18 A resolution. Local resolution of the obtained map was
estimated by a local resolution estimation job on cryoSPARC. 3D
structures of Y-50 (PDB: 8XUB) and CD1b (PDB: 5L2K) were
automatically fitted into the map with program phenix.dock_in_
map in the PHENIX program suite (66). Chemical structure of
TMM was idealized by phenix.elbow. The atomic model of ternary
complex was manually modified using COOT and refined with the
phenix.real_space_refine of PHENIX suite. Stereochemistry of the
refined structure was evaluated with MolProbity (70). Validation
of the final model is summarized in Supplemental Table 3.
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Statistics

Data were analyzed with GraphPad Prism version 9.1.0 software (Graph-
Pad Software). Statistical differences between 2 groups were determined
by unpaired 2-tailed Welch’s ¢ test. A Pvalue of less than 0.05 was consid-
ered statistically significant. Data are presented as the mean * SD.

Study approval

The protocol for collecting human blood samples from healthy donors
was approved by the IRB of Osaka University (approval no. 898-4).
Informed consent was obtained from all participants before the first blood
sampling. The protocol for collecting human blood samples from patients
with active TB was reviewed and approved by the medical research ethics
committee of the National Institute of Infectious Diseases for inclusion of
Human Subjects (nos. 1343 and 1491) and Fukujuji Hospital (no. 22034).
All participants were enrolled after giving written informed consent.

Data availability

All reagents used in this study will be made available upon reasonable
request to the corresponding author. All single-cell TCR-RNA-Seq
and Bulk TCR-Seq data were deposited in the NCBI GEO database
(GSE260931 and GSE261269). Values for all data points in graphs are
provided in the Supporting Data Values file.
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